
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


 
 
 

 
 
 
 
 
 
 

Evolving Seasonal Pattern of Tenerife Tomato Exports 
 
 
 
 
 

Gloria Martín Rodríguez 
gmartinr@ull.es 

José Juan Cáceres Hernández 
jcaceres@ull.es 

University of La Laguna 
Department of Economía de las Instituciones, Estadística Económica y Econometría 

Faculty of Ecnomics, Campus de Guajara 
38071, La Laguna, Tenerife, Spain 

 
 
 
 

 
 
 
 

Paper prepared for presentation at the XIth International Congress of EAAE  
(European Association of Agricultural Economists),  

‘The Future of Rural Europe in the Global Agri-Food System’, Copenhagen, Denmark, date as 
in: August 24-27, 2005 

 
 
 
 

 
 
Copyright 2005 by Gloria Martín Rodríguez and José Juan Cáceres Hernández.  All rights 
reserved.  Readers may make verbatim copies of this document for non-commercial purposes by 
any means, provided that this copyright notice appears on all such copies. 
 

�



 1

EVOLVING SEASONAL PATTERN OF TENERIFE TOMATO EXPORTS 
 

Abstract 
The aim of this paper is to analyse the long term movements and, particularly, the seasonal pattern of 

Tenerife (Canary Islands) tomato exports throughout the last two decades. In order to observe more clearly 
the exporter’s decisions, weekly data has been used. The instabilities in the long term behaviour of the 
series and the specific nature of the seasonal pattern should be taken into account in order to capture the 
performance of exports accurately. Thus, this analysis is carried out inside the frame delimited by the 
structural approach to time series and the usefulness of evolving splines as a tool capable of modelling 
seasonal variations in which either the period or the magnitude of the fluctuations do not remain the same 
over time is shown. 
 
Key words: Tenerife tomato exports, weekly data, structural models, evolving splines. 
JEL classification: C22, Q17. 
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1. Introduction 
The European tomato market is characterised by a constant process of dynamic adjustment towards 

equilibrium. Furthermore, Canary tomato exports cause a high seasonal impact on market prices in the 
winter period. In these circumstances, an adequate distribution of weekly shipments throughout the year 
could contribute to maximise producers’ profits. In this paper, the evolution of the weekly exports of 
Tenerife tomatoes is analysed in the last twenty four harvests. 

Before building an econometric model capturing the variations of this series, it is useful to point out 
some features of the tomato export activity in Tenerife. Firstly, the seasonal pattern of exports is 
characterised by concentration in winter and disappearance in summer. This pattern is a rational response 
guided by the search for profitability; there are no exports in summer because Northern European 
countries and Canary supplies converge in this season and so Canary tomato prices would be low. 
Secondly, the development of greenhouse technology in Northern Europe, the increase in mainland Spain 
supply and the third country supplies sharing the same export period as Canary product entry to the 
European market have led to a growing overlap of the different supplies in spring and autumn. Finally, 
Spain’s full integration into the CAP has brought about the abolition of the mechanisms used by European 
producers as custom barriers against production from the Canary Islands1 and these changes have 
encouraged Canary producers to increase their exports, despite the fact that Moroccans have also benefited 
from a significant reduction in these barriers2. During the last harvests, quality problems, low prices and 
exporters’ expectations brought about a new decrease of export levels. From these remarks, it follows that 
the volumes of Tenerife tomatoes exported in the different weeks of the year have not kept stable 
throughout the last two decades. In order to handle these instabilities structural models appear to be an 
appropriate tool. The statistical techniques used in this paper can be framed inside this approach. A similar 
series was analysed in Martín and Cáceres (2004) by using structural models and two fixed splines. In this 
new paper, a method of dealing with a changing seasonal pattern by means of spline functions is 
proposed3. 

The plan of this paper is as follows. In the next section, the data used is identified and some 
interesting features of its nature and preliminary processing are discussed. In the case under study, some 
properties of the series do not appear to remain the same over time; then, structural models are an 
appropriate class of models to cope with this kind of situation. The basic statistical framework for 
handling a seasonal pattern in which either the period or the magnitude of the seasonal variations do not 
remain the same over time is outlined in the third section. In section four, this procedure is applied to the 
weekly series of Tenerife tomato exports. Section five presents the conclusions. 
 
2. Data 

This section is concerned with the series of weekly Tenerife tomato exports (measured in 6 kg boxes) 
from 1980/1981 to 2003/2004 harvests4. According to data identification purpose, each harvest is 
considered to start in week 27 of a year and conclude in week 26 of the following year5. The series is 
shown in Figure 1. 
 

                                                           
1 For a detailed explanation of these protection mechanisms, see Cáceres (2000, pp. 292-305). 
2 The access conditions to European markets for Moroccan products are analysed in Cáceres (2000, pp. 278-281, 308-312). 
Recently, a new EU-Morocco agreement has been reached. 
3 Cáceres (2001) and Martín et al. (2002) use a more rigid specification of changing deterministic components to capture this kind 
of instabilities. 
4 Export statistics have been obtained from weekly data published by the provincial exporter association of Santa Cruz de Tenerife 
(ACETO) in its export season reports. In those weeks where this source did not register any data, a zero value has been assigned. 
5 When there are 53 observations that correspond to the same year, the starting point of the harvest has been moved forward by 
one week in these cases. In this way a series is obtained with 52 on each year of the period under study. 
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Figure 1. Tenerife tomato exports from 1980/1981 to 2003/2004 harvests. 
 
 In Figure 1 three periods differing by the long-term movement can be distinguished. The new trade 
situation of the Canary Islands with regard to the EU since July 1991 (reference prices were substituted by 
supply prices) and the full integration into the EU since January 1st 1993 (abolition of reference/supply 
prices) brought about a significant export boost. The general growth in exports in this second period was 
interrupted in 1996, coinciding with the introduction of a trade agreement between the EU and Morocco. 
As regard the seasonal pattern, a harvest by harvest rising movement is observed that begins in October 
and finishes in January or February, followed by another downward movement that continues until May or 
June. However, two periods differing by the extent of the harvest can be distinguished. From the 
1991/1992 harvest, the harvests, often finished in early May, continued until June. Although the export 
period in each harvest has kept stable since the 1991/1992 harvest, changes of seasonal behaviour are 
observed. Therefore, and as a preliminary hypothesis, it could be assumed that there is a changing 
seasonal component around a stochastic trend component. In this paper structural models are used as a 
tool capable of capturing these instabilities. Once the conclusion is reached that the seasonal pattern in 
each of the periods mentioned is not fixed, these patterns will be modelled by a evolving periodic cubic 
spline. This methodology is briefly explained in the next section. 
 
3. Evolving periodic cubic splines 

In a structural time series model6 formulated as 
 

tttty εγµ ++= , Tt ,...,1= ,        (1) 
 
where tµ  and tγ  are the trend or level component and the seasonal component, and tε  is the irregular 
component, modelling the seasonal pattern by means of a set of regressors defining a spline function could 
be interesting7. This section deals with the appropriate specification of a periodic cubic spline able to 
capture a seasonal pattern in which either the period or the magnitude of seasonal variations do not remain 
the same. In order to do this, an adequate procedure where a function related to adjustment error is 
optimised, but crossing given points is not required, is proposed in the following paragraphs. 

When the seasonal pattern is fixed, wt γγ =  if the observation at time t  corresponds to the season w , 
,...,sw 1= ; then, this component can be modelled by a periodic cubic spline. That is, 
 

                                                           
6 See Harvey (1989) and Durbin and Koopman (2001). 
7 See Poirier (1973, 1976), Marsh (1983, 1986), Marsh et al. (1990), Koopman (1992), Harvey et al. (1997), Martín and Cáceres 
(2004). 
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ww wg ξγ += )( ,         (2) 
 

where wξ  is a residual term and )(wg  is a third degree piecewise polynomial function, 
 

3
3,

2
2,1,0,)( wgwgwggwg iiiii +++= , ii www ≤≤−1 , 11 −= ,...,ki ,   (3.a) 

3
3,

2
2,1,0,)( wgwgwggwg kkkkk +++= , swwk ≤≤−1 ,     (3.b) 

 
where 0w  is the first season. 

Koopman (1992) and Harvey et al. (1997) propose to use the following procedure in order to obtain 
the previous spline. Let iii awg =∇ )(2 , ki ,...,1= , be the values of the second derivative of the spline 
evaluated at the break points iw , ki ,...,1= , with 1+= swk . Then, the continuity of the second derivative 
of the spline function is enforced by the following conditions 
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2 )( −− =∇ iii awg , ki ,...,2= ,       (4.a) 

 
and 
 

0
2 )( awg kk =∇ ,        (4.b) 

 
in such a way that kaa =0 . The second derivative of the spline is a linear function such as 
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for ki ,...,1= . Now, by demanding continuity conditions of the first derivative of the spline, that is to say, 
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k  equations are obtained and kaa ,...,0  parameters can be expressed as functions of ++
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In matrix form, 
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with wwii −=δ , ki ,...,0= . Finally, it is obtained that 
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Let qpw ,  be the element of W  in row p  and column q . Each qpw ,  is a function of the season w , in such 

a way that 
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Koopman (1992) and Harvey et al. (1997), based on Poirier (1973, 1976), propose to obtain the 
values of such a function by using the observed values of the seasonal pattern, ( )+

−
++Γ 10 ,: k..., γγ . This 

approach can be generalised to allow the seasonal pattern to evolve over time by letting spline be 
stochastic8. However, in this paper it is proposed to specify the seasonal pattern as ww wg ξγ += )( , 
where the spline )(wg  is expressed as 

 
( ) wkkw XXwg ,1

*
1,0

*
0 ... −−++= γγ ,       (20) 

 
where wkw XX ,1,0 ,..., −  are the regressors previously defined and *

1
*
0 , −k..., γγ  are free parameters which must 

be estimated. In this way, the seasonal pattern can be incorporated into a structural model as a function of 
such regressors. 

The previous specification is flexible enough to capture a non-fixed seasonal pattern. The period 
under study could be divided in sub-periods of s  time units (seasons). Suppose that there are m  sub-
periods. For the sub-period c , mc ,...,1= , appropriate regressors c

wk
c

w c
XX ,1,0 ,..., −  can be defined as 

functions of the break points c
iw , 1,...,0 −= cki . Although the break points would be assumed to be the 

same for different sub-periods, in such a way that regresssors c
wk

c
w c

XX ,1,0 ,..., −  are also the same, changes 

in the magnitude of seasonal variations can be captured by defining different parameters *
1

*
0 , c

k
c

c
..., −γγ  for 

each sub-period. Furthermore, when the period s  in which the seasonal variation is completed does not 
remain the same over time, the length of the sub-period c  can be defined as cs , mc ,...,1= . That is to say, 

the seasonal pattern can be formulated as tt tg ξγ += )( , where the spline )(tg  is expressed as 
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c
ti XX ,, = , 1,...,0 −= cki , if the observation at time t  

corresponds to the season w , csw ,...,1= . When the length cs  and the break points c
iw  are the same for 

                                                           
8 See Koopman (1992) and Harvey et al. (1997). 
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all sub-periods, then wi
c
wi XX ,, = , 1,...,0 −= ki , but the seasonal variations are able to evolve over time. 

When *
,

*
, wi
c
wi γγ = , 1,...,0 −= ki , the seasonal pattern is fixed. Obviously, these assumptions lead to a more 

parsimonious formulation. 
The critical point is the selection of the number and position of knots. The problem is very 

complicated when these coefficients are treated as parameters to be estimated. Experience shows that 
iterative estimation procedures lead to local minima and, generally, better results are obtained through 
heuristic methods involving successive adjustments in which it is assumed that locations are known9. In 
this sense, the decision has been adopted to select the combination of locations that minimises the residual 
sum of squares when the regression model 
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is estimated, 1

tγ  being a previous seasonal component approximation. For the chosen locations, the 

regressors c
tc

c
tk

c
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c
t DXDX

c ,,1,,0 ,..., − , , ...,mc 1= , can be incorporated into the structural model as exogenous 

variables. However, given that 1
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, =��
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m
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ti DX
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4. Structural model for the export series 

In this section the previously described methodology is, firstly, adapted to the specific nature of 
Tenerife export levels and, then, it is applied to this particular series. Because exports are almost or 
exactly zero for some weeks in each year of the sample and the non-export period is longer until the 90/91 
harvest, a model with a fixed seasonal period throughout the sample fails. In the first period, there are 
regular exports from week 43 of the year to week 17 of the following year. In the other one, the export 
activity could be considered to start in week 42 and conclude in week 24. So, if only observations 
corresponding to these weeks are considered, a new series is obtained and it will be referred to as 
{ } 752,...,1=tty , hereafter. It is appropriate to specify a model for the new series capable of capturing a 

seasonal pattern in which the period is 27 until the 90/91 harvest and other one in which the period is 35 
from the 91/92 harvest. Note that in this way, the seasonal pattern throughout the harvest is not being 
described but the distribution of exports over the export period. In this paper, the proposal for coping with 
these two seasonal patterns consists of using a evolving spline function, because available statistical 
packages are not be able to estimate conventional stochastic formulations in order to cope with a changing 
seasonal period. Such an analysis is shown in detail in the following subsections. 
4.1 Previous approximations to the seasonal pattern 

The adequate specification of the spline, according to the previous section, requires obtaining a 
previous approximation of the seasonal component in each of the two periods. The stochastic formulation 
of the seasonal component requires a fixed seasonal period. Then, for each period, a basic structural model 
 

tttty εγµ ++= ,        (23) 
 
where tε  ~ NID(0, 2

εσ ), is estimated. The level component is assumed to be generated by the random 

walk tttt ηβµµ ++= −− 11 , where t1 ζ+= −tt ββ , tη ~NID(0, 2
ησ ) and tζ ~NID(0, 2

ζσ ). The seasonal 

component is modelled by a set of trigonometric terms at the seasonal frequencies, j/sj πλ 2= , 

                                                           
9 See Nielsen (1998:46-47). 
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[ ]2/1 s ..., ,j = , in such a way that the seasonal effect at time t is 
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. *
j,tγ  appears as a matter 

of construction and j,tω  and *
j,tω  are zero mean white noise processes which are uncorrelated with each 

other with a common variance 2
ωσ . For the model to be identifiable, the disturbances in all three 

components, level, seasonal and irregular, are assumed to be mutually uncorrelated. 
For each period, the results of estimating the basic structural model by maximum likelihood indicate 

that the slope is constant. In the second period, the significance test of the slope in the final state vector 
suggests that the trend could be reduced to a random walk without drift. Bearing in mind these results, a 
model is proposed for each period where the seasonal component retains its stochastic formulation and the 
slope term is eliminated in the model for the second period. The estimates for the two models are 
summarised in table 1 and figures 2 and 310. Hyperparameter estimates suggest the stochastic nature of the 
level component, although the variability is noticeably higher in the second period. The estimated variance 
of the seasonal disturbance terms is null only for the second period. Accordingly, the conclusion is 
reached that the seasonal pattern has a deterministic nature only in the second one. On the other hand, the 
estimates of seasonal components confirm that there are different export patterns11. 
 
Table 1. Disturbance variances: structural models (23) with fixed slope (period I) and without slope 
(period II) 
 2ˆησ  2ˆωσ  2ˆεσ  

Period I 1.0548x107 4.5992x106 6.9098x109 
Period II 5.8844x109 0.0000 2.2112x109 

 
Period I: 80/81 to 90/91 Period II: 91/92 to 03/04 
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Figure 2. Level component: structural models (23) with fixed slope (period I) and without slope (period II) 

                                                           
10 The smoothed option of the STAMP 6.0 statistical package was used (Koopman et al., 2000). 
11 Despite the statistical non-significance of the parameters corresponding to some seasons, the joint test of the seasonal effects 
indicates the significance of this component. The values of this statistic, which evaluates the joint statistical significance of the 
seasonal effects at the end of the sample, were 355.551 in the first period, and 242.531 in the other one. This statistic is 
asymptotically chi-square with 26 and 34 degrees of freedom, respectively. 
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Figure 3. Seasonal component: structural models (23) with fixed slope (period I) and without slope (period 
II) 

It was opted for obtaining other two approaches of the seasonal pattern in each period. First, a model 
is estimated with a three-segment linear spline capturing the trend component (the break points divide the 
sample under study in three periods: 80/81-90/91, 91/92-95/96 and 96/97-03/04). Then the residual term 
of this regression model is a rough approximation of seasonal variations, { } 752,...,1

1
=t

a
tγ . Second, moving 

averages with period 27 until the last observation of 90/91 harvest and a moving average with period 35 
since the first observation of 91/92 harvest are calculated. Then the difference between { } 752,...,1=tty  series 

and moving average series is another approximation of seasonal variations, { } 735,...,14
1

=t
b

tγ . The 

approximations shown in Figure 4 suggest that the structural model approximation does not capture all the 
seasonal behaviour. Perhaps, as a response of the iterative estimating procedure, the variance of the trend 
component is high enough to capture some seasonal variations. This fact could explain the different 
behaviour in the trend component during the second period. In this sense, it is opted for using the last two 
approximations in order to specify an evolving spline, which also captures the seasonal variations, as a 
useful alternative to the foregoing formulation. 
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Figure 4. Seasonal components: { } 752,...,1
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4.2. Evolving spline 
An alternative way of modelling the seasonal pattern described in previous subsection is by a 

evolving periodic cubic spline formulated as it was indicated in methodological section. That is to say, the 
seasonal pattern could be formulated as tt tg ξγ += )( , where the spline )(tg  is expressed as 
 

( ) [ ]�
=

−−++=
24

1
,,1

*
1,0

*
0 ...

c

c
tc

c
tk

c
k

c
t

c DXXtg
cc

γγ ,      (24) 

 

where 

�
� ∈

=
case  other  in

c harvestt
D t

tc ,0
,1

, , 24,...,1=c , and c
wi

c
ti XX ,, = , 1,...,0 −= cki , if the observation at time t  

corresponds to the season w , csw ,...,1= , where 

�
�

=
=

=
24,...,12,35

11,...,1,27
c

c
sc . 

The spline is specified as a function of week w of the export period. That is to say, 1=w  being the 
corresponding week of the year in which the export period is considered to start and sw =  being the last 
week of the following year in which the export period is considered to conclude. So, until 90/91 harvest, 
the length of the seasonal period is 27  in such a way that 1=w  corresponds to week 43 of a year and 

27=w  corresponds to week 17 of the following year. From 91/92 harvest, the length of the seasonal 
period is 35  in such a way that 1=w  corresponds to week 42 of a year and 35=w  corresponds to week 
24 of the following year. 

In order to obtain a more parsimonious formulation, the break points are assumed to be the same for 
all harvests from 80/81 to 90/91. The same assumption is taken for all harvests from 91/92 to 03/04. Then 

I
wi

c
wi XX ,, = , 11,...,1=c , and II

wi
c
wi XX ,, = , 24,...,12=c , but the seasonal variations c

wi,γ , 1,...,0 −= cki , 
could evolve over time. The resulting model is 
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II
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For each period, the decision has been adopted to select the number of knots from the two approximations 
to the seasonal pattern previously obtained; that is to say, by estimating the regression models 
 

w
I

wkk
I

ww XX ξγγγ +++= −− ,1
*

1,0
*
0

1 ... , 27,...,1=w ,      (26.a) 

 
where 1

wγ  corresponds to the averages values per week calculated from { } 752,...,1
1

=t
a

tγ  and { } 735,...,14
1

=t
b

tγ  

series for the first period, and 
 

w
II

wkk
II

ww XX ξγγγ +++= −− ,1
*

1,0
*
0

1 ... , 35,...,1=w ,      (26.b) 

 
where 1

wγ  corresponds to the averages values per week calculated from { } 752,...,1
1

=t
a

tγ  and { } 735,...,14
1

=t
b

tγ  

series for the second period. Figure 4 shows the seasonal effects estimated in the previous sub-section, and 
the results of estimating previous models suggest a six-segment spline for both the first and the second 
period as an adequate specification. The combinations of locations that minimises the residual sum of 
squares when the regression models previously defined are estimated are the same using either of two 
approximations. For the first period, 11,...,1=c , the break points are 71 =Iw , 112 =Iw , 133 =Iw , 144 =Iw , 
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215 =Iw . For the second period, 24,...,12=c , the break points are 51 =IIw , 162 =IIw , 173 =IIw , 244 =IIw , 

305 =IIw . 
So, the final model of the seasonal pattern is 
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The regressors c
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incorporated into the structural model as exogenous variables; but, in order to avoid multicolinearity 
problems, the regressor c

t
II

t DX ,24,5  is dropped and the following model 
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is estimated where ttt ηµµ += −1 . The results of this model’s estimation are shown in table 2 and figures 5 
and 6. 
 
Table 2. Disturbance variances (structural model, Equation (28)) 

 2ˆησ  (q ratio) 2ˆεσ  (q ratio) 

Periods I-II 6.0421x109 (1.0000) 3.2100x109 (0.5313) 
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Figure 5. Level component (structural model, Equation (28)) 
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Figure 6. Seasonal component (structural model, Equation (28)) 
 

Some spline parameters are not statistically significant but the joint significance test suggests that the 
seasonal variables c

tc
I

t
c

tc
I

t DXDX ,,5,,0 ,..., , 111, ...,c = , c
tc

II
t

c
tc

II
t DXDX ,,5,,0 ,..., , 2312, ...,c = , and 

c
t

II
t

c
t

II
t DXDX ,24,4,24,0 ,...,  must remain as regressors in the model12. The final estimates of the seasonal pattern 

have been obtained from the estimated regression coefficients for these regressors13. As noted in Figure 6, 
seasonal pattern can be similar in several harvests. So, some F  tests can be applied in order to check this 
assumption and simplify the model. In fact, a F  test was calculated for testing the hypothesis that the 
seasonal pattern is fixed in period I  and different but also fixed in period II . However, the conclusion is 
obtained that neither of these seasonal patterns is fixed14; although the magnitude of the changes in the 
seasonal pattern is not very relevant from an economic point of view. 
 
5. Conclusions 
 The study of the Tenerife tomato export weekly series using spline functions embedded into a 
structural time series model is an example for modelling a changing seasonal pattern. The data is almost or 
exactly zero for some weeks in each year of the sample and two periods differing by the extent of the 
export period can be distinguished. Therefore, the traditional approximation of the seasonal cycle fails. So, 
in order to model the seasonal pattern, a new series has been constructed in such a way that the seasonal 
period is different in the two sub-samples. This seasonal pattern, in which the period is not fixed 
throughout the sample and there are changing seasonal variations, has been modelled using a evolving 
specific spline function. It is also interesting to note the instability of what, in the classic approach to time 
series, is defined as trend component, whose behaviour has been adequately characterised by a random 
walk plus noise model. 
 Notwithstanding that the growth of export levels which started at the beginning of the last decade 
was interrupted several years ago, the main economic conclusion obtained from the previous analysis is 
that the seasonal pattern is more or less stable, but some changes are observed in the length of the non-
export period and also in the magnitude of the seasonal variations. It would be true to say that, even 
though the economic agents involved in the production and export of Tenerife tomatoes have reacted to 
changes in market rules, this response has not brought about a significant modification of the weekly 

                                                           
12 The value of the F statistic was 6613.3608,143 =F . However, this statistic is biased towards the non-rejection of the null 

hypothesis in a structural model due to the stochastic nature of some components. That is, the level component could be capturing 
some seasonal effects when the seasonal component is not explicitly specified. 
13 The estimates of the seasonal component obtained from the estimates of spline parameters are corrected in such a way that the 
seasonal variations sum up to zero over each harvest. Then, the estimates of the level component are also properly corrected so 
that the same variations are not captured simultaneously by trend and seasonal components. 
14 The value of the F statistic was 4220.1608,132 =F . 
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distribution of exports throughout the harvest. This conclusion is highly relevant in order to understand the 
marketing decision-making process of Tenerife producers. 
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