

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

PAPERS OF THE

1989 ANNUAL MEETING

WESTERN AGRICULTURAL
ECONOMICS ASSOCIATION

Coeur d'Alene, Idaho July 9-12, 1989

The cattie ranching industry is a very dynamic industry. The size of the U.S. cow herd and the composition of the herd, ie. ratio of replacement heifers to older cows and the ratio of heifers to steers slaughtered, is continually changing over time. The price of cattle and calves also fluxuates over time and there appears to be a cyclical component to these price movements. The historical pattern has been to have two or three years of relatively high prices, followed by four to six years of relatively low prices.

A 1985 survey of mountain valley cattle ranches in Wyoming revealed that 36\% were basically cow-calf operations, 22\% were cow-short yearling operations and 38* were cow-yearling operations. Some of the differences in type of organization can be expiained by the resources available to the ranch, or by managerial preferences. The cyclical nature of prices and a rancher's expectations about future prices may also determine the type of organizatior.

Because of changing technology and market conditions, ranch managers must continualiy examine their production practices to find ways of improving their profit margins. "Retained ownership" is frequently mentioned as an approach by which a ranch operator might improve profits. The recent popularity of the phrase, orimarily referring to retained ownership in a custom feedlot, seems to overlook the fact that on-ranch retained ownership has been a lona standina practice on many ranches.

The objectives of this paper are: 1) to examine the profitability of onranch retained ownership: and, 2) determine what effect the stage of the cattie price cycle has on the retained ownership decision.

Production_Stages

A ranae cattie operation can be viewed as a series of production staqes. In much of the northern and central plains and intermountain reaions. three primary staqes are cow-calf, calf wintering, and yearling summerinc. The cowcalf stage invoives carrying the cow for one year and the calf from birtn to weaning at about 6-8 months of aqe. The calf wintering stage of production, whether for steers or heifers, involves carrying calves through the winter to a "short-yearling" age in the spring. The short yearling may be soid, piaced in feedlots for fattening, or may enter into the third stage of production, the yearling summering activity, which results in production of "longyearlings" ready for entry to feedlots for fattening.

Review_of Literature

Gee and Skold (1970) used linear programming to find the optinal enterprise combination on mountain cattle ranches in Colorado with a resource base typical of a cow-caif ranch with 130 cows. The enterprises available to this typicai ranch were cow-calf, cow-yearling and yearling stocker with three different levels of meaciow improvement practices. The cow-yearling enterprise had the highest profit under two of the meadow manaqement alternatives. If the ranch was allowed to use the most intensive meadow improvement and to sell
surplus hay, the cow-calf enterprise was the most profitable. Under this alternative the cow herd was decreased somewhat to allow for substantiai amount of hay sales, in effect converting to a partial cash crop syster.

Pfeiffer (1986) used budgeting to compare real returns and variability from 1975-1984 for cow-calf, cow-yearling and yearling stocker operations for the Nebraska Sandhills area. The basic cow-calf ranch consisted of 100 cows to calve, had a 90\% calf crop weaned, and sold steer and heifer calves that weighed 450 and 425 pounds respectively. The cow-yearling and yearling stocker ranches were constrained by the forage resources available to the cowcalf ranch. Returns for the cow-yeariing ranch were slightly higher and less variable than the cow-calf ranch. The yearling stocker organization had the highest average net returns over the time period, and also the highest degree of income variability.

Neither of these two studies considered the effect of the cattle price cycle on the optimal enterprise selection. A number of other studies could be referenced, but are not because of space constraints.

Sc̃ope_and_Methodology

Feuz and Keari (1987) constructed a ranch model to analyze the on-ranci retained ownership decision for western wyoming mountain vailey cattie ranches. This paper is based upon that model. The model was constructed fror data gathered in a 1985 survey of mountain valley ranches in Wyomina (Keorl, et ai.. 1986;. The costs are at 1984 levels, which in agareqate have remained fairly constant through 1988 . as some costs have increased and others decreasec. The ievels of production are thought to represent performanee oi better-than-average producers. The data may also be fariy representative of other higher eievation ranching areas in the Rocky Mountain and Intermountarn realons over 5.500 ft. mean sea leved.

Ranch enterprise bucigets were constructed to identify production relationships. resource avaijability, cosis, saies, and relevant production practices. Given a certain resource base and aversae production iactors. linear proçamming was then used to determine the optimum resource aljocetion and appropriate ranci activities to maximize net ranch income. The linear programming modei was initiaily run using $1981-1986$ cattle prices and then subsequentiy run usinc ige7-1989 prices to coincide with the iow and hich time periods of the last cattle cycie. The prices for 1989 were assumed to be equai to lyes levels.

THE MODEL: RESOURCES AND ENTERPRISE BUDGETS

Land_Base_and_Production

Production varies considerably over the mountain valley area due to differences in soil, climate, and management practices. The model ranch production is above average for the area because data were obtained from better than average producers. Two cuttings of alfalfa hay are harvested and produce 3.0 tons per acre without fertilization, or 4.0 tons per acre with fertiijzation and i.u animai-unit-month (AUM) of aftermath grazing. The 1980is84 average producion for alialfa for the study area generaily was 2.25 tons per acte (USDA-SRS. 19e5). Typicaily there is little fertijizer use anc onjy one cuttinc 15 harvestea per year over some of the area.

One ton of hay per acre is produced on native hay meadows. The improved neadow produces 1.5 tone per acre unfertilized or 2.5 tons per acre with fertilizer. These ievels of procuction are fairlv consistent with area average production of "other" hay, 1.32 tons per acre, including fertilized and unfertilized native and improved meadow hay for $1980-84$ (USDA-5R5, 1985).

All meadows produce 1.5 AUMs per acre of aftermath grazing, including crop residues, regrowth and unharvested forage on "waste" acres such as canal and ditch banks, fence rows and wet or willow and river bottom areas.

Barley yields of 60 bushels per acre were typical for the area and 0.4 AUMs per acre for fall aftermath was assumed.

One acre of irrigated pasture land can produce four AUMs for the summer grazing period and 1.5 AUMs for the fall period. Both the deeded and leased range land is rated at 4 acres per AUM, or .25 of an AUM per acre for the summer season (Ross, 1986).

Livestock_Enterprise_Budgets

The cow-cali stace of production is composed of several activities. The main activity is the cow-unit, which aise requires .05 buil and .17 calf-toyeariing replacenent heifer. The output from this stage of production is .iz of a cuil cow to a seilinc activity, . 45 of a steer calf and 45 of a heifer caif that move into caif wintering or feeding activities. The steer and heifer caif activities fron birth to weaning are separated from the cow-unit to facilitate parameterizing percent caif crop, weights, and summer and fail grazing recuirements. Separatinc the cow-unit and caif aetivizies in this way a:so allows the model more ilexibility in choosing the optimal enterprise combination for the model ranch. Details on the model are reported i: Feuz and Kearl (1987).

The calf-winterins and yeariing summering activities were specifies as separare stages of production. Each of these activities recuires one anirai ss ar input and the output $i 5.98$ and .99 of an animal respective:y.

the cattle price cycie

As previousiy mentioned the cattle industry has had a history of repeating price cycles. There has been three cycles over the last 20 years. The late 1960 's and eariy 1970^{\prime} s were low price years and 1972 and 1973 were high price years. The cycie repeated in seven years with 1974 - 1977 being low years and 1978 - 1980 being high price years. The last cycle has been a longer one of about 10 years with low prices from 1981 - 1985 and high prices from 1987 - present. Figure 1 displays the price for 450 pound steers from 1969 to 1988. The price for other classes and weights of cattle follow a similar pattern to that portrayed in figure 1.

Price_Differentials

The price of cattie is negatively correlated to the weight of the animal. However. this reiations is not stable over the stages of the cattle price cycie. By anaiyzins the price of calves in November, the price of short year:ings in April, and the price of long yeariing in October a percentoce

FIGURE 1. HISTORICAL PRICES OF 450 pound, MEDIUM FRAME. YiELL GRADE 2 and 3 STEER CALVES AS REPORTED AT TORRINGTON, WYOMING FROM 1969-1988.
price differential was calculated. Significant difierences were iound to exist between these differentials in low price years as compared to high price years. Table 1. is a sumary of these price differentials.

TABLE 1. SHORT YEARLING AND LONG YEARLING PRICES AS A PERCENT OF CALF PRICE FOR STEERS AND HEIFERS FROM 1969-1988.

From the information in Tabie i, it would appear that retainec ownersiip would be more profitable when cattle prices are generally lower. The price differentiais may be sufficientiy different to make it most profitabie to seil caives in hict. price years but to sell yearlings when prices are down.

The actual prices used in the model are presented in Tabie \bar{z}.
RESULTS
Low_Price_Years_==1981-1986
The initial LP solution indicated the cow-long yearling organization, which is the combination of the three stages, was optimal for the model ranch. It seems that studies often report only the optimal solutions, which leaves the reader wondering whether there are "significant" differences between the optimal and any sub-optimal solutions. For comparison purposes, coefficients were changed to force the model to complete calculations and give results for the cow-calf and cow-short yearling organizations (Table 3).

The model maximized net cash income to the ranch. For this ansiysis the ranch was considered to be debt free, so no interest was charged to ianc. Interest on cash operating expenses was caiculated as a cash expense. A credit for interest income was allowed from the time of livestock and erof sales te the end of the accounting period to allow for advantages that couid accrue from sale at different points in the year.

Net cash income ranged from a low of 552.172 for the cow-caif to 565.452 for the cow-iong yeariing modei, a difference of about 514.000 or 21.5%. Income in the cow-short yeariing operation is only about 52.000 iess then the cow-ionc yearlinc model. After the net cash income was obtainec from the if model, other measures of income were also caicuiated (Table 3).
thbie 2. WEIGHTE, pRECES, AND VALUE PER hEAD FOR THE MODEL kANCH.

CLASE	Weicht	Price Fer Cwt.198i-1986 1987-1989		Value Fer Heac ε^{\prime} 198:-1986 1987-1985	
Steer Cali	425	569.50	557.50	\$295.00	54:4.00
Heifer Caif	400	60.55	88.70	242.00	355.00
Short Yearlings b/					
Steer	620	68.40	85.00	424.00	527.00
Heifer	570	61.70	81.50	352.00	465.00
Long Yearlings b/					
Steer	810	60.60	79.10	491.00	64:.00
Heifer	750	56.60	74.50	425.00	559.00
Cull Cow	1050	34.35	45.50	361.00	478.00
Rep. Heifer Cull	725	56.60	74.60	410.00	541.00
$\underline{\text { b/ Ail vaiue per }}$	Ail vaiue per hesd are rounded to the nesrest whole doliar.				

TABEE 3. COMPARISONS OF RETURNS FOR THE OPTIMAL COW-LONG YEARLINE. THE COW-SHORT YEARLING AND COW-CALF RANGHES FOR 1981-1986. (DC:iars)

Item	$\begin{aligned} & \text { Forced } \\ & \text { Cow-Cail } \end{aligned}$	Forced Cow-Short Yeariing	Gozimai Cow-Lonc Yeari:ng
Number of Animal-Units	628	720	856
Number of Cows to Calve	460	460	472
Livestock Saies			
Cull Cows	21.660	21,660	22.021
Rep. Heifers	3,280	3,280	3.280
Young Cattle			
Steers	61.065	85.869	95.184
Heifers	30.492	46,748	53.550
Total Livestock	116,497	157.557	178.035
Crop Saies and Range Rent			
Hay	39.675	19.619	19,988
Bariey	5,592	3.607	5,592
Kange rent	11.574	11.574	
Total Crop Sales	56,841	34.800	25,580
Interest Income	2,435	8.679	5.409
Total Income	:75,773	20:.03E	207.024
Total Cash Costs	123.60:	136.562	140.532
'Net Cash Income	52.172	64.474	65.452
Cash Income, as a percent of optimas	78.5\%	97.0\%	200.0\%
Depreciation	24.600	24,600	24.600
Net Ranch Income	27.572	35.874	41.892
Operator labor			
Return to Capital	7,572	19.874	21.892
Return to Capital, as a percent of Optimal	34.6*	90.8\%	100.0\%
Interest on:			
Livestock	24.925	29,521	31.518
Mach. \& Ecuip.	24,000	24,000	24.000
Return to Lane	(41,353)	(35.647)	(35.6.25)

The crop producing activities remained the same for ail three ranch organizations. Fertilizer was applied to the alfalfa and improved meacow ground to get the maximum level of production. In ail of the mode:s the public grazing resources were fully utilized.

In the low price years of the cylce no additional range land was iessect by any of the three organization. Two of the organizational types, the cowcalf and the cow-short yearling, were understocked and rented out all of the deeded range land and had significant crop sales. The total number of animaiunits were 628 and 720 for the cow-calf and cow-short yearling ranches as compared to 856 for the cow-long yearling ranch. Crop sales and land rent accounted for nearly $33 x$ of the total income for the cow-calf operation and just over 17x for the cow-short yearling ranch.
Peak_Years_==1987-1989

The nodel was run a second time and prices for 1987-1989 were used for livestock. The optimal solution remained the cow-long yearling ranch organization. The model was asain constrained to depict the cow-short yearling and cow-caif organizations for comparison purposes (Tabie 4).

Net cash income ranged from $\$ 113,965$ for the cow-cali operation to $5: 22,851$ for the cow-long yearling model, a difference of oniy 7.2\%. The cowshort yearling operation had a net cash income of $\$ 1 i 7.700$.

During the high price years all of the deeded range lanc is used by ais three ranch organizations. In addition to this, additionai rance iend is ieased up to the maximum aliowed by the LP model. The number of animai-units (AU) increased on the cow-calf ranch from 628 in trough years to 895 in peak years. The AUs aiso increased from 720 to 875 for the cow-short yearing ranch and the cow-long yearling ranch had a modest increase from 855 to 505 AUs. During peak years, crop sales and land rent, as a percent of totai income, ranged from a hagh of just over 10% for the cow-caif ranch io iess than $2 x$ for the cow-short yeariing ranch.

IMPLICATIONS

There are a number of interesting implications impiied by these results:

1. during the 1981-1985 period two organizations out of three wouic maximize income by leasing out as much land as possible and selling crops, except for the feed necessary to balance the operation and allow for the use of public range lands:
2. in the low price years the livestock activities are functioning to marke: the ranch produced feed and forage not marketable by other means;
3. the optimal ranch organization is the cow-long yearling ranch for both time periods of the analysis, however, the differences between the ranct: organizations are much less, in the high price years;
4. during hich price years, maximum returns can be obtained by fuliy stocking the ranch and using all availabie grazinc resources: anc.
5. on-ranch retained ownership is a viabie means of increasing ranch profitabil:ty. particuiariy in years of low cattie prices.

TABLE 4. COMPARISONS OF RETURNS FOR THE OPTIMAL COW-LONG YEARLING, TAE COW-5HORT YEARLING AND COW-CALF RANCHES FOR 1987-1989. (DOIjare)

Item	$\begin{aligned} & \text { Forced } \\ & \text { Cow-Calf } \end{aligned}$	Forced Cow-Short Yearling	Gptimal Cow-Lona Yearling
Number of Animal-Units	895	873	885
Number of Cows to Calve	. 655	556	486
Livestock Sales			
Cull Cows	40,630	34.416	30.114
Rep. Heifers	5,951	4,869	4.328
Young Cattle			
Steers	122,130	135,730	135.892
Heifers	63,900	75.000	69.940
Total Livestock	232,611	250.015	240.274
Crop Sales and Rent			
Hay	22.344		16.851
Barley	5.592		5,552
Range rent		4.668	
Total Crop Sales	27,936	4.668	22.443
Interest Income	2.272	9.956	3.305
Total Income	$26.2,819$	264.639	266.023
Total Cash Costs	148.854	146.939	143.872
Net Cash Income	113,965	117,700	122,851
Cash Income, as a percent of Optima?	92.8x	95.8\%	100.0\%
Depreciation	24.600	24.600	24,600
Net Ranch Income	89,365	93.100	98.25:
Operator labor			
and management	20,000	20.000	20.000
Return to Capital	69,365	73.100	78.25i
Return to Capital, as			
Interest on:			
Livestock	45.375	46,339	42.057
Hach. \% Equip.	24,000	24.000	24,000
Return to Land	(10)	2,76:	12.194
	=== = = = = =	= = = = = = = =	= = = = = = = = =

REFERENCES

Feuz, Dillon M. and W. Gordon Kearl. 1987. "An Economic Analysis of Enterprise Combinations on MOuntain Valley Cattle Fanches." Aqricultural Experiment Station RJ-207, Department of Agricultural Economice. University of Wyoming. April.

Gee, C. Kerry and Melvin B. Skold. 1970. "Optimal Enterprise Combinations and Resource Use on Mountain Cattie Ranches in Colorado." Colorado State University Experiment Station Bulletin 5465. September.

Kearl, W. Gordon, Stephen V. Gleason and Dillon Feuz. 1986. "Costs and Returns of Producing Feeder Cattle in Wyoming Mountain Valley Areas." Wyoming Agricultural Experiment Station Research Journal 148.

Pfeiffer, George H. 1986. "Real Returns From Cow-Calf anc Yearling Operations in Nebraska, 1975-1984." Paper prepared for the 1986 meetings of the American Agricuitural Economics Association and western Agricultural Economics Association, July 27-30, 1986, Keno, Nevada. Department of Agriculturai Economics, University of Nebraska.

Ross, Joe A. 198E. Wyoming State Land Commission. Fersonai Communications.

USDA-5R5. 1985. "Wyoming Ácricultural Statistics." Compied by Wyoming Crop and Livestock Feporting Service. Issued cooperatively by Wyomina Department of Agriculture, the University of Wyoming and United Statee department of Agriculture, Statistical Reporting Service.

SELECTION AND DEVELOPMENT OF THE REPLACEMENT ASSET: THE CASE OF THE REPLACEMENT BEEF HEIFER
Paul H. Gutierrez, Norman L. Dalsted, and Yvonne C. Jonk
Beef Cattle Management is a series of decisions designed to accomplish clearly defined goals. Several major management decisions are made annually that impact the biological and economic efficiency of commercial cow-calf operations. The selection and development of replacement heifers is one of these major management decisions which significantly affects the productivity and profitability of the cattle operation. When replacement heifers are selected, producers are anticipating and predicting the future biological and economic performance of their herd. One of the questions most commonly asked by cow-calf producers is "How do I go about selecting and developing my replacement heifers?" And like most other commonly asked questions, this question has no particularly satisfying answer. The most truthful answer would probably be "it depends". "It depends" on the individual producer's management philosophy, the level of performance of the producer's herd for a number of traits (genotypic), the environment (phenotypic), availability of individual cost and performance data, breeding system, current and future market prices and financial position--to name a few. It is postulated that the theory of replacement in the biological process has not been adequately developed to answer some of these questions.

The limiting assumption of replacement theory research efforts, from the individual producer's perspective, is inadequate qualification and quantification of the selection and development process of the replacement animal. The research reported in this paper will indicate a procedure to be used to determine replacement heifer selection and development values for use in asset replacement theory. Sensitivity analysis will be presented to quantify the economic importance of accurately assessing the selection and development cost of the replacement female.

Previous Research
The problem of determining optimal policies for the replacement of assets has been addressed extensively in the agricultural economics literature. Replacement optimization is particularly important in agriculture because of change over time in pregnancy rates, weaning rates, growth rates, feed consumption and conversion rates, annual yields, etc., that are often associated with biological production processes.

Chisholm's and Perrin's work set the precedence for most present day work in this area. The result of Chisholm's effort was the establishment of a correctly specific theory of asset replacement based upon the principal of maximizing net present value (NPV). Perrin expanded upon Chisholm's work in 1972. He developed an alternative and equivalent replacement criterion based. upon equating marginal revenue and marginal opportunity cost.

Numerous articles have appeared in the literature since Chisholm's and Perrin's work (Kay and Ristẹr; Boehlje and White; Gunter and Bender; Bradford and Reid). Asset replacement research specific to the area of livestock breeding animal replacement decisions has also progressed. In 1976, Bentley et al. combined Perrin's marginal criteria for replacement with Burt's methodology for considering stochastic conditions. Through this effort they determined the optimal replacement age for beef cows in the presence of stochastic calving

