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ABSTRACT 
 

The availability of efficiency estimation software – freely distributed via the internet and relatively 
easy to use – recently inflated the number of corresponding applications. The resulting efficiency 
estimates are often used without a critical assessment with respect to the literature on theoretical 
consistency, flexibility and the choice of the appropriate functional form. The robustness of policy 
suggestions based on inferences from efficiency measures nevertheless crucially depends on 
theoretically well-founded estimates. This paper adresses stochastic efficiency measurement by 
critically reviewing the theoretical consistency of recently published technical efficiency 
estimates. The results confirm the need for a posteriori checking the regularity of the estimated 
frontier by the researcher and, if necessary, the a priori imposition of the theoretical requirements. 

Keywords: Functional Form, Stochastic Efficiency Analysis, Theoretical Consistency 
JEL: C51, D24, Q12 

 
I) INTRODUCTION 

In the last 15 years applied production economics experienced a clear shift in its research focus from 
the analysis of the structure and change of production possibilities to those of technical and allocative 
efficiency of decision making units. Parametric techniques as the stochastic production frontier model 
dominate the empirical literature of efficiency measurement (for a detailed review of different 
measurement techniques see e.g. COELLI ET AL., 1998 or KUMBHAKAR/LOVELL, 2000). The 
availability of estimation software – freely distributed via the internet and relatively easy to use – 
recently inflated the number of corresponding applications. The application of the econometric 
methods provided by these ‚black box’-tools are mostly not accompanied by a thorough theoretical 
interpretation. The estimation results are further used without a critical assessment with respect to the 
literature on theoretical consistency, flexibility and the choice of the appropriate functional form. The 
robustness of policy suggestions based on inferences from efficiency measures nevertheless crucially 
depends on proper estimates. Most applications, however, do not adequately test for whether the 
estimated function has the required regularities, and hence run the risk of making improper policy 
recommendations. 

This paper shows the importance of testing for the regularities of an estimated efficiency frontier 
based on flexible functional forms. The basic results of the discussion on theoretical consistency and 
functional flexibility are therefore reviewed (section 2) and applied to the translog production function 
(section 3). Subsequently stochastic efficiency measurement is discussed to the background of these 
findings and essential implications are shown (section 4). Further some stochastic frontier applications 
published in agricultural economics journals are exemplary reviewed with respect to theoretical 
consistency (section 5). It is in particular argued that the economic properties of the estimation results 
have to be critically assessed, that the interpretation and calculation of efficiency have to be revised 
and finally that a basic change in the interpretation of the estimated function is required. 

II) THE MAGIC TRIANGLE: THEORETICAL CONSISTENCY, FUNCTIONAL FLEXIBILITY 
AND DOMAIN OF APPLICABILITY 

One of the essential objectives of empirical research is the investigation of the relationship between 
an endogenous (or dependent) variable y and a set i of exogenous (or independent) variables xij where 
subscript j denotes the j-th observation: 

yj = f(xij, ßi) + εj         (1) 

In general the researcher has to make two basic assumptions with regard to the examination of this 
relationship: The first assumption specifies the functional form expressing the endogenous variable as 
a function of the exogenous variables. The second assumption specifies a probability distribution for 
the residual ε capturing the difference between the actual and the predicted values of the endogenous 
variable. These two major assumptions about the underlying functional form and the probability 
distribution of the error term are usually considered as maintained hypotheses (see FUSS ET AL., 1978). 
Statistical procedures such as maximum likelihood estimation are used to estimate the relationship, i.e. 
the vector of the parameters ßi. 
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LAU’S CRITERIA 
In general, economic theory provides no a priori guidance with respect to the functional 

relationships. However, LAU (1978, 1986) has formulated some principle criteria for the ex ante 
selection of an algebraic form with respect to a particular economic relationship: -theoretical 
consistency: the algebraic functional form chosen must be capable of possessing all of the theoretical 
properties required by the particular economic relationship for an appropriate choice of parameters. 
With respect to a production possibility set this would mean that the relationship in (1) is single 
valued, monotone increasing as well as quasi-concave implying that the input set is required to be 
convex (see appendix A1). However, this indicates no particular functional form. - domain of 
applicability: most commonly the domain of applicability refers to the set of values of the independent 
variables xi over which the algebraic functional form satisfies all the requirements for theoretical 
consistency. LAU (1986) refers to this concept as the extrapolative domain since it is defined on the 
space of the independent variables with respect to a given value of the vector of parameters βi. If, for 
given βi, the algebraic functional form f(xi, βi) is theoretically consistent over the whole of the 
applicable domain, it is said to be globally theoretically consistent or globally valid over the whole of 
the applicable domain. FUSS ET AL (1978) stress the interpolative robustness as the functional form 
should be well-behaved in the range of observations, consistent with maintained hypotheses and admit 
computational procedures to check those properties, as well as the extrapolative robustness as the 
functional form should be compatible with maintained hypotheses outside the range of observations to 
be able to forecast relations. – flexibility: a flexible algebraic functional form is able to approximate 
arbitrary but theoretically consistent economic behaviour through an appropriate choice of the 
parameters. The production function in (1) can be said to be second-order flexible if at any given set of 
non-negative (positive) inputs the parameters β can be chosen so that the derived input demand 
functions and the derived elasticities are capable of assuming arbitrary values at the given set of inputs 
subject only to theoretical consistency. “Flexibility of a functional form is desirable because it allows 
the data the opportunity to provide information about the critical parameters.” (LAU, 1986, p. 1544). – 
computational facility: this criteria implies the properties of ‘linearity-in-parameters’, ‘explicit 
representability’, ‘uniformity’ and ‘parsimony’. For estimation purposes the functional form should 
therefore be linear-in-parameters, possible restrictions should be linear. With respect to the ease of 
manipulation and calculation the functional form as well as any input demand functions derivable 
from it should be represented in explicit closed form and linear in parameters. Different functions in 
the same system should have the same ‘uniform’ algebraic form but differ in parameters. In order to 
achieve a desired degree of flexibility the functional form should be parsimonous with respect to the 
number of parameters. This to avoid methodological problems as multi-collinearity and a loss of 
degrees of freedom. - factual conformity: the functional form should be finally consistent with 
established empirical facts with respect to the economic problem to be modelled. 

THE CONCEPT OF FLEXIBILITY 
It is important to have a more detailed look on the concept of flexibility: A functional form can be 

denoted as `flexible` if its shape is only restricted by theoretical consistency. This implies the absence 
of unwanted a priori restrictions and is paraphrased by the metaphor of „providing an exhaustive 
characterization of all (economically) relevant aspects of a technology“ (see FUSS ET AL., 1978). 
 

If F(β, x) is an algebraic form for a real-valued function including variables x and a vector of unknown 
parameters β. F shall approximate the function value F, the gradient F’ and the Hessian F’’ of an unknown 
function F¯(x) at an arbitrary x¯. Flexibility of F implies and is implied by the existence of a solution β(x¯; 
F¯, F¯’, F¯’’) to the following set of equations: 

 F(β; x¯) = F¯,  ∇ F(β; x¯) = F¯’, ∇2 F(β; x¯) = F¯’’    (2)    

with respect to certain consistency conditions on the variables x and possible values F¯, F¯’, F¯’’ 
depending on the behavioural function F is representing. Due to our production framework F denotes a 
production function, therefore the solution is subject to non-negativity of x¯, F¯and F¯’ as well as negative 
semi-definiteness of F¯’’ such that F¯ = x¯ F¯’ and F¯’’ x¯ = 0. Hence for an arbitrary vector of 
exogeneous variables x¯, a vector β exists such that the value of the function, its gradient as well as its 
Hessian matrix are equal to some F¯, F¯’, F¯’’. The set of F¯, F¯’, F¯’’ for which this is true includes all 
possible theoretically consistent values. Due to this framework, a flexible functional form can provide a 
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local second order approximation of an arbitrary function, either formulated as a differential approximation, 
as a Taylor series or as a numerical approximation. Hence this form is called ‘locally flexible’. For the 
counter-example of a Cobb-Douglas production function the set of β that yields consistent F¯, F¯’, F¯’’ is 
the same at any x¯. Only such F¯, F¯’, F¯’’ can be produced which are consistent with unity elasticities of 
substitution. In other words: as the mapping relation between the set of all admissable β to the set of all 
valid F¯, F¯’, F¯’’ is not surjective, the Cobb-Douglas model is not flexible. 

 
Each relevant aspect of the concept of second order flexibility is assigned to exactly one parameter: 

the level parameter, the gradient parameters associated with the respective first order variable, and the 
Hessian-parameters associated with the second order terms. As a functional form cannot be second-
order flexible with fewer parameters, the number of free parameters provides a necessary condition for 
flexibility. With respect to a single-product technology with an n-dimensional input vector, a function 
exhaustively characterizing all of its relevant aspects should contain information about the quantity 
produced (one level effect), all marginal productivities (n gradient effects) as well as all substitution 
elasticities (n2 substitution effects). As the latter are symmetric beside the main diagonal with n 
elements, only half of the off-diagonal elements are needed, i.e. ½n(n - 1). The number of effects an 
adequate single-output technology function should be capable of depicting independently of each other 
and without a priori restrictions amounts to a total of ½(n + 2)(n + 1). Hence a valid flexible 
functional form must contain at least ½(n + 2)(n + 1) independent parameters. Finally it has been 
shown that the function value as well as the first and second derivatives of a primal function can be 
approximated as well by the dual behavioural representation of the same technology (see 
BLACKORBY/DIEWERT, 1979). With respect to the relation between the supposed true function and the 
corresponding flexible estimation function the following concurring hypotheses can then be 
formulated (see MOREY, 1986): 

(I) The estimation function is a local approximation of the true function. 
This simply means that the approximation properties of flexible functional forms are only locally 

valid and therefore value, gradient and Hessian of true and estimated function are equal at a single 
point of approximation (see figure 1). As only a local interpretation of the estimated parameters is 
possible, the forecasting capabilities with respect to variable values relatively distant from the point of 
approximation are severly restricted. In this case e.g. at least the necessary condition of local concavity 
with respect to global concavity can be tested for every point of approximation (see section IV). 

     
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1. Local Approximation (after MOREY, 1986 and FEGER, 2000) 
 
(II) The estimated function and the true structure are of the same functional form but show the 

desired properties only locally. 
Most common flexible functions can either not be restricted to a well-behaved function without 

losing their flexibility (e.g. the translog function) or cannot be restricted to regularity at all (e.g. the 
Cobb-Douglas function). Points of interest in the true structure can be examined by testing the 
respective points in the estimation function. However, a positive answer to the question whether the 
estimation function and the true structure are still consistent with the properties of a well-behaved 
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production function if the data does not equal the examined data set is highly uncertain. This 
uncertainty can only be illuminated by systematically testing all possible data sets. 

(III) The estimated function and the true structure are of the same functional form and show the 
desired properties globally. 

A flexible functional form which can be restricted to global regularity (e.g. the Symmetric 
Generalized McFadden Function) without losing its flexibility allows for the inference from the 
estimation function to the true structure and hence allows for meaningful tests of significance as the 
model is theoretically well founded (see MOREY, 1986). This approach of a flexible functional form 
promotes a concept of flexibility where the functional form has to fit the data to the greatest possible 
extent, subject only to the regularity conditions following from economic theory and independently 
depicting all economically relevant aspects (see figure 2). As FEGER (2000) concludes: “The argument 
that any flexible functional form can approximate any other flexible functional form and any arbitrary 
data generation process does not suspend the researcher from the issue of reducing the specification 
error to the greatest possible extent in selecting the most appropriate functional form for the entire 
data.” 
 

 y(x) 

true production function

second order flexible 
estimation function 

 

 
 

 
 
 
 
 
 
 
 

x  
 

Figure 2. Global Approximation (after MOREY, 1986; FEGER, 2000) 

THE MAGIC TRIANGLE 
Hence, it is evident that the quality of the estimation results crucially depends on the choice of the 

functional form. The latter has to be chosen so that: 
 it provides all economically relevant information about the economic relationship(s) 

investigated, 
 shows a priori consistency with the relevant economic theory on producer behaviour to the 

greatest possible extent, 
 it includes no, or as few as possible, unwanted a priori restrictions, i.e. is flexible, 
 it is relatively easy to estimate, 
 it is parsimonious in parameters, 
 it is robust towards changes in variables with respect to intra- as well as extrapolation, 
 it finally includes parameters which are easy to interprete. 

However, as was already noted by LAU (1978), one should not expect to find an algebraic functional 
form satisfying all of these criteria (in general cited as LAU’S `incompatibility theorem`). As one 
should not compromise on (at least) local theoretical consistency, computational facility or flexibility 
of the functional form, he suggests the domain of applicability as the only area left for compromises 
with respect to functional choice. 
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Figure 3. The Magic Triangle of Functional Choice 
 

As figure 3 summarizes, for most functional forms there is a fundamental trade-off between 
flexibility and theoretical consistency as well as the domain of applicability. Production economists 
propose two solutions to this problem, depending on what kind of violation shows to be more severe 
(see LAU, 1986 or CHAMBERS, 1988): 

1) the choice of functional forms which could be made globally theoretical consistent by 
corresponding parameter restrictions, here the range of flexibility has to be investigated; 

2) to opt for functional flexibility and check or impose theoretical consistency for the proximity 
of an approximation point only; 

However, a globally theoretical consistent as well as flexible functional form can be considered as 
an adequate representation of the production possibility set. Locally theoretical consistent as well as 
flexible functional forms can be considered as an i-th order differential approximation of the true 
production possibilities. Hence, the translog function is considered as a second order differential 
approximation of the true production possibilities. 

III) THE CASE OF THE TRANSLOG PRODUCTION FUNCTION 
A prominent textbook example as well as the most often used functional form with respect to 

efficiency measurement is the Cobb-Douglas production function: 

lny = α0 + Σi=1n αi lnxi        (3)    

This function shows theoretical consistency globally if αi ≥ 0, but fail with respect to flexibility as 
there are only (n-1) free parameters. Similarily often used with respect to stochastic efficiency 
measurement the translog production function has to be noted: 

f(x) = α0 + Σi=1n  αi lnxi + ½ Σi=1n Σj=1n  αij lnxi lnxj     (4)    

where symmetry of all Hessians by Young’s theorem implies that αij = αji. It has (n2 + 3n + 2)/2 
distinct parameters and hence just as many as required to be flexible. By setting Αij = Σi=1

n Σj=1
n  αij 

equal to a null matrix reveals that the translog function is a generalization of the Cobb Douglas 
functional form. The theoretical properties of the second order translog are well known (see e.g. LAU, 
1986): it is easily restrictable for global homogeneity as well as homotheticity, correct curvature can 
be implemented only locally if local flexibility should be preserved, the maintaining of global 
monotonicity is impossible without losing second order flexibility. Hence, the translog functional form 
is fraught with the problem that theoretical consistency can not be imposed globally. This is 
subsequently shown by discussing the theoretical requirements of monotonicity and curvature. 

MONOTONICITY 
As is well known with respect to a (single output) production function monotonicity requires 

positive marginal products with respect to all inputs: 

∂y/∂xi > 0          (5)    
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and thus non-negative elasticities. However, until most recent studies the issue of assuring 
monotonicity was neglected. BARNETT ET AL. (1996) e.g. showed that the monotonicity requirement is 
by no means automatically satisfied for most functional forms, moreover violations are frequent and 
empirically meaningful. In the case of the translog production function the marginal product of input i 
is obtained by multiplying the logarithmic marginal product with the average product of input i. Thus 
the monotonicity condition given in (5) holds for the translog specification if the following equation is 
positive: 

∂y/∂xi = y/xi * ∂lny/∂lnxi = y/xi * (αi + Σj=1n αij lnxj)  > 0    (6)    

Since both y and xi are positive numbers, monotonicity depends on the sign of the term in 
parenthesis, i.e. the elasticity of y with respect to xi. If it is assumed that markets are competitive and 
factors of production are paid their marginal products, the term in parenthesis equals the input i’s share 
of total output, si. 
By adhering to the law of diminishing marginal productivities, marginal products, apart from being 
positive should be decreasing in inputs implying the fulfillment of the following expression: 

∂2y/∂xi2 = [αii + (αi –1 + Σj=1n αij lnxj) * (αi + Σj=1n αij lnxj) ] *(y/xi2)  < 0  (7)    

Again, this depends on the nature of the terms in parenthesis. These should be checked a posteriori 
by using the estimated parameters for each data point. However, both restrictions (i.e. ∂y/∂xi > 0 and 
∂2y/∂xi

2 < 0) should hold at least at the point of approximation. 

CURVATURE 
Whereas the first order and therefore non-flexible derivative of the translog, the Cobb Douglas 

production function, can easily be restricted to global quasi-concavity by imposing αi ≥ 0, this is not 
the case with the translog itself. The necessary and sufficient condition for a specific curvature 
consists in the semi-definiteness of its bordered Hessian matrix as the Jacobian of the derivatives 
∂y/∂xi with respect to xi: if ∇2Y(x) is negatively semi-definite, Y is quasi-concave, where ∇2 denotes 
the matrix of second order partial derivatives with respect to (•) (see appendix A2). The Hessian 
matrix is negative semi-definite at every unconstrained local maximum, it yields with respect to the 
translog: 

   α11  …  α1n       s1    …  0  s1s1    …  s1sn 

 H =   .     ...   .       -        .     ...   .       +     .     ...   .   (8)    

   α1n  … αnn        0     …  sn  s1sn    …  snsn 

where here si denote the elasticities of production: 

 si =  ∂lny/∂lnxi = αi + Σj=1n αij lnxj       (9)    

The conditions of quasi-concavity are related to the fact that this property implies a convex input 
requirement set (see in detail e.g. CHAMBERS, 1988). Hence, a point on the isoquant is tested, i.e. the 
properties of the corresponding production function are evaluated subject to the condition that the 
amount of production remains constant. Given a point x0, necessary and sufficient for curvature 
correctness is that at this point v’Hv ≤ 0 and v’s = 0 where v denotes the direction of change. Hence, 
contrary to the Cobb Douglas function quasi-concavity can not be checked for by simply considering 
the parameter estimates. 

A matrix is negative semi-definite if the determinants of all of its principal submatrices are alternate 
in sign, starting with a negative one (i.e. (-1)kDk ≥ 0 where D is the determinant of the leading 
principal minors and k = 1, 2, …, n). However, this criterion is only rationally applicable with respect 
to matrices up to the format 3 x 3 (see e.g. STRANG, 1976), the most operational way of testing square 
numerical matrices for semi-definiteness is the eigen - or spectral decomposition: Let A be a square 
matrix. If there is a vector X є Rn ≠ 0 such that 

 A X = λ X         (10)    
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for some scalar λ, then λ is called the eigenvalue of A with the corresponding eigenvector X (see 
further appendix A3). Following this procedure the magnitude of the m + n eigenvalues of the 
bordered Hessian have to be determined. 

With respect to the translog production function curvature depends on the input bundle, as the 
corresponding bordered Hessian BH for the 3 input case shows: 

   0      f1 f2 f3 

BH =  f1 f11 f12 f13      (11)    

  f2 f21 f22 f23 

  f3 f31 f32 f33 

 
where fi is given in (6), fii is given in (7) and fij is 

∂2y/∂xi∂xj = [αij + (αi + Σj=1n αij lnxj) * (αj + Σi=1n αij lnxi) ] *(y/xixj)  < 0   (12)    

For some bundles quasi-concavity may be satisfied but for others not and hence what can be 
expected is that the condition of negative-semidefiniteness of the bordered Hessian is met only locally 
or with respect to a range of bundles.  

GRAPHICAL DISCUSSION 
In order to provide a more comprehensive treatment of the properties of the translog function we 

discuss possible forms of isoquants (see figure 4). We assume that inputs are normalised by their mean 
which we use as a reference point. The closed form of the graphs is due to the quadratic terms. 
Although, the graphs look very similar, the characteristics differ significantly. It becomes evident that 
simple inspection in the form of the isoquants is not sufficient to decide whether theoretical 
consistency holds or not. 
 A B C 
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(A) and (B) are theoretically consistent at the reference point, (C) is not. Roman numbers denote the 
properties of the graph y = 1 between the dashed lines. These numbers are not valid for the other 
isoquants. 

MONOTONICITY  

yes no 

quasi-concave I II CURVA-
TURE quasi-convex III IV 

Figure 4. Exemplary Isoquants of a Translog Production Function 

The graphs in the lower left corner in panel C seem to be typical isoquants. However, the function is 
actually monotone decreasing and quasiconvex in that regions, e.g. a correct shape is caused by the 
fact that both conditions for theoretical consistency are not satisfied. In fact, in panel c there is no 
region where the conditions hold. Panel (A) and (B) differ in so far as the function in (A) has a 
maximum whereas in (B) the function shows a minimum at the reference point. This differentiation 
has severe consequences for the region of consistent input values. In panel (A) the consistent values 

J.  Sauer / H. Hockmann    8



are located in the lower left corner. Moving along the graph would first lead to regions where the 
monotonicity requirement is violated (area [II]) and after that to the area in which the curvature 
condition is also not satisfied (area [IV]). However, even there is a region in which theoretical 
consistency is satisfied the applicability of the estimation is rather limited, because an increase of 
factor input leads to a reduction of the valid region as a consequence of the monotonicity requirement. 
In fact, this range is limited to the maximum. 

In panel (B) the theoretically consistent regions are located northeast to the maximum. Contrary to 
panel (A), moving along the graph will lead to a region in which the curvature condition is not 
satisfied anymore (III). Moreover, the valid regions grow with an increase in inputs. Furthermore, no 
region exists where production starts to decline like is the case in panel (A). Thus, panel (B) should be 
the preferred estimation result. Violation of theoretical consistency can be expected at relatively low 
levels of factor inputs. 

As the translog function consists of quadratic terms it shows a parabolic form implying increasing as 
well as decreasing branches by definition causing inconsistencies regarding the monotonocity 
requirement (∂y/∂xi > 0). Further violations of the curvature condition are caused by the logarithmic 
transformation of input variables. All functional forms showing these properties are finally subject to 
possible violations of their theoretical consistency. Unfortunately, all flexible functional forms 
commonly used in empirical economics belong to the same class as the translog function. 

THEORETICAL CONSISTENCY AND FLEXIBILITY 
The preceeding discussion hence shows that there is a a trade-off between flexibility and theoretical 

consistency with respect to the translog as well as most flexible functional forms. Economists propose 
different solutions to this problem: 

1) Imposing globally theoretical consistency destroys the flexibility of the translog as well as other 
second-order flexible functional forms, as e.g. the generalized Leontief. However, theoretical 
consistency can be locally imposed on these forms by maintaining their functional flexibility. Further, 
RYAN and WALES (2000) even argue that a sophisticated choice of the reference point could lead to 
satisfaction of consistency at most or even all data points in the sample. JORGENSON/FRAUMENI 
(1981) firstly propose the imposition of quasi-concavity through restricting A to be a negative 
semidefinite matrix. 
 

Imposing curvature at a reference point (usually the sample mean) is attained by setting aij = -(DD’)ij + aiδij 
+ aiaj where i, j = 1, …, n, δij = 1 if i = j and 0 otherwise and (DD’)ij as the ij-th element of DD’ with D a 
lower triangular matrix. The approximation point could be the data mean. However, the procedure is a little 
bit different. First, all data are divided by their mean. This transfers the approximation point to an (n + 1)-
dimensional vector of ones. At the approximation point the terms in (7) and (12) do not depend on the input 
bundle anymore. It can be expected that input bundles in the neighbourhood also provide the desired 
output. The transformation even moves the observation towards the approximation point and thus increases 
the likelihood of getting theoretically consistent results (see RYAN/WALES, 2000). Imposing curvature 
globally is attained by setting aij = -(DD’)ij. Alternatively one can use LAU’S (1978) technique by applying 
the Cholesky factorization A = -LBL’ where L is a unit lower triangular matrix and B as a diagonal matrix. 
However, the elements of D and L are nonlinear functions of the decomposed matrix, and consequently the 
resulting estimation function becomes nonlinear in parameters. Hence, linear estimation algorithms are 
ruled out even if the original function is linear in parameters. 
 

However, by imposing global consistency on the translog functional form DIEWERT/WALES (1987) 
note that the parameter matrix is restricted leading to seriously biased elasticity estimates. Hence, the 
translog function would lead its flexibility. 

Any flexible functional form can be restricted to convexity or (quasi-)concavity with the above 
method – i.e. to local convexity or (quasi-)concavity. The Hessian of most flexible functional forms, 
e.g. the translog or the generalized Leontieff, are not structured in a way that the definiteness property 
is invariant towards changes in the exogenous variables (see JORGENSON/FRAUMENI, 1981). However, 
there are exceptions: e.g. the Hessian of the Quadratic does not contain exogenous variables at all, and 
thus a restriction by applying the Cholesky factorization suffices to impose regular curvature at all 
data points. 

2) Functional forms can be chosen which could be made globally theoretical consistent through 
corresponding parameter restrictions and by simultaneously maintaining flexibility. This is shown for 
the symmetric generalized McFadden cost function by DIEWERT/WALES (1987) following a technique 
initially proposed by WILEY ET AL. (1973). Like the generalized Leontief, the symmetric generalized 
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McFadden is linearily homogenous in prices by construction, monotonicity can either be implemented 
locally only or, if restricted for globally, the global second-order flexibility is lost (see FEGER, 2000). 
However, if this functional form is restricted for correct curvature the curvature property applies 
globally. Furthermore regular regions following GALLANT and GOLUPS (1984) numerical approach to 
account for consistency by using e.g. Bayesian techniques can be constructed with respect to flexible 
functional forms. 

IV) IMPLICATIONS FOR STOCHASTIC EFFICIENCY MEASUREMENT 
In recent years a shift of the research focus in production economics can be observed. Not the 

structure and change of the production possibilities is of primary interest but the technical and 
allocative efficiency of netput bundles. A typical representation of the production possibilities is given 
by the production frontier: 
 y = f(x) – ε , with 0 < ε < ∞       (13)    

This trend is accompanied by a shift in the interpretation insofar as the estimated results are not 
interpreted for the approximation point but for all input values. This is a necessary consequence of the 
shift of the research focus. While it is possible to investigate the structure of the production 
possibilities at any virtual production plan, efficiency considerations can only be performed for the 
individual observations. However, this in turn requires that the properties of the production function 
have to be investigated for every observable netput vector. The consequences of a violation of 
theoretical consistency for the relative efficiency evaluation will be discussed using figure 5 to 8 by 
showing the effect on the random error term: 

 

x1 

y 

x1 

y 

real production frontier 

estimated production frontier 

estimated inefficiency 

real inefficiency 

A 
B A 

C 

D 

 
Figure 5 & 6. Violation of Monotonicity 

As becomes clear the estimated relative inefficiency equals the relative inefficiency for the 
production unit A with respect to the real production function. As the estimated function violates the 
monotonicity critera for parts of the function the estimated relative inefficiency of production unit B 
understates the real inefficiency for this observation. The same holds for production unit C which 
actually lies on the real production frontier, whereas the estimated relative inefficiency for production 
unit D again understates the real inefficiency. Figure 7 and figure 8 show the implications as a result 
of irregular curvature of the estimated efficiency frontier: 
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Figure 7 & 8. Violation of Quasi-Concavity 

 
As illustrated by figure 4A area I  shows theoretical consistency. The red dotted line describes an 

isoquant of the estimated production function. The relative inefficiency of the input combination at 
production unit B measured against the estimated frontier (at B’) understates the real inefficiency 
which is obtained by measuring the input combination against the real production frontier at point B’’. 
Observation A lies on the estimated isoquant and is therefore measured as full efficient (point A). 
Nevertheless this production unit produces relatively inefficient with respect to the real production 
frontier (see point A’’). The same holds for production unit D (real inefficiency has to be measured at 
point D’’). Finally relative inefficiency of observation C detected at the estimated frontier (C’) 
corresponds to real inefficiency for this production unit as the estimated frontier is theoretical 
consistent. 

The graphical discussion clearly shows the implications for efficiency measurement: theoretical 
inconsistent frontiers over- or understate real relative inefficiency and hence lead to severe 
misperceptions and finally inadequate as well as counterproductive policy measures with respect to the 
individual production unit in question. However, a few applications exist considering the need for 
theoretical consistent frontier estimation: e.g. KHUMBHAKAR (1989), PIERANI/RIZZI (1999), 
CHRISTOPOULOS ET AL. (2001), CRAIG ET AL. (2003) as well as SAUER/FROHBERG (2004) estimated a 
symmetric generalized McFadden cost frontier by imposing concavity and checking for monotonicity. 
Here global curvature correctness is assured by maintaining functional flexibility. O’DONNELL (2002) 
applies Bayesian methodology to impose regularity constraints on a system of equations derived from 
a translog shadow cost frontier. However, the vast majority of existing efficiency studies uses the error 
components approach by applying an inflexible CobbDouglas production function or a flexible 
translog production function without checking or imposing monotonicity as well as quasi-concavity 
requirements. 

EXAMPLES: TESTING FOR LOCAL CONSISTENCY OF TECHNICAL EFFICIENCY ESTIMATES 
Although the majority of applications with respect to stochastic efficiency estimation uses the Cobb-

Douglas functional form we subsequently focus on applications using the translog production function 
to derive efficiency judgements. This, as we outlined earlier, because of the relative superiority of 
flexible functional forms: to our opinion the Cobb-Douglas functional form should not be used for 
stochastic efficiency estimations any longer. 

Theoretical consistency of the estimated function should be ideally tested and proven for all points 
of observation which requires for the translog specification beside the parameters of estimation also 
the output and input data on every observation. Most contributions fail to satisfactorily document the 
applied data set at least with respect to the sample means. However, the following exemplary analysis 
uses a number of translog production function applications published in recent years focusing on 
agriculture related issues. Here monotonicity - via the gradient of the function with respect to each 
input by investigating the first derivatives - as well as quasi-concavity - via the bordered Hessian 
matrix with respect to the input bundle by investigating the eigenvalues - are checked for the 
individual local approximation point at the sample mean. Table 1 shows the results of the exemplary 
regularity tests (see appendix A4. for the numerical details of the regularity tests performed): 
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Table 1. Examples for Local Irregularity of Translog Production Function Models 
STUDY 
(Author, Year, 
Country) 

DATA SET 
(No. Obs., Years) 
MODEL 
OUTPUT 
INPUTS 

MONOTO-
NICITY 
(for every 
Input) 

DIMINISHING 
MARGINAL 
PRODUCTIVITY 
(for every Input) 

QUASI-
CONCAVITY 
(of the input-
bundle) 

LOCAL 
REGULARITY 
(monoton & 
quasi-concave) 

II) KUMBHAKAR/ 
HJALMARRSON 
(1993) 
Sweden 
 

608, 1968-1975 
Dairy Output 
 
Labor 
Material 
Land 
Capital 

 
 
 

x 
x 
x 
x 

 
 
 

x 
x 
0 
x 

 
 
 

0 

 
 
 

0 

II) KUMBHAKAR/ 
HESHMATI 
(1995) 
Sweden 

4890, 1976-1988 
Diary Output 
 
Fodder 
Material 
Labor 
Capital 
Grass 
Land 
Pasture 
Age 

 
 
 

0 
0 
x 
0 
x 
x 
0 
0 

 
 
 

0 
0 
x 
0 
x 
x 
x 
x 

 
 
 

0 

 
 
 

0 

III) BATTESE/ 
BROCA (1997) 
Pakistan 

330, 1986-1991 
Model 1* 
Wheat Output 
 
Land 
Labour 
Fertiliser 
Seed 
 
Model 2* 
Wheat Output 
 
Land 
Labour 
Fertiliser 
Seed 

 
 
 
 

x 
0 
x 
x 
 
 
 
 

x 
x 
x 
x 

 
 
 
 

x 
0 
x 
0 
 
 
 
 

0 
x 
x 
x 

 
 
 
 

0 
 
 
 
 
 
 
 

0 

 
 
 
 

0 
 
 
 
 
 
 
 

0 

IV) 
BRÜMMER/LOY 
(2000) 
Germany 
 

5093, 1987-1994 
Full Model 
Dairy Output 
 
Capital 
Land 
Labour 
Intermediates 
Quota 
 
Best Model 
Dairy Output 
 
Capital 
Land 
Labour 
Intermediates 
Quota 

 
 
 
 

x 
x 
x 
x 
x 
 
 
 
 

x 
x 
x 
x 
x 

 
 
 
 

x 
0 
x 
0 
0 
 
 
 
 

x 
0 
x 
0 
0 

 
 
 
 

0 
 
 
 
 
 
 
 
 

0 

 
 
 
 

0 
 
 
 
 
 
 
 
 

0 

V) BRÜMMER 
(2001) 
Slovenia 

185, 1995 & 1996 
Model 1995 
Total Farm Output 
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Labour 
Land 
Intermediates 
Capital 
 
Model 1996 
Total Farm Output 
 
Labour 
Land 
Intermediates 
Capital 

 
x 
0 
0 
x 
 
 
 
 

x 
0 
0 
x 

 
x 
0 
0 
0 
 
 
 
 

x 
0 
0 
0 

 
0 
 
 
 
 
 
 
 

0 

 
0 
 
 
 
 
 
 
 

0 

VI) AJIBEFUN/ 
BATTESE/ 
DARAMOLA 
(2002) 
Nigeria 

67, 1995 
Total Crop Output 
 
Land 
Labour 
Capital 
Hired Labour 

 
 
 

x 
x 
x 
x 

 
 
 

0 
x 
x 
x 

 
 
 

0 

 
 
 

0 

VII) ALVAREZ/ 
ARIAS (2004) 
Spain 

196, 1993-1998 
Milk Output 
 
Labour 
Cows 
Feedstuff 
Land 
Roughage 

 
 
 

0 
x 
x 
0 
x 

 
 
 

0 
x 
0 
0 
0 

 
 
 

0 

 
 
 

0 

VIII) KWON/ 
LEE (2004) 
Korea 

1026, 1993-1997 
Models 1993 -1997 
Rice Output 
 
Land 
Labour 
Capital 
Fertiliser 
Pesticides 
Others 

 
 
 
 

x 
x 
x 
0 
x 
x 

 
 
 
 

x 
x 
x 
0 
x 
x 

 
 
 
 

0 

 
 
 
 

0 

 1: evaluated at the sample means due to lacking data on each observation 
2: x - fulfilled; 0 - not fulfilled 

KUMBHAKAR/HJALMARRSON (1993) investigated the efficiency of 608 Swedish farms engaged in 
milk production for the period 1968 to 1975 considering labor, material, land and capital as inputs. All 
first derivatives with respect to inputs showed positive signs at the sample mean and therefore fulfilled 
the monotonicity criterion (see table 1). However, the second derivative with respect to land revealed 
to be non-negative and therefore indicates non-observance of the law of diminishing productivity. 
Hence checking the eigenvalues of the corresponding bordered Hessian matrix, the latter turned out to 
be not negative semi-definite and the estimated production frontier does not fulfill the curvature 
criterion of quasi-concavity. KUMBHAKAR/HESHMATI (1995) estimated technical efficiency for a 
panel of Swedish Dairy Farms by a multi-step approach. They used fodder, material, labor, capital, 
grass fodder, cultivated land, pasture land as well as the age of the farmers as input variables. 
Evaluated at the sample mean only 3 of 8 inputs fulfilled the monotonicity requirement. The estimated 
function showed not be quasi-concave. BATTESE/BROCA (1997) estimated technical efficiencies of 
109 wheat farmers in Pakistan over the period 1986 to 1991 using land, labor, fertilizer and seed as 
inputs. Only model 2 fulfilled the monotonicity requirements for all four inputs. Both models 
evaluated at the sample means failed to adhere to quasi-concavity. BRÜMMER and LOY (2000) 
analysed the relative technical efficiency of dairy farms in northern Germany for the period 1987 to 
1994: both models estimated fulfilled monotonicity for all inputs but failed to adhere to diminishing 
marginal productivity as well as quasi-concavity. BRÜMMER (2001) attempted to analyse the technical 
efficiency of 185 private farms in Slovenia for the years 1995 and 1996. For both years the estimated 
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function showed to be non-monoton in the inputs land and intermediates. The estimated translog 
frontiers do not fulfill the curvature requirement of quasi-concavity. AJIBEFUN, BATTESE and 
DARAMOLA (2002) aimed to investigate factors influencing the technical efficiency of 67 crop farms 
in the Nigerian state of Oyo for the year 1995. The authors used land, labor, capital as well as hired 
labour to estimate a translog production frontier. However, the estimated function showed to be 
monoton in all inputs but not quasi-concave for the input bundle. ALVAREZ/ARIAS (2004) tried to find 
evidence on the relationship between technical efficiency and the size of 196 dairy farms in Spain for 
the period 1993 to 1998. For the inputs labour and land the estimated frontier showed to be non-
monoton at the sample means. The production frontier estimated is not curvature correct. Finally 
KWON and LEE (2004) estimated stochastic production frontiers for the years 1993 to 1997 with 
respect to Korean rice farmers. All efficiency frontiers showed to be non-monoton for the input 
fertilizer and do not fulfill the curvature requirement of quasi-concavity. To sum up: 100% of all 
arbitrarily selected translog production frontiers fail to fulfill (at least) local regularity at the sample 
means. 

Hence, as the investigated frontiers are flexible but not regular (at least at the sample mean) derived 
efficiency scores are not theoretical consistent and therefore are not an appropriate basis for the 
formulation of policy measures focusing on the relative performance of the investigated decision 
making units. 

V) CONCLUSIONS: THE NEED FOR CONSISTENT AND FLEXIBLE EFFICIENCY 
MEASUREMENT 

The preceeding discussion aims at highlighting the compelling need for a critical assessment of 
efficiency estimates with respect to the current evidence on theoretical consistency, flexibility as well 
as the choice of the appropriate functional form. The application of a flexible functional form as the 
translog specification by the majority of technical efficiency studies is adequate with respect to 
economic theory. However, most applications do not test for whether the estimated function has the 
required regularities of monotonicity and quasi-concavity, and hence run the risk of making improper 
policy recommendations. The researcher has to check a posteriori for the regularity of the estimated 
frontier which means checking these requirements for each and every data point with respect to the 
translog specification. If these requirements do not hold they have to be imposed a priori to estimation 
as briefly outlined in the text. Imposing global regularity nevertheless leads to a significant loss of 
functional flexibility, local imposition requires a differentiated interpretation: if theoretical consistency 
holds for a range of observations, this ‘consistency area’ of the estimated frontier should be 
determined and clearly stated to the reader. Estimated relative efficiency scores hence only hold for 
observations which are part of this range.1 Alternatively flexible functional forms – as e.g. the 
symmetric generalized McFadden – could be used which can be accomodated to global theoretical 
consistency over the whole range of observations. Furthermore one should always check for a 
possibility of using dual concepts such as the profit or cost function with respect to the efficiency 
measurement problem in question. Hence, policy measures based on such efficiency estimated are not 
subject to possible inadequacy and a waste of scarce resources. Here exemplary applications already 
exist in the literature. The test for theoretical consistency for an arbitrary selected sample of translog 
production frontiers published in agricultural economic journals in the recent 10 years revealed the 
significance of this problem for daily efficiency measurement. 
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VI) APPENDIX 
A1. PROPERTIES OF F(X) 

(1a) monotonicity: if x’ ≥ x, then f(x’) ≥ f(x) 
(1b) quasi-concavity: V(y) = {x: f(x) ≥ y} is a convex set where V(y) denotes the input  
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requirement set 

   
 Figure A1 A Co

 
 

  

V(y) 

xi  

xk

nvex Input Requirement Set  

ite, non-negative, real valued, and 
negative and  

 

c) f(x) is fin
single valued for all non-

A2. NEGAT -DEFINITENESS OF A MATRIX 
efinite (nsd) if and only if 

 (A1)    

for arbitrary Z є R . The Q (M, Z) is referred to as the quadratic form of the symmetric matrix M. If Q 

emma A1. Q (M, Z) is nsd only if 
ants) alternate in sign starting with a negative number, 

positive (i.e. mij < 0). 
e  ≤ 0. 

 
3. EIGENVALUES OF A K X K SQUARE MATRIX 

atrix A. If there is a vector X ε Rn ≠ 0 such that 

for some scalar e, then e is called the eigenvalue of A with corresponding (right) eigenvector X: 

where I is the identity matrix. As shown by Cramer’s rule, a linear system of equations has nontrivial 

)    

Equation (A4) is known as the characteristic equation of A and the left-hand side is known as the 

11 22 12 21 11 22

which arises as the solutions of the characteristic equation: 

11 22 11 22 12 21    (A6)    

 
ARGINAL 

IVES 

QUASI –CONCAVITY 
ERED 

 
 
 
 
(1

finite x. 

IVE SEMI
Any symmetric matrix M є Rn x Rn is negative semi-d

 Q(M, Z) = Z’MZ ≤ 0       
n

(M, Z) < 0, M is called ‘negative definite’.  
 
L
a. its principal minors (i.e. determin
b. its principal submatrices are nsd, and 
c. the diagonal elements of M(mij) are non
d. Q (M, Z) of the rank > 3x3 is nsd if for all eigenvalues e of Q: 

A
Let A be a linear transformation represented by a m

 A X = e X         (A2)    

 (A – e I) X = 0         (A3)    

solutions if the determinant vanishes, so the solutions of equation (A3) are simply given by: 

 det (A – e I) = 0         (A4

characteristic polynomial. For e.g. if k = 2, i.e. a 2x2-matrix, the eigenvalues are determined by  

  e ± = ½ [(a  + a ) ± √[4a a  + (a  – a )2]     (A5)    

 x2 – x(a  + a ) + (a a  – a a ) = 0   

Table A4. Numerical Details of Regularity Tests Performed 
STUDY MONOTONICITY DIMINISHING M
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 FIRST DERIVATIVES
(∂Y/∂XI > 0) 

PRODUCTIVITY 
SECOND DERIVAT
(∂2Y/∂XI

2 < 0) 

EIGENVALUES OF BORD
HESSIAN MATRIX 
(EI ≤ 0) 

 Input 2: 1.76208 
Input 3: 0.60774 
Input 4: 0.26717 

Input 1: -0.0000
Input 2: -0.00487 
Input 3: 0.06243 
Input 4: -0.00033 

E1: -0.58
E2: 0.00079 
E3: -181.1382
E4: 0.63627 
E5: 181.1384
E1: 2116.84741

I) Input 1: 0.07571 2 005 

9 

9 
II) 
 

Input 1: -1.44259 
Input 2: -0.44539 

Input 1: 3.24172E-05 
Input 2: 2.36834E-05 

 
E2: 46.42065 



 Input 3: 0.189542 
Input 4: -0.59149  
Input 5: 8.56558 
Input 6: 1586.66 
Input 7: -1408.62 
Input 8: -146.971 
 

Input 3: -1.33923E-06 
Input 4: 1.04829E-05 
Input 5: -0.00516 
Input 6: -33.4089 
Input 7: -0.86203 
Input 8: -26.3370 

E3: 0.04901 
E4: -1.55354E-06 

 
 

E5: -0.07129 
E6: -0.00564 
E7: -2137.260
E8: -18.40785
E9: -68.18484 

MODE
 

Input 1: 1115.8211
In
Input 3: 5.23465 
Input 4: 26.37129  
 

Input 1: -47.18914

Input 3: -0.01544 
Input 4: 0.00042 
 

E1: 1298.53011
E2: -1321.7076
E3: 0.01271 
E4: -0.02751 
E5: -23.99859

IIIB) 
 

L 2 

 
put 2: 2.35394 

 

23 
put 2: -0.02503 

5 
 

MODE
 

Input 1: 1015.04819
In
Input 3: 4.39806 
Input 4: 14.95299
 

Input 1: 2424.334
In
Input 3: -0.012672 
Input 4: -0.01413 
 

E1: -382.9515
E2: 2814.24112
E3: -0.00444 
E4: -0.02995 
E5: -6.97277 

IVA) 
 

L 1 
put 2: 0.03524 

 
put 2: 0.01624 

 
 

MODE
 

Input 1: 1.74868 
In
Input 3: 17.94161
Input 4: 1.00768 
Input 5: 0.49772 
 

Input 1: -0.03126 
In
Input 3: -24.20236
Input 4: 0.00298 
Input 5: 0.00061 
 

E1: 10.70562 
E2: -0.95049 
E3: 96.62495 
E4: -33.98629
E5: -96.60718 
E6: -0.00039 

MODE
 

Input 1: 1.89478 
In
Input 3: 19.40506
Input 4: 1.06725 
Input 5: 0.46522 
 

Input 1: -0.03437 
In
Input 3: -25.33642
Input 4: 0.00295 
Input 5: 0.00056 

E1: 11.73255 
E2: -1.01135 
E3: 95.39056 
E4: -36.09093
E5: -95.37312 
E6: 0.00114 

MOD
 

Input 1: 1474.207
In
Input 3: -172.24372 
Input 4: 5.12042 
 

Input 1: -198.8843

Input 3: 20.03483 
Input 4: 0.00445 
 

E1: -2.10927 
E2: -240882.759
E3: 1.93102E-
E4: 240710.0172 
E5: 0.00681 

VB) 
 

EL 1996 

88 
put 2: -0.07137 

 
put 2: 4.98173E-06 7 

06 MOD
 

Input 1: 1433.791
In
Input 3: -192.06836 
Input 4: 4.98122 
 

Input 1: -87.24788
In
Input 3: 25.03976 
Input 4: 0.00424 
 

E1: -2.59032 
E2: -212636.178
E3: 2.91944E-
E4: 212576.5587 
E5: 0.00649 

 
VI) put 1: 545.51798 

put 2: 63.39966 
put 1: 325.59682 
put 2: -0.07723 

7 
2: 756.14889  

 

 
In
In
Input 3: 210.64866 
Input 4: 1.22185 
 

 
In
In
Input 3: -2.32279 
Input 4: -0.00026 
 

 
E1: -473.8252
E
E3: -0.61524 
E4: 41.48851 
E5: -0.00035 

 
 

Input 1: -13848.63
In
Input 3: 2.70035 
Input 4: -4609.10832
Input 5: 20.27928
 

Input 1: 3208.2640
In
Input 3: 1.22526E-05
Input 4: 474.94612 
Input 5: 0.00236 
 

E1: -13276.232
E2: 16174.031
E3: -116.13557 
E4: -3.9745E-05 
E5: 889.68296 
E6: 0.00672 

MODEL
 

Input 1: 2483.9035
In
Input 3: 6.03447 
Input 4: -0.82598 
Input 5: 5.89932 
Input 6: 9.51835 

Input 1: -1973.769
In
Input 3: -0.00561 
Input 4: 0.00551 
Input 5: -0.00916 
Input 6: -0.08145 

E1: 1685.90046
E2: -3659.583
E3: -18709.41058 
E4: 18709.53378 
E5: 0.00538 
E6: -0.02303 
E7: -0.32609 

MODEL
 

Input 1: 2150.896

Input 3: 5.92348 
Input 4: -0.76074 
Input 5: 6.47381 
Input 6: 10.05337 

Input 1: -1247.371

Input 3: -0.00525 
Input 4: 0.00422 
Input 5: -0.01079 
Input 6: -0.07681 

E1: 24561.323
E2: 1615.8693
E3: 0.004171 
E4: -0.02719 
E5: -0.34692 
E6: -2863.186
E7: -25952.48

MODEL

Input 1: 1799.9364

Input 3: 5.39876 

Input 1: -1025.092

Input 3: -0.00483 

E1: 24112.158 
E2: 1359.089 
E3: 0.00469 

IIIA) 
 

L 1 

5 
put 2: -1.17838 

 
Input 2: 0.00133 

 
1 

 

IVB) 
 

L 2 
put 2: 0.03967 

 
put 2: 0.01612 

 
 

VA) 
 

EL 1995 

23 
put 2: -0.05921 

8 
Input 2: 3.34786E-06 9 

06 

VII) 
 

785 
put 2: 269.10386 

 
 

4 
put 2: -11.85909 

 

62 
99 

VIIIA) 
 

 1993 

5 
put 2: 1.56905 

0 
put 2: -0.01193 

 
36 

 
VIIIB) 
 

 1994 

36 
Input 2: 6.50092 

24 
Input 2: -1391.39286 

 
 

8 
8 

VIIIC) 
 

 1995 

9 
Input 2: 7.28249 

36 
Input 2: -0.02257 
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 Input 4: -0.86076 
Input 5: 5.83771 
Input 6: 10.40969 

Input 4: 0.00481 
Input 5: -0.00929 
Input 6: -0.08251 

E4: -0.02334 
E5: -0.39265888 

3 E6: -2384.057
E7: -24111.985 

MODEL
 

Input 1: 1800.8528

Input 3: 5.70050 
Input 4: -1.04981 
Input 5: 6.06115 
Input 6: 11.08452 

Input 1: -1009.057

Input 3: -0.00507 
Input 4: 0.00558 
Input 5: -0.00879 
Input 6: -0.08038 

E1: 31260.111 
E2: 1365.8201 
E3: 0.00538 
E4: -0.02140 
E5: -0.41888 
E6: -2374.752
E7: -31259.92

MODEL
 

Input 1: 1596.8808

Input 3: 5.55262 
Input 4: -1.27070 
Input 5: 5.67325 
Input 6: 11.66396 

Input 1: -874.6082

Input 3: -0.00498 
Input 4: 0.00693 
Input 5: -0.00735 
Input 6: -0.08345 
 

E1: 33613.796 
E2: 1218.5853 
E3: 0.00658 
E4: -0.01695 
E5: -0.45938 
E6: -2093.016
E7: -33613.63

sistent with econom  

VIIID) 
 

 1996 

1 
Input 2: 9.75850 

52 
Input 2: -0.03173 

1 
2 

VIIIE) 
 

 1997 

9 
Input 2: 11.44893 

9 
Input 2: -0.03836 

5 
 

 1: bold – not con ic theory
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