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A Practical Way to Obtain Near-Optimal
Solutions (NOS) in Linear Programming

Alejandro Galetto, Hisham El-Osta, and Glenn A. Helmers
University of Nebraska

The nature of agricultural production is such that the functional
relationships that describe technology and resources requirements cannot
always be modeled adequately in a deterministic way. These functional
relationships, along with the objective functions that are associated with
them can be linear or nonlinear and continuously differentiable (smooth) or
nondifferentiable (nonsmooth). In addition, the decision variables may be
continuous, restricted to integer values, or in certain situations, both.
Also, production may take place at a fixed point in time (static) or during an
interval of time (dynamic). Even with these complexities many agricultural
model builders have opted to represent farm problems using linear-
deterministic-smooth-continuous-static models (LP). Mathematical linear
programming (LP) also assumes additivity, divisibility, finiteness, and
single-valued expectations. The use of LP in agriculture offers an
indispensable degree of operational simplicity.

Using this optimization technique, the researcner approaches a complex
decision problem by concentrating on a single objective designed to quantify
performance. This one objective is minimized (or maximized) subject to the
constraint set. If one can isolate and characterize a problem by one
objective, be it net returns or net loss in a farm situation, transferring
resources or farm commodities between various locations, or social welfare in
the context of government planning, LP may provide a useful procedure and
basis for analysis.

It is, however, a rare situation in which the model builder can fully
represent all the complexities of interactions, constraints, and appropriate
objectives when faced with a complex decision setting such as agriculture.
Thus, as with all quantitative techniques of analysis, a particular LP
formulation should be regarded only as an approximation (Luenberger). This
has caused many practical farm planners to reject the idea of a single unique
optimal solution to a linear programming model of a particular farm situation.
Instead, these planners prefer to compute a number of solutions for the
farmer's consideration. According to Powell and Hardaker, the most
restrictive assumption of LP is its deterministic nature. The authors also
assert that LP has the limitation of permitting only one objective function -
normally maximum expected profit. They point to the work of Officer, Halter,
and Dillon who have indicated the importance of higher order moments of the
profit criterion and the importance of risk attitudes in farmers' decisions.
Based on research by others, Powell and Hardaker indicated that the farmer's
utility function may be multidimensional, perhaps nonlinear, or even
impossible to represent adequately using an LP formulation. In addition,
according to the authors, farmers may have difficulty in articulating their
objectives precisely enough to be incorporated into any formal model, but may
be able to determine which of a set of plans suits their needs the best.
Based on a study by Renborg, the authors indicate that the solution space is
often relatively "flat" in the optimum region. This will often signify that
solutions exist which would enable the farmer to satisfy better some secondary
objective at the expense of relatively little reduction in expected earnings.

With some modification, a range of suboptimal solutions that are of
interest to farmers can be generated using procedures that are described in
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the literature. For example, Powell and Hardaker exchanged the objective
function of their LP problem with a constraint to determine new, perhaps more
acceptable, solutions. In their study, sacrificing 15 percent of income
allowed for either labor use to be reduced to one-third of that required for
the optimum, or for 40 percent of the farm to be in lucerne. Willis and
Perlack illustrated in two different studies the use of two approaches to
formalize multiple objective functions., generating techniques which use the
weighting and constraint methods and goal programming. Paris studied multiple
optimal solutions (MOS) in Linear Programming and asserted that the polyhedral
nature of the solution set in LP models may cause MOS if some plausible
conditions are realized. These conditions are related to the phenomenon of
degeneracy which, in the case of the primal solution, occurs when a set of
activities employ inputs in exactly that proportion which exhausts completely
two or more available resources. Burton et al. proposed a procedure in which
the vertices of a convex polytope can be found by using a pivoting method of
vertex enumeration. This method was used to generate all extreme-point
nearly-optimal solutions of an example problem involving selection of a
marketing strategy for beef cows. The results showed that compared to the
optimal solution, nearly-optimal solutions have more diversity or use less
cash or hired labor.

This study discusses and demonstrates the use of two additional
-procedures; 1) the Hop, Skip, and Jump method and 2) the Random Generation
Method (RGM). The alternative solutions are compared with respect to
stochastic dominance.

The Hop, Skip, and Jump method (Brill, 1979) (HSJ) and the Random
Generation Method (RGM) are only two of the many techniques that are capable
of generating such suboptimal solutions (for an elaborate review of other
available techniques, see Brill, 1982).

Methodology

The HSJ Method

This method, as discussed by Brill et al., can be applied to a range of
problems and is designed to explore the full range of discrepancies among
solutions with respect to the values of decision variables. The steps in the
HSJ approach as they relate to the example chosen for this study are:

Step 1. Obtain an initial solution by any method.

For example,

(1) Maximize z = c'x
s,t Ax b

x >0

Step 2. Convert the objective function into a constraint and obtain an
alternative solution by solving
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(2) Maximize P = 2 xk
k=K

s,t Ax < b
c' (1 - a) z*
x >0

where z = the scalar objective function value
c' = the price, return, and cost vector
K = set of indices of the decision variables that are zero in the

initial solution
A = constraint coefficient matrix

= requirement or resource vector
z = optimal objective function from Step 1
a = tolerance level i.e. a = 20%, 10%, or 5%.

Equation (2) is designed to produce an alternative solution that is
different from the first one by maximizing the sum of the decision variables
that are zero in the original plan. The target specified by (1 - a)z* will
ensure that the alternative solution will be "good" with respect to modeled
objectives. Brill et al. note that the target would generally be relaxed in
comparison to the respective values of the objective function in solution of
Step 1.

Step 3. Additional solutions are obtained by maximizing the sum of the
zero variables that appeared in previous solutions.

Brill et al. describe the stopping criteria of the HSJ as:

(1) when no new decision variables enter the basis because all decision.
variables are included in the current HSJ objective function.

(2) when no new decision variable enters the basis even though there are
variables not included in the HSJ objective function.

(3) The model builder terminates the procedure when a large number of
alternative solutions have been generated or when the difference
between each new alternative and the one that precedes it becomes
negligible.

This method has been applied on land use planning problems by Brill et al. and
on water resources planning problems by Chang et al. (1982a).

The Random Generation Method

The random generation method has many variants. For example, one form of
the method was used by Chang et al. (1982b) on a land planning problem in
which an optimal feasible solution was reached using multiobjective LP (as is
depicted in formulation 1 above). Targets were also set for the planning
objectives included in the model to reduce the space further to include only
solutions that were good with respect to the modeled objectives. An extreme
point solution is located by maximizing an objective function that is
generated at random. In this way, a solution that is feasible and good can be
generated in an efficient manner and a different solution may be found
randomly by selecting different objective functions to be optimized.
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The specific formulation for this method is similar to Equation (2) above
with the exception that the objective function is formed by selecting a
specified number of decision variables at random. These variables are then
placed in the objective function and assigned a coefficient of one while all
other variables are assigned a coefficient of zero. The other exception is
the addition of more target rows to restrict the remaining objective
functions.

Another variant of the procedure was used by Harrington and Gidley on a
water resources planning problem. In their study, an optimal feasible
solution was first reached, then alternative optima and near-optima were
generated by converting the objective function into a constraint (as in
Equation (2) above with the exception that their problem was a minimization
problem). The authors have used, however, random objective functions that
were generated by choosing a coefficient from a uniform distribution on
[-1, 1] for each structural and slack variable.

In this paper, a similar procedure was used with the exception that the
random objective function was generated by choosing a coefficient from a
uniform distribution with mean equal to zero and variance equal to one for
only the decision variables. By randomizing this objective function for each
different run at certain levels of c'x (1 - a)z*, different suboptimum
alternative plans were generated.

Farm Setting, Data and Economic Assumptions

The data used for this study portrays a representative farm situation of
the central region of the Santa Fe province in Argentina. It is a region
characterized by temperate climate with annual rainfall averaging 900 mm
(approx. 36 inches) and mixed soils for crop and livestock production.
Dominant production systems include dairy and beef fattening, grain sorghum,
corn, and soybeans. Of less importance are cow-calf operations, sunflower,
wheat, linseed and double cropping of wheat and soybeans. Most farms are of
medium size, ranging from 100 to 400 hectares and are predominantly family
operated, with the exception of dairy, where share contracts are common.

The representative farm model has 180 ha of usable land which can be used
for livestock or crop production. Labor is provided by the owner, who
supplies 2400 hours per year available for all cropping and husbandry
operations with the exception of milking which is carried out by labor hired
under share contract. The farmer owns the machinery set except for harvesters
which are contracted. Although working capital requirements are specified for
each activity, a specific amount available (or a credit constraint) was not
set.

Several activities can be included in this model. The dairy activity
(DAIRY) follows closely the parameters of the dairy production unit which has
been under operation during the last 9 years within an Agricultural Experiment
Station located in the region. The composition of the herd, stocking rate and
productivity measures are averages of the period 1981-1986 (Comeron et al,
1988). The pasture production levels are from one year only (Comeron et al.,
1986). In fact, the stocking rate is endogenously determined by the LP model,
given animal requirements and the pasture supply. There are also six beef

191



production activities. Two of these "buy" young steers from the dairy
activity at approximately one year of age and 180 kg of liveweight. In one
case they are kept for 12 months and then sold with 350 kg (BEEF1) and in the
other the animals are retained for 24 months and sold at 580 kg of liveweight
(BEEF2). Two other potential activities include the same productive sequence
but the animals are bought outside the farm (BEEF3 and BEEF4). In the last
two livestock activities, steers are bought outside the farm at 240 kg and 350
kg and kept until they reach 580 kg, at 18 (BEEF5) and 12 (BEEF6) months,
respectively (Zehnder and Schilder, 1986). Pasture production is modeled as a
separate activity and include oats (OATS) as annual winter pasture and sorghum
(FSORG) and Millet (MILLET) as summer pastures. Perennial pastures are of two
types, a mix based on alfalfa (ALFA1, ALFA2, ALFA3, AND ALFA4) and a mix based
on Cychorium (CYCH01, CYCH02, and CYCH03). Crop production activities include
wheat (WHEAT) and linseed (LNSEED) as winter crops and grain sorghum (GSORG),
corn (CORN), soybean (SOYEil) and sunflower (SNFLWR) as summer crops. The
sequence of wheat and late soybean (WSOYB2) is also included.

Monthly prices for crop and livestock products were deflated using the
nonagricultural wholesale price index provided by the Bureau of Census and
Statistics. All prices are expressed in the local currency, the Austral -(A)
and are representative of July 1987 real values. For comparison purposes, at
that time the relation with the U.S. dollar was about 2.15/US$. Budgeted data
for livestock, gain and machinery are based on biannual budgets prepared by
the Agricultural Economics group at the Agricultural Experiment Statioh:

Results and Discussion

The Optimal LP Solution

The optimal LP solution yielded a maximum return (to land, family labor,
capital, and management) of A 44,431.56 and is summarized in Tables 1 and 2.

This solution uses 1640 hours of labor per year, and A 14,420 of working
-capital. As can be seen from Table 1, it includes sales from only two
activities, dairy and corn. In the rest of this section the organizations
resulting from the two proposed methodologies will be contrasted to the
optimal solution particularly with respect to diversification and its
associated risk.

Application of the HSJ Method

This method produced a set of alternative solutions. Not all of these
are presented here, however, because in some cases the activities,
particularly dairy, were at very low levels, incompatible with the implied
fixed cost per output unit. In addition, some nearly-optimal solutions allow
for positive levels of pasture activities where no livestock was present in
the solution. This is clearly an undesirable feature of the method. One way
to overcome this is by recognizing the implicit linkages which exist between
livestock and pasture production when maximizing the new objective function
and distribute the ones and zeros accordingly. Table 1 shows the seven
solutions obtained with the application of the HSJ method.
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Table 1 shows that this method generates a set of very different
solutions near the optimum. It must be recognized that diversification
potential (or flatness of the net returns function near the optimum) is
largely problem specific. In other problems, one activity may be so dominant
that these methods may not be able to find nearly-optimal solutions. In this
case, for example, the solution with upper bound at 80 percent of the original
objective function can dubiously be termed nearly optimal.

Application of the Random Generation Method (RGM)

There are several ways to randomly select nearly optimal solutions using
RGM. One is by randomly selecting a set of activities to be forced into the
solution. Another way is by assigning a random number for each variable in
the new objective function (to the structural and slack variables or to the
structural variables only). This last variant was used for this study.
Random variables from a uniform distribution with mean zero and variance one
were assigned to the structural variables in each run. The construction of
the new row constraint containing the values of the original objective
function is similar to the HSJ method. Table 2 shows a set of seven
alternative solutions found by applying the random generating method.

There were more alternatives generated by this method but only a few of
these are presented. Some solutions presented the same type of problems
mentioned with the HSJ method, that is, activities which come at scale levels
at odds with fixed cost implications and "waste" activities. In contrast with
the HSJ method, random generation of nearly-optimal alternatives appears to
have two disadvantages: (a) there is more replication, in the sense that
within the near-optimal set there are several solutions which do not differ
widely and (b) the random method has less power to force diversification away
from the optimal solution. By comparing Tables 1 and 2, it can be appreciated
that some activities like sunflower, wheat, linseed, and forage sorghum don't
enter the solution set (the number of runs with the two methods was the same,
15 in total).

Risk Characteristics of HSJ and RGM Solutions

Based on the distribution of costs and returns for each activity the
distribution of net returns for each solution (7 for each method) for the
period 1978-79 to 1986-87 was calculated. A first degree stochastic dominance
analysis was constructed and showed that three solutions from the HSJ set
(HSJ951, HSJ952, AND HSJ953) and five solutions from the RGM set (RGM952,
RGM953, RGM955, RGM902, AND RGM905) were undominated by the LP solution.
Although these results are important more work is needed to explore the risk
characteristics of nearly-optimal solutions. With respect to this setting in
particular, additional data is required to represent the variability of
pasture yields and thus of dairy and beef production.

Conclusion

This analysis has shown that these two methods of generating nearly
optimal solutions are workable alternatives to more exhaustive vertex
enumeration methods. For the same reason that LP continues to be the
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preferred OR technique due to its inherent simplicity and software
availability, the HSJ and RGM methods presented here are likely to be
preferred to more complicated alternatives. Problems that have to be taken
into account when working in applied settings are those related to scale
(where a mixed-integer programming approach could be of value), and the
appearance of "waste" activities. In this case, the implicit complementarity
of these activities should be recognized, perhaps by assigning the same
coefficient to the whole livestock production subsystem (cattle and pastures).

The results of this paper are validated also by empirical observation on
the region where the data come from. Not only dairy and corn are produced
there, as the LP solution would suggest, but also beef and other crops, as the
set of nearly optimal solutions predicts. These solutions also show that a
high potential for diversification exists in the forage production subsystem,
where generated solutions resemble the situation in the region where different
types of perennial and annual pastures are used on livestock farms.

The two methodologies presented here offer a readily workable tool for
farm management advice. They can be made even more useful by taking into
consideration the performance of solutions with respect to some unmodeled
objectives such as cash requirements, hired labor, rotation possibilities,
etc. This is a good tool for interdisciplinary research with agronomists, for
example, who could be able to find nearly optimal solutions (with respect to
the modeled objective) which may perform better in terms of soil conservation
or other more diffuse but no less important decision criteria.
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Table 1. Nearly-Optimal Solutions Corresponding to the Application of the HSJ
Method.

Activity Units LP SOL. HSJ951 HSJ952 HSJ953 HSJ902 HSJ903 HSJ904 HSJ905

Dairy cow 41.71 20.61 37.56 19.41 30.35 23.73 29.80 34.89
Beefl head 16.69 4.98
Beef3 head 4.81
Beef4 head
Beef5 head
Wheat ha 22.72 14.18
Lnseed ha 10.51
Corn ha 71.58 8.18 31.08 15.14 94.06 81.49
GSorg ha 14.84 13.72 14.18 10.51
Soybl ha 22.72 35.83
WSoyb2 ha 78.88 80.62 39.37
Snflwr ha 28.92 13.83 25.98 46.80 56.13
Oats ha 25.32 12.51 22.81 11.78 21.50 14.41 18.80 21.18
FSorg ha 5.30 6.69 9.45 13.90
Alfal ha 22.29 16.17 29.47 15.23 26.09 62.68
Alfa2 ha 22.29 16.17 29.47 15.23 26.09 62.68
Alfa3 ha 22.29 16.17 29.47 15.23
Cychol ha 29.27 8.42 15.35 14.10 53.17 56.02 59.36
Cycho2 ha 29.27 8.42 15.35 14.10 53.17 56.02 59.36
Cycho3 ha 29.27 8.42 15.35 59.36
Returns (A) 44,431 42,218 42,219 43,937 40,027 39,988 40,034 35,567

Table 2. Nearly-Optimal Solutions Corresponding to the Application of the RGM
Method.

Activity Units LP SOL. RGM952 RGM953 RGM955 RGM902 RGM905 RGM803 RGM805

Dairy cow 41.71 21.89 23.99 36.25 14.18 29.32 22.70 15.47
Beefl head 12.48
Beef3 head
13eef4 head
E3eef5 head 12.48
Wheat ha
Lnseed ha
Corn ha 71.58 56.51 60.19 52.12 62.12 42.23 90.15 22.29
GSorg ha 37.17 64.46 119.04
Soybl ha 2.91 28.75
WSoyb2 ha 73.66 65.68 82.72
Snflwr ha
Oats ha 25.32 28.96 14.57 22.01 49.04 17.80 18.33 9.38
FSorg ha 5.30
Alfal ha 22.29 22.29 40.04 30.21 16.08 24.43 61.10 12.89
Alfa2 ha 22.29 22.29 40.04 30.21 16.08 24.43 61.10 12.89
Alfa3 ha 22.29 22.29 30.21 16.08 24.43 12.89
Alfa4 ha 30.12 24.43 12.89
Cychol ha 29.27 5.26 5.5g
Cycho2 ha 29.27 5.26 5,59
Cycho3 ha 29.27 5.59
Returns (A) 44,431 42,210 42,213 42,184 39,277 36,896 36,898 35,545
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