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Activity Specification and Input Risk Aversion

in Risk Programming Models

Gary D. Thompson
University of Arizona

Musser at al., present an intriguing study of how risk aversion may be confounded with constraint omission

in explaining enterprise diversification with mathematical programming models. In particular, they compare an insuffi-

ciently constrained expected value-variance (E-V) model to a more completely constrained linear programming model

to examine conditions under which the two models may yield comparable primal optimal solutions. Musser et al.,

suggest that researchers' propensity to devote considerable attention to risk specifications has generated significant

opportunity costs in the form of incomplete specification of appropriate technical constraints in past E-V studies. In

order to evaluate the appropriateness of casting risk aversion in the traditional nonsymmetric quadratic E-V program-

ming model, they suggest that researchers should first specify a full set of appropriate constraints before assessing

the plausibility of risk specifications. More generally, the call by Musser at al., for careful specification of constraints

as a necessary condition for evaluating risk aversion in programming models may be characterized as part of the

problem of choosing the "correct* specification of the mathematical programming model. Similar specification

searches in econometrics have received much attention recently (Learner; Hausman). Musser at al., are to be

lauded for emphasizing the importance of complete and appropriate specification of constraints in mathematical

programming models.

In this paper, the mathematical results of Musser at al., are extended by explicitly recognizing risk aversion

in input use. The symmetric quadratic programming specification of the E-V problem serves as the basis for indicat-

ing how risk aversion in input supplies may be confounded with activity specification. This result regarding risk

aversion in input use and activity specification is completely analogous to the confounding of risk aversion in returns

or revenues with constraint specification in explaining activity diversification at the enterprise level. One implication of

the new mathematical result Is that researchers' inattention to modeling risk aversion in input supplies unnecessarily

limits specification searches among mathematical programming models. A second implication of the mathematical

result is that specification searches in mathematical programming models should compare optimal solutions and

comparative static results from alternative programming models. Using the two alternative models from Musser at al.,

as an illustrative example, comparative static comparisons indicate different crop diversification patterns for paramet-
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ric changes in output prices even when the primal optimal solutions for nonsymmetric E-V and linear programming

models are similar.

Symmetric Quadratic Programming

Comparisons of optimal solution values derived from an inadequately constrained E-V model—a nonsym-

metric quadratic problem—with a fully constrained LP model effectively ignore the plausibility of stochastic input

supplies in farm enterprises. Also implicit in the E-V specification is that risk aversion matters only as regards

revenues; risk aversion in the use of inputs is precluded. Builders of E-V models appear not to have deemed risk

aversion on the input side as important as risk aversion with respect to variation in revenues. In fact, since the

inception of E-V models with Freund's formulation, a review of the literature finds relatively few empirical applications

of E-V models which Inc:tide risk aversion with respect to inputs (Kramer et al.; McSweeny and Kramer, 1986).

The E-V formulation for risk aversion is sufficiently flexible to handle risk aversion with respect to both

revenues and input supply. Paris (1979a,b) has specified a symmetric formulation of the E-V problem as the follow-

ing primal problem,

(1) Maximize
c'x — a /2 x' Vx — a/2y' Wy

subject to: Ax — a W y b

x 0, y 0

where c is a n-element vector of expected value of revenues for activities, x is a conformable vector of activities, V is

a (n x n) matrix of variances and covariances of revenues for activities, y is a m-element vector of shadow prices for

inputs, W is a conformable matrix of variances and covariances of input supplies, A is a (m x n) constraint matrix, b is

an m-element vector of expected input supplies, and a is the risk aversion parameter.' if one assumes that the risk

aversion parameter is different from zero, then the traditional E-V, nonsymmetric version of (1) requires that W be a

null matrix and b a vector of constant input supplies.2

The symmetric E-V model in (1) embodies the assumption that the covariance between input supplies and

revenues is zero. Paris (1979b), generalized the formulation in (1) to include non-zero covariances between input

supplies and output prices. The information requirements for such a formulation may be more demanding as an

additional (n x m) matrix of covariances must be estimated or calculated. But from a computational standpoint, the
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complementary pivot method guarantees solutions for well behaved problems (Cottle and Dantzig; Lemke). How-

ever, as McSweeny and Kramer (1986) note, the generalized mean-variance formulation with non-zero covariances

between input supplies and revenues does not Preserve the theoretically attractive expected utility interpretation of

the model.

Empirical applications of the symmetric quadratic programming model to risk problems have treated

stochastic input supplies which may not be directly controlled by the producer. Kramer et al., for example, include the

means and covariances of available field hours—the number of hours in which field operations can be performed

because weather is favorable—as the stochastic input supply in a model considering alternative soil conservation

practices. Stochastic input supplies need not be limited to variability in weather phenomenon. Accessibility to the

services rendered by many potentially limiting inputs is not guaranteed despite the producer having at least indirect

control over the availability of the input. In U.S. agriculture, for example, labor supplies for hand harvesting of fruits

and vegetables are clearly stochastic variables for many producers. Even for mechanized operations, the flow of

services rendered by durable inputs may be conceived of as stochastic because of unforeseen breakdowns of

equipment. Similarly, agricultural production in less developed countries may be characterized by stochastic input

supplies: fertilizer and credit may be available only sporadically; hired labor availability may vary greatly depending

upon weather and labor demands in surrounding areas; and, infrequently maintained durable inputs such as irrigation

pumps and tractors may be subject to breakdowns. Thus the apparent preference in the literature for modeling risk

as (i) a nonsymmetric quadratic programming problem in terms of output prices, yields, or in combination as revenues

or (ii) as a symmetric quadratic progamming problem with stochastic input supplies which the decision maker cannot

directly control would appear to be overly restrictive.

If specification searches in mathematical programming models are to be exhaustive, then as many main-

tained hypotheses as are plausible should be subjected to testing or, less ambitiously, to validation (McCarl and

Apland). Thus the untested hypotheses that W =0 and a = 0 implicit in the nonsymmetric E-V specification also

deserve scrutiny just as the full specification of constraints in any programming model deserve the researcher's

scrutiny. To use an analogy from hypothesis testing, the power of a hypothesis test in assessing the validity of the

null hypothesis may vary significantly depending upon the specific alternative hypothesis being considered. In

mathematical programming, the comparison of a fully constrained LP model (the null hypothesis) to a fully con-
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strained nonsymmetric E-V model (the alternative hypothesis) may have low power relative to another alternative

hypothesis such as the fully constrained symmetric E-V model. A more general assessment of the validity of risk

aversion formulations would encompass all possible special cases of the most general model to evaluate the impor-

tance of risk aversion with respect to both output prices and input supplies.

One may legitimately ask what is to be gained by considering the more general symmetric quadratic E-V

model instead of its nonsymmetric special case. One reason for considering the more general symmetric E-V model

is that an implication analogous to the confounding of output risk aversion and constraint specification may be

demonstrated: activity specification and input risk aversion may be confounded. To see how input risk aversion and

activity specification may be confounded, consider for illustrative purposes the following two models:

(2) Model A:

Maximize

subject to:

C
1 
X
1
+ C

2
X
2

A iX i+ A2X25b

)( l a°, X2 a 0

and (3) Model B:

Maximize c1 x 1 — a/2 
x 1 V x 1 — a/2 y'W y

Al x l — a Wy 5b

x 0,y a 0

subject to:

where the vector of activities is partitioned arbitrarily into two vectors, x, and x2, with n, and n2 elements, respectively.

The constraint matrix of Model A is also partitioned conformably with submatrices A, and A2. Model B is a special

case of (1) where only a subset of the primal activities are included.

The Kuhn-Tucker conditions for optimal values of x1, x2, and y in the two models are:

(4) Model A: c1 — A 1 y 5 0

Ai y)= 0

X 1 0

C
2 
— A < 0

— A .2 = 0

x2 ?.0

A x +A
2 
x
2 
—b

y(Ai x i + A2x2—b)=0 

y 0

and (5) Model B:
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If the x2 activities are nonbasic and input risk aversion is not present (x2 = 0 and a = 0), the last set of Kuhn-Tucker

conditions for each of the two problems is identical. Alternatively, in the case that A2x2 = - aW y, the primal optimal

conditions would be identical for the two problems. These two cases represent the symmetric results corresponding

to the nonsymmetric result shown with the Kuhn-Tucker conditions by Musser et at (p. 148).

The scalar counterparts of the primal constraints may also be analyzed, as Musser etal., do in the case of

the nonsymmetric dual constraints, to understand in more detail the similarities between the two primal constraints,

(6) Model A:

and

(7) Model B:

n i n
2

xb.= lj alij+ x a 
2 ik1

= 1ix . a . -- aiij Y W•P
j =1 p=1

where b., xli, x2i, a14, a, yp, and wo are elements of b, x,„ A1, A2, y, and W, respectively. For the constraints to be

binding, the right-hand sides of (6) and (7) must be equal. Three cases exist in which the right-hand sides of (6) and

(7) would be equal: (i) the entire subset of x2 variables is nonbasic and the decision-maker is risk neutral (all x2, and

a equal zero); (ii) the last summation term in (6) is equal to the negative of the last summation term in (7); and, (Hi)

particular empirical values of all the parameters take on values such that x,i values are not the same in each con-

straint but both constraints hold with equality.

The physical and economic interpretation of the two constraints provide insight into the similarities between the

two constraints. Without loss of generality, the linear programming constraint (6) can be interpreted for ;l and x2i as

outputs with a14 and a24 as the required use of the ri input in the production of a unit of the r output in each subset of

activities. Accordingly, the linear programming constraint simply states that all uses of the input cannot exceed the

amount available of that input. The primal constraint forthe symmetric E-V model (7) indicates that expected input supply

bi must equal or exceed the input use for the first n, activities adjusted by the opportunity costs of using stochastic inputs.

The last term in equation (7) may be positive or negative depending upon the signs and relative magnitudes of the

individual covariances, Wip so that the input use could be greater or smallerthan under riskless conditions (Paris, 1979a).3

In the particular case of interest here, ypvii, must be negative so that the risk-adjusted input use under the optimal
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solution to symmetric E-V model (3) is exactly equal to input use under the optimal solution to the linear programming

model (2) with augmented activities. The relationship between the two constraints indicates that risk-adjustment in input

use in (7) may substitute for full specification of activities as in (6). Thus the specification of extraneous activities may

compensate for the omission of risk aversion in input use.

The existence of a symmetric set of mathematical results in which the effects of activities may be con-

founded with input risk aversion should not be surprising because of the nature of the saddle point problem. The

Lagrangean function derived from the original primal specification of the programming problem is directly related to

the dual and primal problems so that the Kuhn-Tucker conditions are optimal conditions both for the primal and dual

problems. Accordingly, the characterization by Musser et aL, of an insufficiently constrained nonsymmetric quadratic

programming problem and a more fully constrained linear programming problem could be restated as two different

dual problems with different sets of dual activities,

(9) Model A:

Minimize b 1 y 1 + b 
2

subject to: A 1 y l + A2 y2 c

y ia 0, y2 a 0

and (10) Model 13:

Minimize b 1 y 1 + a/2 x' Vx

subject to: A
1 
y

1 
+ aVx c

Y a 0, x > 0

Note that no loss of information occurs with the specification of these two alternative models as dual problems. In

fact, the source of the confounding—the dual constraints—is seen more immediately than in the primal specifications.

Thus the potential for confounding dual activities with input risk aversion, when comparing a symmetric quadratic

programming model with insufficient activities and a linear programming model with more activities, follows directly

from the primal-dual relationships for the saddle point problem.

The potential confounding of input risk aversion and activity specification suggests a conclusion paralleling

that made by Musser etal.: the importance of risk in programming models should be evaluated based on fully

specified constraints lad activities in all models. With such well specified models, the possibility of confounding

(input) risk aversion with omitted constraints (activities) would be mitigated. Instead of judging a priori that risk

aversion in input supply is inconsequential, the symmetric E-V formulation could be specified to examine the plausibil-

ity of the nonsymmetric E-V and linear programming special cases.
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Specification Searches In Symmetric OP Models

The foregoing results suggest that the symmetric specification of the E-V problem incorporating input supply

and output price variability provides .a more general model for assessing the importance of risk. Examination of the

Kuhn-Tucker conditions for the symmetric specification, for example, yields a new result entirely analogous to the

constraint omission and risk aversion relationship demonstrated by Musser etal.; namely, specification of extraneous

activities in linear programming models may compensate for the omission of risk aversion in input use. The signifi-

cance of the potential confounding of risk aversion with constraint and activity specification has not been analyzed in

empirical studies.

A specification search to determine the correct or most plausible empirical specification of the general

symmetric E-V model can be framed conceptually as a series of nested hypothesis tests.4 The special cases of the

symmetric E-V model become apparent by examining the linear complementarity problem,

w = q + Mz, 0

w ' z = 0

w = [v.] = [-cb] M = [A' ci-wA] z = [Yx]

where v and u are conformable vectors of primal and dual slack variables and all other variables are defined as

before. The nested cases of the symmetric E-V model are easily seen. If W =0, equation (11) becomes the tradi-

tional nonsymmetric E-V specification. The symmetric EN model collapses to the linear programming model with (i)

a = 0 or (ii) V = 0 and W = 0 (or both). Hence the specification tests for evaluating the validity of risk aversion in both

output prices and input supplies may be performed by testing or validating whether a, V. and W are different from

zero. Although V and W may not be null matrices, if a is zero then revenue and input supply variability are of no con-

sequence in the linear complementarity problem. Hence, a sufficient condition for determining whether the nonsym-

metric E-V (linear programming) problem is the correct specification is that a equals zero.

Classical statistical hypothesis tests for subsets of the parameters in the linear complementarity problem

(11) may be feasible but the probability distributions of the parameters are not readily determined. Methods similar to

those employed by Collender might be used to determine either confidence intervals for the E-V frontier or hypothe-

sis tests for the risk aversion coefficients.
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An alternative strategy for attempting to determine whether risk aversion parameters are different from zero

would make use of the comparative statics properties in addition to the optimal solutions of alternative models.

Recall that the confounding of risk aversion with constraint specification occurs for optimal solution values of the

primal variables because the corresponding dual constraints are nearly identical. The analogous confounding of

input risk aversion with activity specification would occur in the optimal solution values of the dual variables because

the primal constraints (6) and (7) are nearly identical. Although in both cases of revenue and input risk aversion two

alternative models may have nearly identical optimal solutions, the comparative statics of the two models may be

markedly different. Hence, additional information for assessing the importance of risk aversion may be gained by

examining departures from or perturbations around the optimal solution values.

For positive economic analysis, the comparative statics of the alternative models may be as important as the

optimal solution values. Hence, parametric changes in (i) output prices or expected revenues and (ii) input quantities

or expected input supplies may provide important information for discriminating among alternative model specifica-

tions. In the context of the linear complementarity problem in equation (11) output supply and input demand sched-

ules generated from the alternative models—symmetric E-V, nonsymmetric E-V, and linear programming—may be

compared against observed behavior to determine which model performs best.

Illustrative Example

For illustrative purposes, the output supply functions from the fully constrained linear programming model

and the partially constrained nonsymmetric E-V model in Musser Egg, are compared to examine the differences in

comparative statics for two models which have similar primal optimal solutions.' Similar comparisons for derived

input demand schedules and revenue functions are omitted for brevity. The linear programming step function (Su,)

and the kinked nonsymmetric E-V function for supply of soybeans (S) are illustrated in Figure 1. Notice that both

supply functions nearly coincide on the optimal solution values for the selected primal variable (LP = 60.9 acres

versus E-V = 59.8 acres) yet over a large range of prices the E-V output supply schedule lies to the left of the LP

schedule.' The behavioral implication of the two schedules differs: inducing the risk averse farmer to produce a

given acreage of soybeans usually requires a higher expected output pric, ceteris paribus, than is required for

inducing a risk neutral farmer to produce the same acreage of soybeans.' The importance of risk aversion in output

prices can be assessed by comparing the supply response predictions of the two models to farmers' responses to
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actual changes in output prices in order to verify which prediction is more accurate. This type of comparison of the

comparative statics of the models may be made using the 'tracking and 'change' validation experiments proposed

by McCad and Apland (p. 160).

Additional information from the comparative statics validation procedure may be used to assess the impo -

tance of risk aversion. Recall that the confounding of risk aversion with activity and constraint specification may be a

confounding in explaining enterprise diversification. Additional comparative static information on changes in crop mix

resulting from an increase in a single output price may be useful for judging the appropriateness of risk aversion in

explaining producer behavior. In the previous example, the output supply response for an increase in soybean price

will affect acreage levels in other crops and thus the entire crop mix. Even if the soybean supply responses from both

models were nearly identical over specific price ranges, the corresponding changes in crop mix among the remaining

crops would not necessarily be similar. Thus changes in crop mix caused by parametric changes in a single output

price provide additional information for judging the validity of the risk aversion specification.

Again for illustrative purposes, alternative specifications from Musser et al., are compared to examine

changes in crop mix as soybean prices are varied parametrically. The crop mixes are compared at the initial soybean

price level ($141.96) and at the lower and upper bounds of soybean price in the optimal linear programming solution

($129.91 and $215.83). The relevant portions of the output supply schedules for the LP and E-V models with four

alternative output risk aversion parameter values are represented in Figure 2 and the corresponding crop mixes are

reported in Table 1. Although none of the crop mixes is compared to actual data, the comparative statics of the

different specifications are clearly different. At the lower bound with a basis change, the linear programming solution

includes cotton, peanuts and soybeans while two E-V specifications indicate more diversification by including wheat

in the crop mix. At the upper bound with a basis change, the linear programming formulation tends towards speciali-

zation with only peanuts and soybean production while all the E-V specifications persist in predicting more diversified

crop mixes: all four E-V solutions include cotton and the E-V solution with cx = 0.0039 includes significant acreage in

wheat. These specific crop mix results for parametric changes in soybean price suggest that although optimal primal

solution values for the LP and some E-V specifications were similar, the behavioral implications of changes in

(expected) output prices are significantly different for the two models.

These limited comparative static results indicate that the confounding of risk aversion with constraint and

activity specification in explaining enterprise diversification may occur for optimal solution values of the primal and
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dual variables but the behavioral implications for parametric changes in the two models may be appreciably different.

The fact that the comparative static implications of the LP and E-V models differ is a positive result for specification

search. The differing comparative static predictions provide additional information which the researcher can use to

verify whether risk aversion is indeed an appropriate specification by performing the "tracking* and "change" experi-

ments delineated by McCarl and Apland.

Summary and Conclusion

Musser et aL, demonstrate the confounding of risk aversion and constraint specification in explaining

diversification of activities in firm or farm level mathematical programming models. In the more general setting of a

symmetric quadratic programming problem specified with stochastic revenues and stochastic input supplies, an

analogous confounding of risk aversion in input use and activity specification may also occur. Specification of

extraneous activities may be confounded with the effects of risk aversion in input supply. When stochastic revenues

and stochastic input supplies are appropriate assumptions for E-V models, researchers would be well advised to

carefully specify constraints and activities for programming models.

The critical question in comparing a well specified linear programming model with an equally well specified

symmetric E-V model is whether the risk aversion coefficient is different from zero. Classical statistical tests for

testing whether the risk aversion parameter is significantly different from zero may not be tractable. Some of the

validation experiments proposed by McCarl and Apland appear to be the second best solution to testing. Because

the comparative statics of the linear programming and symmetric quadratic programming models may be quite

different, the "change and "tracking' experiments may be useful in comparing departures from the optimal solutions.

For programming models of farm activity analysis, the characteristics of output supply, derived input demand,

revenue schedules, and crop mix for each of the alternative models may provide additional information for judging the

acceptability of specifying risk aversion in programming models.
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Footnotes

' For an almost identical derivation of the symmetric OP problem see Bouzaher.

2 The usual caveats regarding the underlying utility function are made. Either the utility function is

quadratic (Markowitz) or the utility function is assumed to be a negative exponential function and returns

are normally distributed (Freund).

3Dubman, Gunter, and Miller have noted that the risk-adjusted right-hand side could be larger than the

expected value of input supply, b. Such a risk adjustment does not invalidate the economic interpreta-

tion of the constraints, however, because the sign of the risk adjustment is indeterminate (Paris, 1989).

4The parameters to be "tested are customarily treated as being known with certainty so that the

parameters only have a degenerate probability distribution. Strictly speaking, no classical hypothesis

test is possible with such a probability distribution.

s The symmetric quadratic programming problem is not analyzed due to the lack of data on input supply

variability.

6 The results of Musser et al., could not be reproduced identically from the data reported on pages 150

and 152 of their article. The difference in the results in Table 1 and those of Musser etal., appears to be

inconsequential.

'Note that for some price ranges the risk-averse farmer would produce more than the risk-neutral farmer.
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Table 1. Crop Mixes for Alternative Specifications

of Nonsyrn. metric E-V Model Musser et aL

Crops
Alternative E-V Models

LP 0.0005 0.0013 0.0017 0.0039

Soybean Price = $129.91---

Cotton 60.9 90.3 81.9 77.8 27.2
Peanuts 60.9 60.9 60.9 49.5 23.7
Wheat 0 0 0 6.0 112.0
Soybeans 56.4 31.4 39.8 49.3 19.7

MADa

Land Shadow Price

0 13.6 9.4 10.4 54.9

0 111.0 55.1 26.8 12.1

 Soybean Price =

Cotton 63.1 86.0 80.2 79.3 27.0
Peanuts 58.7 60.9 59.8 48.0 23.9
Wheat 0 0 0 0 111.0
Soybeans 60.8 35.7 42.6 55.3 20.7

MAD 0 12.5 9.1 8.1 55.5

Land Shadow Price 12.0 118.0 61.8 28.9 25.3

 -Soybean Price =

Cotton 0 67.8 70.0 71.4 35.5
Peanuts 44.9 59.8 47.0 38.3 20.3
Wheat 0 0 0 0 84.6
Soybeans 137.7 55.0 65.7 72.9 42.2

MAD

Land Shadow Price

0 41.3 36.0 35.7 60.1

85.9 107.8 100.9 68.0 22.4

a Mean absolute deviations of E-V crop acreages from linear programming acreages.
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DESIGNING EXPERT SYSTEMS FOR EFFECTIVE DELIVERY OF
EXTENSION PROGRAMMING

Russell Gum and Steven C. Blank
University of Arizona and University of California

ABSTRACT
Ob'ectives and Mettiodoloav

Expert Systems offer potential to be im-
portant additions to the current methods used to
deliver extension programming to clients. This
paper discusses the design of such systems from
the viewpoint of learning theory and cost effective-
ness.

INTRODUCTION

The delivery of extension education pro-
grams to clients in commercial agriculture is a
cornerstone of the extension service charter.
Unfortunately, effective delivery of relevant exten7
sion programs has become more difficult as: 1)
agriculture has become more technologically
advanced; 2) relatively homogeneous family farms
have been replaced by a mixture of large scale
commercial enterprises and smaller part-time farms
resulting in a very hetrogeneous mix of clientele,
problems, and clientele resources available to
solve problems; 3) institutional intervention in the
form of regulations and government participation
in agricultural markets has increased; and 4) ex-
tension budgets for commercial agriculture pro-
grams have decreased in real terms. To counter-
act the increased difficulty of delivering extension
programing to commercial agriculture clientele,
computer based expert systems, computer driven
multi-media programs, and use of electronic media
to replace or supplement the traditional one-on-
one extension approach are often mentioned as
means of improving the effectiveness of extension
educational programs.

This study was developed to contribute to
the discussion of this issue, focusing on the design
of techniques to effectively deliver extension edu-
cational and problem solving services via com-
puter based expert systems. Presentation of the
findings is organized into five major sections. First,
the objectives and methodology are discussed.
Next, a brief definition of expert systems is pre-
sented. Third, an example is presented to illustrate
the potential for use of expert systems in extension
programming. This is followed by an analysis of
expert systems compared to other teaching meth-
ods used in extension. Finally, conclusions and
implications of the study are outlined and an esti-
mate of the cost effectiveness of the example is
presented.

The purpose of this paper is to critically
evaluate the design of expert systems as a means
of improving the delivery of extension program to
agricultural clients. The educational impact model
developed by Joyce and Showers will be used first
as a model to guide the design of an expert system
and then as a basis for a qualitative evaluation of
the contents and expected effectiveness of expert
systems compared to other extension teaching
aids. In addition, preliminary results, including
measures of cost effectiveness, of ongoing field
tests designed to quantify the technique's actual
educational impact will be presented.

Educational Impact Model

Joyce and Showers state that when stu-
dents use what has been learned to solve prob-
lems they are demonstrating that their training has
had the highest level of impact possible. Their
research into teaching methods led to the following
general rules to judge the level of impact a teaching
program will have. They concluded that the level
of impact is affected by the following training
components:

1. presentation oftheoryordescrip-
tion of skill or strategy,

2. model or demonstration of
skills or models of teaching,

3. practice in simulated and class-
room settings,

4. structured and open-ended
feedback, and

5. coaching for application.

Further, Joyce and Showers indicate that compo-
nents one through five have increasingly greater
levels of impact on students' abilities to solve
problems. When all five components are included
in a teaching program, up to 75 percent of students
are able to apply what has been learned. The
research by Joyce and Showers supports the
notion that teaching techniques which incorporate
more of the five components will have greater
impact than techniques involving fewer training
components. This conclusion and the conceptual
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