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PMP Ten Years Later 
  It is now ten years since the first conceptual article on PMP was published (Howitt 1995), and the 
basic idea of using dual calibration values to impute the implicit costs of agricultural production seems to 
be quite robust. While there have been many improvements on the original idea, there are few published 
criticisms of the basic approach. One criticism termed the Heckelei-Wolff critique is discussed later. The 
development of PMP approaches has been covered by the paper by Henry de Frahan, but can be 
characterized as a gradual evolution of methods that are able to match the improvement in the estimation 
methods and data resources available to modelers. The use of maximum entropy methods has enabled 
optimization modelers to establish a continuum, between traditional optimization models and econometric 
models. The advances have taken the form of a wider range of functional forms, improved input shadow 
value estimation, and more formal and explicit use of prior information.  
               
A Note on the Heckelei-Wolff Critique 
 In their paper in the European Review of Agricultural Economics, Heckelei & Wolff (2003)  
introduce their estimation paper with a short review and critique of positive mathematical programming 
(PMP). They conclude that because the original PMP specification uses a constrained optimization model, 
usually linear, to generate values for the binding resource constraints they will be inconsistent with the 
quadratic form of the model that is correctly defined as the process generating model.  Heckelei and 
Wolff conclude that: 
“..the set of equations (2) cannot be seen as unbiased estimating equations and will generally yield 
inconsistent parameter estimates if the true data generating process is correctly described by the quadratic 
model” 
 The point of this note is to show that under the original PMP specifications, the dual values 
derived from the linear constrained model for a given observation set are numerically identical to the dual 
values that the quadratic model would generate for the same observations. In short, we show that the 
original PMP specification (Howitt 1995) will generate a set of resource shadow values that are consistent 
and unbiased for calibration to a single observation. However, this does not detract from the central point 
of the Heckelei & Wolff paper, namely the desirability and efficiency of the simultaneous estimation of 
shadow values and parameters. 
 
 Using the notation in Heckelei & Wolff and using their partition into preferable activities ( lp ) 
and marginal activities ( lm ), the Lagrangian for the constrained linear problem can be written as: 
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This is exactly equation (5) in Heckelei and Wolff. 
 Now, formulating the quadratic problem and deriving the resource duals in the same manner using the 
Kuhn-Tucker complementary slackness condition.  The Lagrangian in an unpartitioned form is: 
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If this expression is premultiplied by 1AQ−  and has the binding resource constraint equation substituted 
in, then one obtains equation (4) in  Heckelei and Wolff.  
Since, at the calibrated optimum, the preferred land allocations are within ε of the base acres so that   

, and using the marginal cost calibration equation (2) from Heckelei and Wolff: 0pl l≈
0(7) d Ql c ρ+ = +  

Substituting this into the first order conditions for the PMP problem we obtain: 

(8) A p cλ ρ′ = − −  
For comparison with the LP model, this expression can be partitioned into the sets of preferred and 

marginal activities. Since  this yields the same expression for 0mρ = A λ′  as the calibrated LP model, 
namely: 
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Equations (8) and (9) show that for the general elasticity based calibration model and basic linear 
quadratic PMP model in Howitt (1995) and Henry de Frahn et al (2005), the shadow values derived from 
the constrained linear model are identical to those from the resulting quadratic PMP model. 
 However, the central point that Heckelei and Wolff are concerned about is not the calibration 
problem, but the problem of fitting a cost function and estimating the shadow values for a set of observed 
land allocations. Application of the two stage approach calibration approach to a data set depends on what 
one assumes about the data available. Heckelei and Wolff correctly define the true underlying model to be 
the quadratic model. They point out that if standard accounting costs are used in the first stage, the set of 
dual values assuming linear accounting costs will differ from the dual values generated by the “true’ 
quadratic model. It’s clear that the changes in the crop allocations between sample observations will 
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generate different costs, and consequently the dual values for the quadratic model will differ from the first 
stage LP model with constant accounting costs.  
 In the above situation the QP model has additional information over the LP model, in that it 
assumes knowledge of the true quadratic cost function, and thus how costs change with changed land 
allocations. If the LP data set included the crop marginal production cost for each observation, then each 
LP run based on the observed data, including the marginal cost will have the same shadow value as the 
QP model. Since the data set for both models will contain observations on the reported marginal costs, 
and not the “true” cost function, the above approach seems to put the two stage model on the same 
empirical basis as the combined estimation approach. GME estimation can then be directly applied to the 
marginal cost conditions using the sets of shadow values generated by the constrained model as data as in 
equations (16) and (17) in Heckelei (2005). This two stage approach may have operational advantages 
over the more elegant Heckelei-Wolff approach, shown in Heckelei’s (2005) equations (16) and (17) and 
(18), since the resulting bi-level optimization problem, with the embedded complementarity conditions, 
may be hard to solve. Heckelei briefly discusses potential problems.   
 A very simple empirical example of the two stage estimation is demonstrated in a Gams program 
available from the author. In the empirical test, a base quadratic cost function is generated from a single 
data point and prior elasticity estimates. This cost function is used with a set of Monte-Carlo generated 
marginal revenues to optimize the QP problem for a set of optimum levels and shadow values. A 
calibrated LP model is then run for the same set of marginal revenues and resource constraints. If a 
constant accounting cost is used for the marginal crops the shadow values differ from the maintained 
model as correctly stated by Heckelei and Wolff. However, if the cost information in the LP model is 
updated by using the cost function from the maintained model, the resulting LP shadow values are 
identical to the maintained model results. The resulting set of LP shadow values are now used to estimate 
the cost function. Using a separate stage to generate a set of shadow values seems redundant, but may be 
more efficient operationally than the one stage solution.  

To conclude this point, the Heckelei and Wolff approach is an efficient estimation approach, 
where sufficient data sets are available. In those cases where data is minimal, and calibration has to be 
used, users of the two-step calibrated LP approach can be assured that the resulting dual values for single 
realizations are consistent between the LP and PMP models.  
 
PMP-GME Production Function Models 
 
 Over the past several years I have been weaned away from my past work with dual symmetric 
formulations of production problems, and have concentrated on primal production functions for two main 
reasons, namely data reliability and process model interaction. Clearly there is the same information in a 
cost or production function approach to agricultural models, however, in my experience, farmers in all 
countries have better information on their yields and input quantities than they have on their marginal 
costs. It is very likely that this farmer preoccupation with yields rather than costs will lead to more precise 
responses to data questions. 

The production function approach explicitly models policy response at both extensive and 
intensive margins of production. In addition, the GME estimates of production functions parameters have 
to satisfy the marginal production first order conditions for all inputs and the average product yield 
condition for land. This latter condition is not usually used in traditional estimation, but has the advantage 
of assuring that when the marginal conditions are integrated back to yields, they are consistent with the 
data that the decision makers and farmers are most familiar with.  

The general production function specification has advantages where the environmental outcomes 
from the use of different inputs have different social impacts. In addition, the production function 
approach uses crop and factor specific prior estimates of factor demand elasticities to define the 
maximum entropy support values, thus has a wider range of prior knowledge than a single supply 
elasticity.   
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 Heckelei and Britz (1999) propose an alternative to the maximum entropy (ME) formulation 
originally proposed by Paris and Howitt. In their approach, Heckelei and Britz impose the curvature on 
the cost or production function by using two constraints to define the Cholesky decomposition. This 
enables them to define the support values for the parameters of the Hessian directly, rather than through 
the Cholesky decomposition. In turn, this direct definition of the supports enables them to be defined 
using prior knowledge of the elasticities. 
 While there are priors to help define the support values for the parameters, the definition of the 
support values for the error terms are more ad hoc. The recommendations that have been put forward by 
various authors for handling this issue have varied widely, and as yet, no clear consensus has emerged 
from the literature about how to best to address this problem. Many authors invoke the 3 σ  rule 
advanced by Pukelsheim (1994). Others recommend that error bounds are set as widely as possible, an 
approach that is potentially misleading and could introduce additional bias in the resulting GME 
estimates. Msangi and Howitt (2005) propose an alternative to this approach by introducing a moment 
constraint into the GME problem, to minimize the inherent bias in GME estimates, and to remove the 
influence of the errors supports on the resulting estimates. A moment-constrained GME estimation 
procedure, while adhering closely to the properties of classical estimators under ‘good’ data conditions 
and preserving un-biasedness, is still able to exploit the desirable properties of an entropy estimator, 
namely, its clear advantage in cases where there exists a high degree of collinearity in the data or even 
negative degrees of freedom. Constraining the GME-PMP estimates to be unbiased requires a simple 
summing constraint over each set of error components, and does not seem to alter the solution of the 
GME problem. Given the common occurrence of small sample bias and collinearity in production data 
sets the addition of a moment constraint seems a sensible precaution. 
 The PMP-GME production function models are readily understandable to research scientists in 
associated disciplines. Somehow, showing a colleague a three dimensional plot of a production surface 
and explaining the alternative trade offs greatly aids communication between disciplines. Currently this 
type of production function model is being applied to several interdisciplinary research projects. 
Specifically the research projects include: the intertemporal analysis of irrigation water use, the effect of 
global climate change on cropping patterns, and the optimal use of precision farming and cover crops on 
carbon sequestration. 
 
Measuring the Information Gain from the Disaggregation of Production Models 
 
 The developments of entropy modeling methods over the past ten years has provided modelers 
with the ability to reconstruct models at any level of aggregation from calibrated individual farm models 
to large sample aggregate national models. This modeling ability raises the question of what the optimal 
level of aggregation is for a given data set and model purpose. 
 Optimal aggregation is the trade off between the heterogeneity and the noise in the data. If the 
sample is drawn from a truly homogenous population, then all variation is due to noise in the sample and 
there is no information gain by disaggregating the model. However, this situation is rare for agricultural 
and environmental models, where the inherent variability in the resource and climatic environment 
introduces some heterogeneity in the sample. 

 A way of measuring the information gains from disaggregation of multicrop systems is proposed 
by Howitt and Reynaud (2003). The measure is termed the Disaggregation Informational Gain (DIG) 
measure. The DIG measure is based on the Shannon (1948) measure of information, and has the 
following properties. (1) It increases monotonically with the heterogeneity of the disaggregated sample. 
(2) The gain from disaggregating a uniform set of samples is zero. (3) The DIG measure is invariant to 
changes in the number of disaggregated samples and the variability of the aggregated sample. 
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If there are “k” crop types and “i” disaggregated sets, the total number of observation 
being k*i , the cross-entropy between the aggregate observed land shares, , and the true 
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As a polar case, assume that there is no information at the district level, and the estimation merely 
allocates the aggregate land share distribution  to each district. The information content for this crude 
aggregated estimate is the CE measure defined above. 
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 Now assume that we obtain an estimator of regional crop land allocations   . The  measure 

is an aggregate measure, in term of entropy, of how far the distributions of estimates  are from the true 

distributions .  Note that the estimate   incorporates both the information gain from disaggregation, 
and the information loss from bias as the sample size is reduced.  The Disagregation Informational Gain 
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The DIG is a measure of the proportion of district-level heterogeneity that is recovered by the estimator 
. In the case of a perfect disaggregated estimate where = , the DIG is equal to 1. In this 

case, we recover all the heterogeneity. In the case of full aggregation, =  and the DIG is equal 
to 0, and we  recover no information at the district level. In all other cases, the DIG is between 0 and 1. 
The DIG measure increases as the disaggregated estimates get closer to the true district land use 
distributions .  
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 Currently, the optimal level of disaggregation for production function estimates is being 
empirically investigated for a small survey data set for northern Mexico crop production. Now that a 
continuum between robust econometric estimates and disaggregated calibration models is avialable to 
policy modelers, it seems reasonable that the level of aggregation is justified on a formal basis. Since 
policy modeling is not concerned with testing fundamental hypotheses, it seems logical to ignore the 
tyrrany of degrees of freedom and justify the level of model aggregation on the basis of information 
added to the policy question. 
 
Initial Thoughts on PMP- CGE model Interaction 
 
 Subscribers to the Gams list-server will have noticed the growing popularity of CGE models for 
policy analysis.  CGE models have many strengths that are derived from their generality. However, the 
general specification invariably means that the specification of the agricultural and environmental sectors 
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have to be aggregated both by commodity and region. This aggregation limits the ability of CGE models 
to interact with physical process models that are often highly disaggregated. An ongoing area of work is 
to use a disaggregated PMP-GME model of agricultural production as a link between physical process 
models and regional CGE models. In one study, the policy question is: How do changes in environmental 
regulations impact the well being of farmers of different sizes and regions? The location in northern 
Mexico has farms that range from large commercial operations to subsistence farms where off-farm 
employment and remittances provide most of the household income.  
 While the regional models can link environmental policies to aggregate regional impacts on labor, 
input costs and secondary effects, linked CGE models provide the endogenous reaction of input and 
output prices to changes in regional allocations. 
 There are advantages and disadvantages to performing policy analysis with linked component 
models. The main disadvantage is in the lack of simultaneity in the price response between the models. 
Currently, we rely on an iterative interchange between the CGE and production model that is transmitted 
through vectors of input and output prices. While price convergence occurs much of the time, a general 
theory that ensures convergence does not seem to be available.  However, such linkages enable interesting 
policy questions such as the following to be analysed. What would be the net effect on the income of 
different farm types in Northern Mexico of a simultaneous reduction in the energy subsidy for pumping 
irrigation water, and an opening of the corn market to international pressures from the NAFTA trade 
agreement? 
 The advantage of having decoupled models is in model calibration, estimation and debugging. 
Modelers who have been faced with reconciling the results of a massively connected model often react by 
breaking the combined model into its component parts, so why not leave them that way?  In addition, 
different disciplines often work on different spatial and temporal scales. Aggregation and disaggregation 
methods enable model results to be consistently transferred between models electronically, and thus with 
fewer errors. 
 
Conclusions 
 
 This short paper started with the view that agricultural production and environmental modeling 
has moved to an interesting stage where there is a formal continuum between econometric and calibrated 
optimization models. The development of maximum entropy estimation methods and better data sets has 
opened the potential for many developments. In this paper I have reviewed four topics of personal 
interest. I will leave it to my colleagues to cover the many other important topics that the development of 
agricultural policy models has introduced. 
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