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USING MULTIPLE NEIGHBORING INTERACTION 

EFFECTS IN SPATIAL REGRESSION SPECIFICATIONS 

TO REDUCE OMITTED VARIABLE BIAS 

Abstract
1
 

A major challenge in the analysis of micro level spatial interaction is to distinguish actual 

interactions from the effects of spatially correlated omitted variables. We consider a spatially 

lagged explanatory model (SLX) employing two spatial weighting matrices differentiating 

between local and regional neighborhoods. We empirically analyze spatial interaction 

between individual farms in Norway and additionally perform Monte Carlo simulations 

exploring the model’s performance under different data settings. Results show that including 

two spatial weighting matrices can indeed reduce the bias resulting from omitted variables. 

The empirical application identifies different local and regional spatial interdependencies of 

direct payments with opposite sign. 

Keywords: farm growth, spatial competition, spatial interaction, omitted variables, spatially 

lagged explanatory model  

JEL classification: C10, C31, Q12, Q18 
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1 Introduction 

The application of spatial regression approaches crucially relies on the definition of a 

‘neighborhood’ using a spatial weighting matrix, W. One obstacle is that the true 

neighborhood relations are usually unknown. This is particularly problematic if the estimated 

spatial interaction effect is sensitive with respect to the definition of W. In the literature, the 

importance of the definition of W for the estimation result is controversial. LESAGE and PACE 

(2011) argue that in most cases, the results are less sensitive to the definition of W than is 

commonly believed. Others, such as HOLLOWAY and LAPAR (2007), found that the spatial 

correlation in a Spatial Autoregressive model (SAR) model depends heavily on the definition 

of W. STORM et al. (2015) compared three different definitions of W and found that the 

results are rather insensitive with respect to W. These conflicting observations suggest that 

the extent of results being sensitive to the definition of W strongly depends on the context. 

In this paper we consider a spatially lagged explanatory variable model (SLX) of the 

form y = Xβ+WXθ+ε . This type of model has recently been advocated as a more credible 

alternative to the commonly used SAR model (with the form y = Wy + Xβ+ε ) with respect 

to the identification of the interaction effects (GIBBONS and OVERMAN, 2012 and VEGA and 

ELHORST, 2015). As shown by GIBBONS and OVERMAN (2012), the reduced from of the SAR 

model is identical to the SLX model except for higher orders of 1n
i

w W X  for 1n   despite 

their very different theoretical motivation. Distinguishing between both specifications and 

identifying   in the SAR model crucially depends on the assumption that the neighboring 

relationships W are exactly known and that 1n
i

w W X  for 1n   are validly excluded as 
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explanatory variables (i.e. are valid instruments). Since the exact spatial relationship is 

usually unknown, this requirement is rarely met in empirical applications.  

High sensitivity of the estimated interaction effects with respect to the definition of W, 

however, also limits the credibility of the SLX estimation results given that the specific 

definition of W is often to a large degree ad hoc. In this paper we hypothesize that one source 

of sensitivity of the estimated interaction effect, θ̂ , with changes in W might be omitted 

variables Z  that are spatially correlated at a different scale than WX  but nevertheless 

correlated to X .  

The empirical context for our hypothesis is the analysis of farm level spatial interaction 

in Norway. Farms are assumed to compete on the local land market leading to negative 

spatial feedbacks for farm development while network effects such as knowledge spillovers 

or an improved corporate network lead to positive spatial feedbacks. STORM et al. (2015) 

analyzed how these farm level spatial interactions affect farm survival and change the 

aggregate impact of farm subsidies. Here we generalize their study by considering farm 

growth in terms of arable land instead of just farm survival. Specifically, we employ the SLX 

model to analyze to what extent farm growth can be explained by own and neighboring farm 

characteristics.  

Apart from the direct interaction effects mentioned above (local land market, knowledge 

spillovers) we expect that there are also, potentially unobserved, spatially correlated variables 
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that affect both farm growth and neighboring characteristics. These variables are likely 

correlated on a larger spatial scale than the direct interaction. The case of direct payments
2
 

illustrates this issue: At a local level it may by hypothesized that neighboring direct payments 

have a negative effects on farm growth due to competition on the land market. However, as 

direct payments are coupled payments in Norway they are correlated with farm size and 

specialization. Neighboring direct payments at a regional level might thus reflect differences 

in the regional farm structure. In case farms grow more strongly in regions with a larger 

average farm size we thus expect opposite effects of neighboring direct payments at the local 

and regional level. 

To address this problem in our empirical application, we propose to use the SLX model with 

two spatial weighting matrixes at different scales. The possibility to consider more than one 

spatial weighting matrix is an additional advantage of the SLX model compared to the SAR 

model where this is not easily possible (LESAGE and PACE, 2011). With this we aim to 

distinguish between local and regional spatial interdependencies. Specifically, we expect that 

the actual interaction between farms primarily takes place on the local level while the 

interdependencies arising from spatially correlated, omitted variables also takes place at the 

regional level.  

                                                 

 

2 In Norway farms receive subsidies in form of various direct payments based on the number of animals and area under 

production as well as output produced. These subsidies account for a substantial amount of farm income.  
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Additionally, we explore this setup with an artificial data generating process (DGP) using 

Monte Carlo Simulations. Specifically, we consider a DGP with an actual interaction effect 

and an omitted spatially correlated variable, which also correlates with the interaction 

variable. We then explore if this setup indeed causes the estimated interaction effects to be 

sensitive to the neighborhood definition. Secondly, we analyze under which condition we 

find an omitted variable bias when not correcting for the omitted variable. Finally, we explore 

to what extent and under which conditions a second “regional” spatial interaction variable 

can reduce the omitted variable bias and the sensitivity of the estimates. The aim of the 

Monte Carlo Simulation is to provide some practical guidance under which condition the 

inclusion of a second interaction variable is helpful. 

In the next section, the importance of spatial interaction for farm growth is discussed 

from a theoretical point of view. The design of the empirical application along with results is 

discussed in section 3. In section 4 the Monte Carlo Analysis is presented, including the 

specification of the data generating process (DGP), the simulation setup and results. The final 

section concludes. 

2 Theoretical Framework 

In a non-spatial context, the analysis of farm growth is extensively studied (see 

ZIMMERMANN et al., 2009 for a review). ZIMMERMANN and HECKELEI (2012) and 

AKIMOWICZ et al. (2013) categorize the determinants of farm growth along with their 

theoretical underpinning. The selection of control variables included in the growth model is 

guided by these theoretical considerations. Here we limit the discussion to own and 

neighboring farm size and direct payments as the main explanatory variables of interest. 
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Since one of the main hypotheses is that farms interact with each other on the land market, 

we define farm size in terms of arable land
3
. 

One of the main determinants of farm growth is technological innovation and economies of 

scale (COCHRANE, 1958; HARRINGTON and REINSEL, 1995; HALLAM, 1991). Technological 

innovations reduce per unit costs and with broader adoption also output prices, driving out 

farms not willing or able to innovate. Innovative farms can grow by picking up the resources 

released by the leaving farms. Due to better access to information and financing, larger farms 

tend to be more capable to innovate leading to a positive impact of size on farm growth 

(WEISS, 1999). With increasing farm size, it might also be possible to realize technological 

and market-related scale effects increasing total factor productivity and lowering input prices, 

respectively. These factors would contribute to a positive impact of farm size on farm growth. 

In the specific case of Norway, however, there are also several policies that differentiate 

payments by farm size, such that small farms receive relatively more subsidies than large 

farms (KNUTSEN, 2007: 28). Additionally there exist several upper limits on livestock 

production
4
. These size discriminating policies might limit the relative growth potential of 

farms that are already large. The final relationship between farm growth and own size is thus 

ambiguous.  

                                                 

 

3 This also includes pasture and fodder production on arable but excluded fodder production on areas where mechanic 

harvest is not possible because of bushes, rocks etc. in the fields. We exclude these areas because we assume that it is not 

easily transferred to arable land such that there is no direct substitution between the two. 

4 For example, for dairy operations the total milk quota is limited or concession limits exist for poultry and pig production 

(KNUTSEN (2007)).   
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Analogously, the theoretical effects of neighboring farm size on own growth is also 

ambiguous. On the one hand, farms compete on the land market for the limited available 

arable land. Consequently, we expect to find an effect of neighboring size opposite to the 

effect of size on own growth. Specifically, if own size positively affects own growth due to 

scale effects and a higher rate of innovation we expect a negative effect of neighboring size 

on own growth due to competition on the land market. In reverse, is the growth potential 

lower for large farms due to size discriminating policies, we expect positive effects of 

neighboring size due to lower competition on the land market. Apart from the interaction on 

the land market, however, farmers are also part of a corporate network with other farmers 

important for technology adoption, knowledge transfer, and market scale effects (CASE, 1992; 

ROGERS, 1995; BERGER, 2001; HOLLOWAY et al., 2002; GEZELIUS, 2014; PADEL, 2001; 

LEWIS et al., 2011; SCHMIDTNER et al., 2012; LAPPLE and KELLEY, 2015; SCHMIDTNER et al., 

2015). Under the assumption that larger farms are more innovative, these cooperation effects 

should lead to a positive effect of neighboring size on own growth. Similarly, larger 

neighboring farms might also be fostering growth by maintaining a corporate network of 

suppliers, wholesalers and processors (MOSNIER and WIECK, 2010). Further, GEZELIUS 

(2014) highlighted the importance of exchanges in labor and machinery between neighboring 

farms in Norway. 

Another driver of farm growth discussed in the literature is the relation between on- and off-

farm wages (HALLAM, 1991). Direct payments increase this ratio, which might encourage 

farmers to increase farm labor input. Similarly, higher direct payments increase the return to 

land and with it farmer’s willingness to pay (WTP) for land and consequently encourage farm 

growth. Following the same logic in reverse, neighboring direct payments should increase 
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competition on the land market and limit the possibilities for own growth. This is a similar 

argument as in STORM et al. (2015) with respect to farm survival. It is also reflected in the 

discussion to what extent government payments capitalize into the land price. Several recent 

studies (BREUSTEDT and HABERMANN, 2011; FEICHTINGER and SALHOFER, 2014; 

GUASTELLA et al., 2014) analyze this question empirically by using a spatial lag dependent 

variable (SAR) model to explain prices with several land characteristics as well as spatially 

lagged prices. 

3 Empirical model 

As discussed above we aim to distinguish between local and regional spatial interaction by 

considering a SLX model including two spatial weighting matrices. Specifically, we consider 

a model of the form, L Ry = Xβ+W Xθ+W Xλ+ε . The intention of the model is that the 

spatial interaction term LW X  primarily captures spatial interaction taking place on a local 

level, while RW X  is more likely to be driven by regional interaction. In the empirical 

application the regional spatial weighting matrix, RW , defines neighbors as all farms within 

a ring from radius 30 km to 60 km around the farm. This distance is set arbitrarily but we 

assume that it is substantially larger than the distance relevant for competition on the land 

market or (space dependent) knowledge spillovers. A ring is considered here in order to 

clearly differentiate the different effects between to local and regional level. For the local 

spatial weighting matrix, LW , we vary the radius in order to analyze the sensitivity of the 

final estimation results ranging from 500 m to 30 km, 
0.5 30,...,km km

L LW W . In both cases, 

neighboring definitions are defined as a binary variable with no distance weighting applied. 
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Both weighting matrices are row standardized. Appendix 7.1 visualizes the neighboring 

relationships for one exemplary observation.  

In our empirical application we aim to explain farm growth in terms of arable land between 

1999 and 2009 (defined in daa = 1/10ha). For the analysis, we use a Norwegian data set 

providing individual, spatially explicit farm-level data of nearly all Norwegian farms in 1999 

and 2009. Descriptive statistics for the dependent and the full set of explanatory variables, 

along with the variable codes, are provided in the appendix 7.2. For model specification, we 

start with a full model including all explanatory variables. Some insignificant variables are 

then excluded in cases they are not relevant for the research question. 

3.1 Sensitivity analysis with a single spatial matrix  

Before presenting the estimation results for our model including two spatial weighting 

matrices we start with a “classical” SLX specification including only one spatial weighting 

matrix. We vary the radius used for the neighboring definitions from 500 m to 90 km. The 

results of the model provide a reference for comparison and help illustrating the advantages 

of considering two spatial weighting matrices.  

Figure 1 show the estimated coefficients for three selected spatially lagged variables for 

varying radii of the neighboring relationships. We observe that the effects of neighboring 

characteristics change quite substantially with changes in the definition of W . For direct 

payments (WLdPay) and the share of farms having milk cows (WLhasMilk) we find a 

significant effect up to a radius of around 30km. Further increases in the radius lead to a 

change in the sign of the coefficient (even though not becoming significantly different from 

zero again). Only for arable land (WLarable) the effect remains rather stable. Based on our 
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discussion above, one explanation for the changes in estimated coefficients may be that our 

spatially lagged variables capture two different effects with different strength at different 

radii. First, the local interaction on the land market or via knowledge spillovers and second, 

the regional effect due to confounding variables that affect growth of all farms in the region 

and cause spatial correlation in our explanatory variables. 

Figure 1 Estimated coefficients for the spatial lagged explanatory variables for varying 

neighboring definitions based on a radius from 0.5 to 90km.  

 

Variable codes: WLdPay = average neighboring direct payment; WLarable = average neighboring arable land; 

WLgenChange = share of neighbors that had a generational transfer between 1999 and 2009; WLhasMilk = share of 

neighbors that had milk cows in 1999) 

3.2 Sensitivity analysis of two spatial weighting matrices  

In order to distinguish the two effects we separate two different neighborhoods as discussed 

above. Appendix 7.3 shows that the correlation of characteristics between local and regional 

neighborhoods becomes increasingly positive with increasing radius of the local 
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neighborhood. With a local radius of 30 km, the correlation coefficient is around 0.9. This 

finding supports the hypothesis that explanatory variables are indeed spatially correlated. 

Figure 2 shows the estimated coefficient of selected variables for the local and regional 

neighborhood (the regression output for three radii of the local weighting matrix are provided 

in the appendix 7.4). The effects of the local neighborhood largely follow the neighboring 

effects for the range 0.5 to 30 km for just one spatial weighting matrix (compare figure 1). 

However, the effects between the local and regional neighborhood differ substantially despite 

the high spatial correlation of the explanatory variables. For example, consider the effect of 

neighboring direct payments on farm growth (WLdPay). We find that neighboring payments 

are highly correlated between the local and regional neighborhood (for local 30km area: 

correl. coef. = 0.89; see appendix 7.3). Nevertheless, in figure 2 we find a fundamentally 

different effect of local (WLdPay) and regional neighboring payments (WRdPay). In the local 

neighborhood increasing direct payments significantly reduce farm growth while in the 

regional neighborhood increasing direct payments increase farm growth. We find a similar 

pattern for the milk cow share, with a significant positive effect in the local neighborhood 

(WLhasMilk) and a significant negative effect in the regional neighborhood (WRhasMilk). The 

differences might be explained be the fact that dairy farms are more likely to quit during the 

study period (STORM et al., 2015). On the regional scale, a high share of dairy farms might 

capture the effect that the farm is located in a dairy region where, on average, farm growth 

seems to be lower. The effect on the local scale, however, indicates that despite this effect, 

having a high share of dairy farms among the direct neighbors has a positive effect on 

growth. This again supports the hypothesis that spatial competition on the land market 

matters for farm growth. For average neighboring arable land (WLarable) we found 
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significant effects for the local neighborhood only. The regional characteristics seem to be 

irrelevant for farm growth. This is interesting when considering again Figure 1. There we 

concluded that the average neighboring arable land is always relevant, basically independent 

of the definition of the local radius. Here we find that only the close neighborhood matters 

but not the regional. The positive effect of the average neighboring size might either be 

explained by corporate network effects or the growth limiting effects of size discriminating 

policies as discussed in section 2. 

These substantial and significant differences between local and regional effects for some 

variables despite high correlation between them strongly support the hypothesis of two 

different effects being captured with the spatially lagged variables. The negative effect of 

local direct payments, for example, supports the hypothesis that farm growth is negatively 

affected by competition on the land market that intensify as neighboring farms receive higher 

direct payment. The fact that the regional direct payments show an opposite effect might 

indicate
5
 that the variable picks up regional characteristics which are associated with a higher 

consolidation and hence growth rate in the region. These characteristics could be, for 

example, the intensity of production or the productivity in a region. These opposite effect of 

direct payments between local and regional neighborhood together with the high correlation 

of the two is a strong indication that farms in the direct neighborhood indeed have a 

                                                 

 

5 Note that lower bound of the 95% confidence interval is close to zero for all radii of the local neighbourhood indicating 

that the effect is weakly supported by the data. However, considering the high correlation between local and regional direct 

payments this is not surprising and the difference between the two effects is nevertheless rather substantive. 
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substantially different effect on farm growth, perhaps indicating a more direct interaction 

effect. 

Figure 2 Estimated coefficients for the spatially lagged explanatory variables for varying 

local neighborhood definitions from a radius of 0.5 to 30 km 

   Local neighborhood     Regional neighborhood 

 

 
 

Note: The left column presents the coefficient of the spatially lagged variable with the local neighborhood (radius from 

500m to 30km). The right column is the coefficient of the spatially lagged variables of all farms within a ring between a fixed 

radius of 30 to 60km (the coefficient is nevertheless changing due to the changing local neighborhood definition.  

4 Monte Carlo Analysis 

The hypothesis of two spatial weighting matrices at different spatial scales is based on our 

empirical observation. In the following, we aim to explore this setup with an artificial data 
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generating process (DGP) using Monte Carlo Simulations. Specifically, we first aim to 

replicate the observed patterns regarding the sensitivity of the spatial interaction effects with 

respect to the spatial weighting matrix. Additionally, we use the Monte Carlo simulation to 

explore under which settings and to what extent a second spatial weighting matrix can 

improve estimation performance in a mean square error sense. 

4.1 Data generating process 

As outlined in the introduction we consider the DGP with an interaction term and a spatially 

correlated omitted variable that is also correlated with the included spatial interaction 

variable. Specifically, we consider the following DGP,  

 

 

 

 

* *

0 1 1 2 2 2 3

2 1 2

1 *

* ~ ( , )

~ 0,

~ 0,

Y

X

L Y

X

R

Z Z

Y

X

N

N

N





    

 



 







     

  

 

y x x W x z ε

x z ε

z I W z

z

ε

ε

 (1) 

where y  is an  1N  dependent variable, 1x  and 2x  are  1N  explanatory variables and z  

an  1N  unobserved (and therefore later omitted) spatially correlated variable. The 

coefficients 1 2 3, , ,     specify the marginal effect of explanatory variables, interaction 

effect 2LW x , and omitted variable, z . The explanatory variable 2x  is a linear function of z

with 2  specifying the correlation between 2x  and z .  
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We also draw for each observation 1,...,i N  coordinates  ,i ily lx  in a Cartesian coordinate 

system with  , ~ 0,i ilx ly U R , with R  specifying the size of the “landscape”. Based on their 

location we then construct neighboring relationships specified by the  N N  spatial 

weighting matrices LW  and RW . Neighbors are defined as all observations within a radius of 

size Ls  and Rs , with L Rs s , for LW  and RW , respectively. Contrary to the empirical section 

where RW  is defined to be a ring around the farm, here RW  is defined as all farms within 

radius Rs . This definition is more suited to define a variable correlated across space. In the 

empirical section, the ring was only considered in order to highlight the different signs 

between the local and the regional interactions effects for some variables. Both spatial 

weighting matrices are row standardized.  

For estimation we observe 1x  and 2x  while z  remains unobserved. For LW  and RW  we 

assume that they might not be known exactly, which is usually the case in an empirical 

application. Specifically, we assume that we only have information about Ls  and Rs  defined 

as  

 
L L L

R R R

s s

s s








  (2) 

the parameters L  and R  therefore specify to what degree the true radius is observed 

correctly, with , 1L R    implying an exact observation of the radius. The actually observed 

neighboring relationship is denoted by LW  and RW . 
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Summarizing, in order to generate a dataset from (1) we need to specify a set of coefficients 

 0 1 2 3; ; ; ;      and parameters, 
1 2

1 2{ ; ; ; ; ; ; ; ; ; ;
Y X XZ L RZ

s s           ; ; ; }L R R N   of the 

DGP, then we draw the random variables  , , , ,Y X i ilx ly  
z  to obtain the observables 

 1 2, , , , , ,L R L Rs sy x x W W  used for estimation. 

Two different specifications are considered in the Monte Carlo Simulations. First a model 

including only the direct interaction  

(M1) 0 1 1 2 2 2 3
ˆ ˆ ˆ ˆ

L Y       y x x W x ε .   (3) 

Since z  is correlated to 2x  it can be expected that the estimation results of the model suffers 

from an omitted variable bias. Alternatively, we consider an extended model including a 

second regional interaction term of the form 

(M2) 0 1 1 2 2 2 3 2 4
ˆ ˆ ˆ ˆ ˆ

L R Y         y x x W x W x ε .   (4) 

The second regional interaction term 2RW x  is intended to capture to some extent the effect of 

the omitted variable z  due to the correlation between 2x  and z . This specification might still 

suffer from an omitted variable bias but we like to explore if and if yes how much we can 

reduce the bias.  

4.2 Monte Carlo Simulation setup 

The Model Carlo simulation that we perform in the following is conducted in three steps. 

First we explore if the DGP in (1) can replicate the empirically observed pattern discussed 
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above, additional we compare how M2 behaves in this respect. Following, we analyze to 

what extent model M1 suffers from on omitted variable bias under different conditions. 

Thirdly, we explore under which condition M2 can reduce the omitted variable bias and is 

superior to M1. 

Regarding the first step, we found above that when systematically increasing the radius ˆ
Ls  the 

estimated coefficient for example for direct payments, changes from a negative effect for low 

values of ˆ
Ls  to a positive effect for high values of ˆ

Ls . Here we explore if this pattern can be 

replicated for a specific set of parameters of our DGP. With this set of parameter values, we 

generate one dataset used for estimation. We then perform estimation several times for 

different values for ˆ
Ls  and save the estimated coefficient 3̂ . It can then be analyzed if the 

DGP and the specific set of parameter values results in similar pattern of estimation results as 

observed empirically. In order to capture sampling noise, several data sets are generated 

using the same set of parameters and estimation steps are repeated for each of them. The 

same procedure is repeated for model M2 for comparison.  

In the second and third step, we conduct a simulation where we systematically vary the key 

parameters of the DGP and perform separate Monte Carlo Simulations for each parameter 

setting. The sets of parameters are created using a Latin hypercube sampling. The n  Latin 

hypercube samples (design matrix) are obtained by drawing for each parameter one draw 

from each interval (0,1 ), (1 ,2 ), ..., (1-1 ,1)n n n n  and permuting these draws randomly. 

With these combined results from each single Monte Carlo Simulation we then perform a 

meta-analysis in which we explain the obtained MSE by the design matrix (i.e. the 

parameters of the DGP) in a linear regression. With this approach we can derive information 
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if and to what extent the considered model suffers from an omitted variable bias under 

different settings. In each single Monte Carlo Simulation (i.e. fixed set of parameters) we 

draw truen  sets of the model coefficients  0 1 2 3, , , ,     . As such, we obtain a set of truen  

“true” models, one for each set of parameters. These true models can then be used to generate 

outcomes from the DGP. For each true model we generate repn  outcomes by drawing repn  

different sets of the random variables. For each dataset, estimation is performed and the MSE 

is calculated as    
231

1 1 2
ˆ3

true repn n

ture rep ktr ktr
t r k

MSE n n  


  
    the difference between the 

true parameters 2 3,   and the estimated parameters 2 3
ˆ ˆ,  . The MSE is then averaged over 

each of the true repn n  datasets. As such, we obtain one MSE value for each set of parameters 

which is then used in the following meta-analysis as the dependent variable. As the MSE is 

strictly positive, we use a standard Tobit model in the meta-analysis when explaining the 

MSE by the parameters of the design matrix. A schematic representation of the structure of 

the meta-analysis is provided in Figure 3. 

This type of meta-analysis explaining the MSE is performed for model M1. Then a similar 

approach is used again for model M2. However, this time our main question is whether 

including a second spatial interaction term can help in reducing the omitted variable problem 

or more specifically in which circumstances M2 is/is not superior to M1. Therefore, the setup 

of the meta-analysis is slightly changed. During the Monte Carlo Simulation for each of the 

true repn n  datasets we estimate both M2 and M1. Then we calculate for each estimate the 

difference in the obtained MSE, 2 1M MMSE MSE MSE   . As MSE  is no longer censored 
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at zero we estimate an OLS model in the meta-analysis instead of the Tobit model considered 

previously.  

Figure 3 Schematic representation of the Monte Carlo meta-analysis workflow  

 

Note: Parameters of the Data generating process (DGP) are 
1 2

1 2{ ; ; ; ; ; ; ; ; ; ; ; ; ; }
Y X XZ L R L RZ

s s R N           
, 

model coefficients are  0 1 2 3, , , ,      and random variables are  , , , ,Y X i ilx ly  
z . 

Finally, using the results of this last step we apply a classification tree algorithm, a widely 

used approach in the area of statistical learning (HASTIE et al., 2009). It provides an intuitive 

way to illustrate the results of the model comparison. In order to simplify the interpretation 

and visualization of the results we take MSE  to construct a bivariate variable 

 1, 2rm M M  as  

    1| 0 and 2 | 0r r r rm M MSE m M MSE     . (5) 
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In the classification three rm  is the response variable that we aim to predict based on the 

setting of the DGP. The application is based on the MATLAB
®
 Statistics and Machine 

Learning Toolbox routine “fitctree”. We use a Gini's diversity index as split criterion. To 

prune the tree we calculate the 10-fold cross-validation error for each subtree (excluding the 

highest pruning level) and select the smallest tree whose loss is within one standard error of 

the minimum loss among all subtrees (routine “cvLoss”). 

4.3 Monte Carlo Results 

The presentation of the Monte Carlo results follows the structure outline in the empirical 

section. First we will discuss to what extent the estimated coefficient 3̂  is sensitive to the 

definition LW  or more specifically Ls . In the second and third section we present the results 

of the meta-analysis for model M1 and M2, respectively.  

Sensitivity of the 3̂  with respect to ˆ
LW  

Figure 4 (left panel) shows that the DGP mimics the empirical finding of a changing 

estimated coefficient for 
3̂  under an appropriate choice of parameters. The chosen 

parameter setting of the DGP imply that we have a spatially omitted variable z  that is highly 

spatially correlated  0.9   at a larger scale (regional neighboring radius equal to 50Rs  ) 

than the interaction variable (radius 15Ls  ). Additionally, with 2 0.7   we have a rather 

strong correlation between z  and 2x . The variation of the random parts in both z  and 2x  is 

rather large, 5
Z

    and 
2

5
X

  , compared to the model error, 5
Y

  . The model 

coefficients 3 5    and 9   for the variables z  and 2x , respectively, are chosen in order 
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to mimic the changing effect (from negative to positive) of 
3̂  for varying ˆ

LW , similar to for 

the case of neighboring direct payments above (Figure 1). The full specification of the DGP 

is provided in Figure 4. As outlined above we generated 50 different datasets drawing 

different errors but using the same parameter specification. For each dataset we repeat the 

estimation for different values of ˆ
Ls . The obtained results are plotted in Figure 4.  

For ˆL Ls s  the estimated coefficient decreases and approaches the true coefficient 3 5   . 

However, even for ˆL Ls s  the estimated coefficient 
3̂  is still considerably larger than the 

true coefficient. When further increasing ˆLs  , we observe again an increasing estimation bias. 

In this area the coefficient is likely to pick up more and more of the effect of the omitted 

variable z , at the expense of the effects of 2LW x , resulting in an estimated coefficient 

ranging between 3 5    and 9  . In the right panel of Figure 4 we repeat the exercise for 

model M2. For ˆL Ls s  the pattern looks similar as for M1. However, at the point ˆL Ls s , the 

estimated effect is close to the true value, 3 5   . Increasing the radius further has hardly 

any effect on the average estimated coefficient across each set of 50 runs and 3̂  remains 

around -5. At the level of a single runs, however, the variation in the estimates increases the 

further ˆLs  deviates from Ls . This graphical inspection indicates that M2 indeed can reduce 

bias, but that deviations from the true neighboring relationships increase variance in the 

estimates. This issue is more rigorously explored in the following.  
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Figure 4: Estimated coefficients 
3̂  for varying radii ˆ

Ls  for 50 different Monte Carlo runs for 

model M1 and M2. Solid line is the average estimated coefficients across all 50 runs. The 

dashed line indicates the true local radius 15Ls  .  

  

Model M1      Model M2  

Notes: DGP specification 
1 2

1 2{ 10; 0.7; 0.9; 2; 5; 1; 2; 5; 15; 50;
Y X XZ L RZ

s s                  

0 1 2 3500; 3000; 1; 2; 3; 5; 9, 1, 1}L RR N                 . 

Omitted variable bias in model M1 

In order to analyze if and under which setting model M1 suffers from an omitted variable 

problem we perform a meta-analysis of a Monte Carlo Simulations as outlined above. 

Specifically, in the Latin hypercube sampling we considered the following value ranges for a 

subset of the parameters 

            
2

2 0;1 ; 0;0.95 ; 1;5 ; 1;5 ; 1;5 ; 200;400 ;
Y Xz

R          

   1000;3000 ; 0.5;2.5LN   . The remaining parameters are kept at fixed values

1
1 10; 2; 2; 15; 50

XZ L Rs s       . In the Latin hypercube sampling a design matrix of 

size 2000 is generated. For each of these samples we draw 10truen   sets of the model 

coefficients 1 2 3,, , z   , each from a uniform distribution in the range  10,10 . For each true 

model we draw error 10repn   times, resulting in 100true repn n   simulations for each of the 
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Latin hypercube samples. As described above we then explain the obtained MSE in a meta 

regression. Specifically, we consider the parameters of the DGP as linear and squared effects 

as explanatory variables. Instead of 2  we considered the correlation coefficient between 2x  

and z  as the relationship between the two also involves a random part X . For some 

variables, cross effects are considered. We apply a model selection process based on the AIC. 

As outlined above the approach is applied twice, first, to explain 1MMSE  (middle columns of 

Table 1) and secondly to explain 2 1M MMSE MSE MSE    (right columns of Table 2). The 

precise specification along with the estimated coefficients and a description of the model 

selection is provided in Table 1.  

With respect to the model M1 we find that 1MMSE  increases with increasing variation (
Z
  ) 

and increasing spatial correlation   of z . On the other hand, increasing variation in 2x  (

2 x ) decreases 1MMSE . Additionally, we find a negative effect of the cross term between

Z
   and 

2 x , an indication that the increases in the variation of z  are lower the larger the 

variation in 2x . Increasing correlation between z  and 2x , however, amplifies both the 

(increasing) effect of variation of z  and the (decreasing) effect of the variation 2x . These 

results are intuitive as increases in 
Z
   and   worsen the omitted variable problem which is 

counteracted by any (ceteris paribus) increase of variation in 2x . For the correlation 

coefficient between z  and 2x  we find an almost bell shaped relationship with a maximum at 

around 0.5 (with all other variables at their means). The increasing part (up to a correlation 

coefficient of 0.5) can be attributed to an increase in the omitted variables bias. The 

decreasing part for values above 0.5 is less clear. One explanation might be that with 
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increasing correlation, 2
ˆ

LW x  is more and more capable of capturing the effect of the z . 

This might imply a higher bias for 3̂  but may result in a reduction of the bias for 2̂ . The 

combined effect might be a reduction in 1MMSE  for increases of the correlation beyond a 

correlation coefficient of around 0.5. The number of observations has a negative effect on 

1MMSE , which might come from two effects. Increasing N increases both the degrees of 

freedom and the number of neighbors. Similarly, an increase in the regional size has an 

increasing effect on 1MMSE . An explanation might be that the number of neighbors decrease 

with increasing R  (and constant Ls ). Having fewer neighbors implies that 2LW x  is calculated 

from fewer observations which might reduce the precision with which the effect of 3  is 

measured. The correct definition of the local neighborhood is also decisive. For the 

coefficient L , which defines the relative error in guessing the neighboring radius, we 

estimate a U-shaped relationship with a minimum at around 1.2. This is somewhat larger as 

the expected minimum at 1. These results indicate that it is particularly problematic if the 

radius is chosen smaller than the true radius, i.e. if ˆ 1L   while choosing the radius larger is 

less of a problem
6
. For empirical application this results is interesting as it suggests that when 

the radius is only approximately known, the chosen value should rather be at the upper end of 

a plausible range.  

                                                 

 

6 The estimated relationship indicates that (with all other variables at their means) approximately the same 1MMSE is 

incurred for ˆ 0.9L   and ˆ 1.4L  . This implies that chosen ˆLs  around 10% lower as the true value has the same negative 

effect as setting it around 40% higher as the true value.  
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Table 1: Model estimates explaining 1MMSE  using a Tobit model and 

2 1M MMSE MSE MSE    using an OLS model by the settings of the DGP as covariates. The 

sample of explanatory variables is constructed using a Latin hypercube design (see 

description in section 3).  

Dep. Variable MSEM1  MSEM2 -MSEM1  

Model Tobit  OLS 

Variable Coef p-value Coef p-value 

c  36.2614 0.0000 3.3386 0.0000 

N  -0.0008 0.0000 2.9E-05 0.3313 
2N   ---  ---  ---  --- 

R  0.0362 0.0000 -0.0062 0.0779 

2R  -4.6E-05 0.0000 1.0E-05 0.0879 

 2 ,corr x z  38.7826 0.0000 -2.3751 0.0000 

 
2

2 ,corr x z  -38.2029 0.0000 2.1564 0.0000 
  -3.5217 0.0108 3.0219 0.0000 

2  5.7911 0.0000 -3.6472 0.0000 

z   3.4695 0.0000 0.0676 0.5167 
2

z
    ---  --- -0.0385 0.0225 

2x  -6.5622 0.0000 0.0682 0.5347 

2

2

x
  1.4593 0.0000 -0.0407 0.0077 

 2 ,corr  x z   ---  ---  ---  --- 

z     ---  --- -0.4670 0.0000 

2x    ---  --- 0.2401 0.0000 

2xz     -1.0798 0.0000 0.0605 0.0001 

 2 , zcorr  x z  6.7939 0.0000 0.2085 0.0154 

 
22 , xcorr x z  -7.7527 0.0000  ---  --- 

L̂  -67.6650 0.0000 -1.3701 0.0000 

2
L̂  28.6740 0.0000  ---  --- 

R̂   ***  *** -1.7242 0.0667 

2
R̂   ***  *** 0.6116 0.1417 

R² 0.9999 0.3829 

adj. R² 0.9999 0.3772 

N 1960 1960 

optimization bfgs  --- 
Notes: Before estimation 1% of observations are excluded each from above and below, in order to eliminate the influence of 

outlier. Model selection is performed by selection the specification with the lowest AIC. The selection is performed in blocks 

in order to limit the number of combinations. First, all combinations of squared effects are considered while including all 

main effects and cross terms. Secondly all combination of cross terms are considered while including all main effects and 

the best specification for the squared effects obtained in the first step. 
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Model comparison between M2 and M1  

In the next step we present results for a model explaining 2 1M MMSE MSE MSE   . A 

positive/negative coefficient in this model implies that M1 is becoming relatively 

better/worse compared to M2.  

An increasing variation of z  has a negative effect, with an increasing rate, on MSE

favoring model M2. The variation in 2x  on the other hand has a decreasing effect, with 

decreasing rate, favoring model M1. Both effects are amplified by increases in  , i.e. the 

spatial correlation of z . Additionally, increases in 
2x  increase the effect of z   implying 

that the positive effect of 
2x  is larger the larger z   or in reverse that the negative effect of 

the variation of z  is lower the larger the variation in 2x  (see appendix 7.5). Similarly higher 

correlation between 2x  and z  increases the effect of z  , i.e. lowering its negative effect. 

These results indicate that M2 is preferable with high variation of z  and low variation of 2x , 

particularly when z  is strongly spatially correlated. The effect of the spatial correlation itself 

(  ) follows an inverted U-shape with a maximum of around 0.3. Up to that point, increases 

in   favor model M1, while further increases favor M2. For the correlation between 2x  and 

z in contrast we find an U-shape relationship. Model M2 is preferred for a correlation 

coefficient of around 0.4 while increases or decreases from that point on favour M1. This 

might mirror the observed effect of  2 ,corr x z  on 1MMSE  following a bell shape. Above we 

argue that beyond a certain point further increases in  2 ,corr x z  reduce the overall MSE as 

2̂  is becoming less bias as 2
ˆ

LW x  is more and more capable of capturing the effect of the 

z . As this effect is already included in M2 it might be less effected from changes in 
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 2 ,corr x z  resulting in the observed U-shape pattern. Also for the regional size, R , we 

found a U-shape relationship with minimum around 310. This relates to roughly 10 local 

neighbors and 100 regional neighbors on average. Increasing or decreasing the regional size 

from that point favors Model M1. The sample size N does not have in significant effect. 

Increases in the local neighbourhood radius in the range from 0.5 to 1.5 of the true radius lead 

to a linear decrease in MSE . Above we concluded for M1 that the radius should not be 

chosen to narrowly, the results here indicate that this is even more important for M2 as we 

observed a decrease in MSE  with increasing radius. Similarly, for the regional neighboring 

radius we find a decreasing effect (with a diminishing rate) on MSE in the range from 0.8 to 

1.5 of the true radius. This again indicates that if model M2 is considered also the regional 

radius should be chosen rather too large than to narrow.  

The decision tree classification approach described above allows exploring and illustrating 

the same Monte Carlo results in a different way (Figure 5). The approach provides a simply 

binary classification between model M1 and M2. The first node differentiates based on L̂ . 

For ˆ 0.97L   M1 is preferred otherwise we go the next node where we chose M2 if 0.35 

. This implies that, as long as the local radius is not chosen to narrow, M2 is a superior in 

cases with relatively high spatial correlation in the omitted variable, z . As this case of a 

highly spatially correlated omitted variable is the starting point for your analysis, the result 

supports the hypothesis that M2 is indeed a valid extension of M1. The further braches 

indicate that even in cases where the spatial correlation of the omitted variable is modestly 

low, 0.17 0.35  , model M2 can be superior as long as the regional radius is not chosen 

to small ( ˆ 0.85R  ) and a sufficient sample size is available ( 1933N  ) otherwise M1 
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remains superior. Interestingly, with the pruning level shown in figure 5 which is determined 

as discussed in section 3, the classification does neither relate to the variation of 2x  nor to the 

correlation between z  and 2x . The importance of both variables seems to be lower compared 

the selected variables ( ˆ ˆ, , ,L R N   ).  

Figure 5 Decision tree comparing model choices between model M1 or M2 based on a MSE 

comparison in the Monte Carlo Simulation.  

 

5 Conclusion 

In this paper we have analyzed the importance of farm level spatial interaction for farm 

growth. One of the main challenges in the analysis of spatial interaction is to distinguish 

between spatial interaction as well as spatial correlation arising due to spatial correlation of 

omitted variables affecting both outcomes and explanatory variable. We approached this 

challenge by estimating an SLX model with two different spatial weighting matrices in order 
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to distinguish between local and regional interaction effects. Additionally, we systematically 

analyzed the sensitivity of our results with respect to varying neighboring definitions. Our 

empirical application, using a Norwegian dataset, indicates that despite high spatial 

correlation in the explanatory variables the neighboring effects of the explanatory variables 

differ substantially between local and regional neighborhood. This result provides strong 

empirical support for the hypothesis that individual farm growth depends substantially on the 

behavior of directly neighboring farms i.e. that direct interaction occurs. Given that we found 

a negative effect of the amount of direct payments farms receive in the direct neighborhood, 

while the effect in the regional neighborhood was positive, indicates that farms compete on 

the local land market in order to grow and direct payment matter here. This finding 

contributes to the literature where empirical results concerning spatial farm level interaction 

and their roll for farm growth are lacking.  

Based on this empirical finding we perform Monte Carlo simulations analyzing to what 

extend we can replicate the empirically observed patters and to what extent a second 

neighboring interaction variable defined at a larger spatial scale can improve the model. 

Specifically, we consider a DGP with a spatial interaction variable and a spatial correlated 

omitted variable which is also correlated to the included interaction variable. Results show 

that the DGP can indeed reproduce the empirical finding of highly sensitive estimation results 

with respect to different neighboring definitions. Further, we show that under specific settings 

a second spatial weighting matrix can indeed improve the models MSE. The simulation result 

provide practical conclusion for empirical application. Specifically we found that the results 

crucially depend on a definition of the true neighboring radius. Setting the neighboring radius 

of the interaction to narrowly has a stronger adverse effect then defining it to broadly. The 
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proposed model with a second spatial interaction variable at regional scale is particularly 

superior when the spatial correlation of the omitted variable is high. But even for modest 

spatial correlation it can be superior if the regional neighboring radius is not chosen to 

narrowly and a sufficient sample size is available.  
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7 Appendix 

7.1 Appendix: Local and regional neighboring farms for one exemplifying observation 

(point A).  

Local neighborhood, 
30km

LW        Regional neighborhood, RW   

(ring 30 to 60km) 

 

Note: Only a random sample of 500 neighboring farms are shown per maps. The total number of neighboring farms is 1540 

and 5122 for the local and regional neighborhood, respectively. Source Maps: http://gpso.de/maps/ Map Data: 2015  

OpenStreetMap.   

 

  

http://gpso.de/maps/
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7.2 Appendix: Descriptive statistics, variable definition and variable codes 

 Code Unit Mean Median min max std 

Change in Arable land 

1999 to 2009 

delArable daaa 32.34 3.00 -1247.00 5061.00 122.01 

Age of the farm holder age year 48.20 48.00 7.00 90.00 10.99 

Arable land arable daaa 158.19 125.00 0.01 2994.00 136.11 

Observed labor input obsLabo hour 2642.67 2500.00 8.00 52330.00 1881.48 

Estimated labor 

requirement 

reqLabo hour 2391.60 2107.97 17.42 42873.53 1805.32 

Total direct payments dPay 1000 

Nkr 

204.95 195.71 0.00 1252.47 133.23 

Total market return mRet 1000 

Nkr 

-40.45 -37.41 -2168.29 1403.76 72.81 

Ratio observed over 

estimated labor 

requirement 

laboObs/Req ratio 1.28 1.11 0.00 65.77 0.95 

Dummy if farm has 

milk cows 

hasMilk binary 0.42 0.00 0.00 1.00 0.49 

… has sheep hasSheep binary 0.33 0.00 0.00 1.00 0.47 

… has sows hasSows binary 0.06 0.00 0.00 1.00 0.24 

… has poultry hasPoultry binary 0.01 0.00 0.00 1.00 0.09 

Tot. Direct pay. per 

total farm area 

dPayUaar 1000 

Nkr / 

daaa 

1.28 1.28 0.00 40.74 0.80 

Regional dummyb for 

"Other regions in 

Eastern Norway" 

argR12 binary 0.19 0.00 0.00 1.00 0.39 

… "Jæren" argR21 binary 0.04 0.00 0.00 1.00 0.21 

… "Other regions in 

the counties of Agder 

and Rogaland" 

argR22 binary 0.09 0.00 0.00 1.00 0.28 

… "Western Norway" argR32 binary 0.21 0.00 0.00 1.00 0.41 

… "Lowlands in 

Trøndelag" 

argR41 binary 0.08 0.00 0.00 1.00 0.27 

… "Other regions in 

Trøndelag" 

argR42 binary 0.08 0.00 0.00 1.00 0.27 

… "Northern Norway" argR52 binary 0.09 0.00 0.00 1.00 0.28 
adaa = 1/10 ha. b reference region is "Lowlands in Eastern Norway" 
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7.3 Appendix: Correlation coefficients between spatially lagged variables in the direct 

neighborhood (radius 500m to 30km) and the farm in a ring between a radius of 30 to 

60km. 

Radius of direct 

Neighbourhood dPay age hasMilk arable 

500  m 0.3054 0.0164 0.3526 0.3056 

2    km 0.5020 0.1151 0.5056 0.6063 

3    km 0.5990 0.2104 0.5780 0.6832 

4    km 0.6519 0.2987 0.6215 0.7239 

5    km 0.6886 0.3720 0.6525 0.7492 

6    km 0.7247 0.4700 0.6841 0.7745 

8    km 0.7566 0.5453 0.7133 0.7952 

10   km 0.7794 0.6145 0.7370 0.8113 

13   km 0.8026 0.6693 0.7611 0.8257 

15   km 0.8218 0.7100 0.7797 0.8377 

18   km 0.8375 0.7361 0.7956 0.8478 

20   km 0.8509 0.7664 0.8097 0.8579 

23   km 0.8631 0.7963 0.8230 0.8679 

25   km 0.8736 0.8155 0.8362 0.8776 

28   km 0.8838 0.8310 0.8494 0.8875 

30   km 0.8941 0.8430 0.8623 0.8980 

Note: See Appendix 7.2 for variable codes. 
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7.4 Appendix: Regression results for 3 radii and selected variables 

 

W_km2   W_km15   W_km30   

Variable Coef p-value Coef p-value Coef p-value 

const 71.2361 0.0443 26.8659 0.4994 -0.7593 0.9859 

age -4.4820 0.0000 -4.5359 0.0000 -4.4265 0.0000 

age^2 0.0429 0.0000 0.0431 0.0000 0.0423 0.0000 

arable -0.1021 0.0000 -0.1092 0.0000 -0.1073 0.0000 

obsLabo 0.0009 0.2078 0.0012 0.0871 0.0008 0.2352 

reqLabo 0.0042 0.0000 0.0034 0.0007 0.0038 0.0001 

dPay 0.1095 0.0000 0.1257 0.0000 0.1182 0.0000 

mRet -0.0283 0.0552 -0.0236 0.1175 -0.0242 0.1106 

laboObs/Req 1.5565 0.1203 1.2219 0.2310 1.3784 0.1825 

hasMilk -13.1539 0.0000 -14.5153 0.0000 -13.8421 0.0000 

 …. 

      
W_L dPay -0.0742 0.0006 -0.2210 0.0000 -0.3030 0.0000 

W_L arable 0.0889 0.0000 0.1542 0.0000 0.2134 0.0000 

W_L reqLabo -0.0028 0.0345 0.0002 0.9452 0.0003 0.9325 

W_L hasMilk 13.0853 0.0003 31.0686 0.0004 47.9661 0.0002 

W_L age 0.2026 0.0000 0.2995 0.4409 1.2183 0.0380 

 …. 

      
W_R dPay 0.1451 0.0982 0.2574 0.0041 0.2178 0.0257 

W_R arable 0.0645 0.1427 0.0061 0.8996 -0.0517 0.3331 

W_R reqLabo 0.0053 0.2887 0.0061 0.2381 0.0105 0.0700 

W_R hasMilk -74.8880 0.0000 -90.9625 0.0000 -81.0408 0.0000 

W_R age 0.5744 0.4234 1.3895 0.0608 1.0868 0.1577 

 ….             

n 32043 --- 30940 --- 30257 --- 

AIC 8.5973 --- 8.6324 --- 8.6547 --- 

rsqr 0.0424 --- 0.0438 --- 0.0425 --- 

rbar 0.0413 --- 0.0426 --- 0.0413 --- 

Note: The definition of the variable codes is provided in Appendix 7.3. Before estimation 1% of observations are 

excluded each from above and below, in order to eliminate the influence of outlier. This elimination of outliers cause 

the difference in the sample size across the different runs. 
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7.5 Appendix: Predicted values for 2 1M MMSE MSE MSE    based on the estimated 

model presented in Table 1 (right columns). All other variables at kept at their 

respective means. 

 

 


