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PARAMETRIC AND NON-PARAMETRIC CROP YIELD DISTRIBUTIONS

AND THEIR EFFECTS ON ALL-RISK CROP INSURANCE PREMIUMS

Abstract

Normal, gamma and beta distributions are applied to 609 crop yield

histories of Ontario farmers to determine which, if any, best describe crop

yields. In addition, a distribution free non-parametric kernel estimator was

applied to •the same data to determine its efficiency in premium estimation

relative to the three parametric forms. Results showed that crop yields are most

likely to be described by a beta distribution but only for 50°,1 of those tested.

In terms of efficiency in premium estimation, minimum error criteria supports use

of a kernel estimator for premium setting. However, this gain in efficiency

comes at the expense of added complexity.

Key words: crop insurance, crop yield distributions, kernel distributions,

insurance premiums



PARAMETRIC AND NON-PARAMETRIC CROP YIELD DISTRIBUTIONS
AND THEIR EFFECTS ON ALL-RISK CROP INSURANCE PREMIUMS

Actuarial soundness of publicly provided all-risk crop insurance is an

important criterion in setting premiums because of its influence on farmers'

participation in crop insurance and it's impact on government expenditures. A

premium is said to be actuarially sound if it equals expected indemnities thereby

implying an expected zero-profit position for both the insured and the insurer

if transaction costs are zero. Actuarial soundness by definition requires

assessment of the underlying probability distribution of crop yields.

Prior assumptions of underlying yield probabilities which differ from

actual probabilities can lead to errors in premium setting which can lead to

problems of adverse selection. Adverse selection is the result of asymmetry in

information between insureds and the insurer. In the absence of perfect

information, insurers are unable to completely define yield risks and

consequently cannot fully appraise risk for premium setting. Consequently, crop

insurers tend to offer all-risk crop insurance using pooled or aggregate yield

data to estimate premiums but pay indemnities based on individual yield outcomes.

All farmers growing a specific crop pay a common premium with individual yield

and indemnity histories being used only to make adjustments to the base premiums

over time. Thus many farmers with different yield risk profiles can purchase

insurance for essentially the same price with high risk farmers receiving

substantially more benefits than low risk farmers.

Mathematically, yield insurance premiums on an individual farm basis are

computed using

where Z is the coverage level, P the elected price level, Y farm yields, and f(Y)

11(f) p P tiz (Z-Y) f(Y) dY 00
the assumed probability distribution. If the true distribution is defined by the

probability distribution function g(Y), then the error in actuarial premiums is
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If farmers are aware of their own probability of loss, g(Y), then adverse

- = P _of z (Z—Y) (f(Y) — g(Y))dY . (2)
selection could take place with many high risk farmers participating when n(f) -

H(g) < 0 and many low risk farmers opting out when H(f) - H(g) > 0.

In view of this, one of the more pressing problems facing insurance rate

makers is the ambiguous nature of yield risks which differ across crop types and

even within crop type but across different crop growing regions. Differences in

yield risk can be manifested in different yield distributions. For example

different combinations of soil type and climatic conditions can affect yield

distributions in such a way that crops grown in one region may have a high

probability of receiving a low yield outcome, while in other regions the same

crop with the same mean yield may have a high probability of obtaining a high

yield outcome. How different assumptions about crop yield probability

distributions affect crop insurance premiums is a goal of this study. In

particular the research attempts to assess yield distributions of Ontario cash

crops in relation to common parametric forms (e.g. normal, beta, gamma); evaluate

the stability of commodity yield distributions across different farms in

different regions of Ontario; and to assess insurance premium differentials under

alternative yield distributions.

The problem of determining probabilistic outcomes as they relate to

actuarial science and insurer liabilities is one which is common across all types

of insurance and contingent liabilities. Assessment of probabilities in relation

to differing assumptions about the underlying probability distribution is however

complex in most cases. Crop insurance is an exception, because historical yield

observations are generally available. Moreover, with the exception of trends due

to technology, dynamics do not affect state contingent outcomes. Thus, allowing

outcomes to be temporally independent permits use of static distributions which
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are less complex than dynamic ones. None-the-less, true crop yield distributions

are still unknown, and whether or not they follow one parametric type or another

is usually assumed. However, it may be the case where none of the common

parametric distributions adequately reflect the empirical distribution. To

address this problem non-parametric techniques must be employed. 'Consequently,

an important aspect of this research is the application of a non-parametric

kernel estimating technique which is employed for comparative purposes as an

alternative hypothesis to the parametric distributions. Crop insurance premiums

are also derived from the kernel distribution. Since the kernel function is

flexible it may be able to take on the basic characteristics of the two-parameter

distributions listed above, and in this respect provide a minimal error approach

to premium estimation.

The manuscript proceeds as follows: in the next section a review of

literature pertaining to crop yield distributions is made; next the parametric

and non-parametric distributions used in the study are presented and the data

described; the following sections present results and conclude the paper.

BACKGROUND

Some parametric distributions have been used or tested in research related

to crop yield. Day (1965) recommended the beta distribution for crop yield;

Nelson and Preckel (1989) used the beta distribution in their production function

estimation; Pope and Ziemer (1984) and Gallagher (1986) suggest a gamma

distribution and Kenkel etia. (1991) tested the normal, beta, gamma, logistic,

and extreme type A distributions (see Johnson and Kotz (1970a and 1970b) for

their description). As with other research Kenkel 1. (1991) are unable to

establish a distribution prior. Common distributions used in crop yield analyses
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include normal, beta and gamma distributions. These distributions, all of which

are used in this study, evolve as a two-parameter family since entire

distributions can be described by the mean and variance. These parametric

distributions will be compared to a non-parametric kernel density function. The

focus is solely on the nature of the distribution functions themselves and how

differing assumptions of probability distribution affect actuarial crop insurance

premiums. Each distribution is described in the following section. Detailed

reviews of the parametric distributions can be found in Johnson and Kotz (1970

a,b), or Morgan and Henrion (1990).

Normal Distribution

The density function for the normal distribution with mean p and standard

deviation a is given by

1
ñdTgtuar---dt yield distribution however the likelihood of a predicted 

0+)0V211

being less than zero is negligible although the probability of 0 yield is finite.

Typically the normal distribution will be truncated at Y = 0.

The normal distribution is symmetric and unbounded between [-00, 00]. In
_ [y- ii 2

Beta  Distribution

The beta distribution is given by

where a and b, (a b), are scale parameters which define the boundary of the

=  
1 (y-a'' (b - .y) - 1 

i(12  . • (4)
dis ribuVppy) p_anchw P((pl> 0, q > 0) are shape parameter; p,q) is the beta

function,

and y (•) are _gamma functions with
T(1) 11Q) _ (5)
11(P-1-0
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and X = (y-a)/(b-a). Note that if a and b are known then P(p,q) can be derived
T(p) = of7X-P-1 e-x cEr (6)

from onlr 2 parameters. (In this study a = 0 and b equals maximum observed yield

plus one standard deviation.) Estimates of p and q can be obtained from the

sample mean, µ, and variance, 02 with

1-1.
2 
- 1
13 -2

11
P -
and 02 (7)

The beta distribution is symmetric when p = q, positively skewed when p <b2
- 02 0-14 

(8)
q and negati-ely skewed when p > q.

Gamma Distribution,

The form of Gamma distribution is for Y 0

where a and b are shape parameters (a, b > 0) and using the sample mean and

AY) -   
varianct cal-10)22/1:32 and b = 11/02. (9)

Shape and scale parameters of the 3 distributions are defined by the sample

mean and standard deviation using the methods of moments. Alternatively these

parameters could be estimated through maximum likelihood techniques as in Antle

(1983), Taylor (1984), and Nelson and Preckel (1989). Day (1965) comments that

maximum likelihood techniques would provide little improvements over the method

of moments, a conclusion which was affirmed by our pretest of the two techniques

to a small sub-sample of farms.

Non-parametric Kernel Estimators 

In contrast to the above parametric procedures an, alternative non-

parametric technique is available. Kernel estimators belong to the class of non-

parametric estimators such as histogram which estimate density functions directly

from the sample without assuming any distributional form. Given an ordered



sample Y,, Y2 • • • • Ynt the kernel estimator of the density function f(Y) with

kernel K is defined by (Silverman 1986)

f = k (Y-171
tin h

(10)

where h is a smoothing parameter and K satisfies 4- k(Y)dY = 1. Note that the

function K can be any valid probability distribution function and this

distribution function is defined around each of the n elements of the empirical

distribution. Further note the role of the smoothing parameter h; h is also

called the window width because as it increases (decreases) the dispersion of

outcomes around the discrete point Yi decreases (increases). Hence choice of

k(•) and h fully determine the kernel estimator. In this study k(.) is assumed

to be a triangular distribution.' The smoothing parameter h was chosen to

minimize the mean integrated square error between the estimate P(Y) and the true

empirical F(Y).2 (Exact procedures are beyond the scope of this text but can be

found in Silverman 1986). The procedure assumes that the kernel estimates are

at least asymptotically unbiased and consistent (Rao 1983).

Yield Distributions and Goodness of Fit

A statistical approach to evaluating the goodness of fit of the 3

parametric distribution types to the empirical distribution is the non-parametric

Kolmogorov-Smirnov (K--S) test which has good properties for small sample data.

Although it has been found not to perform well against a null hypothesis of

normal distribution and the Shapiro-Wilk test (Shapiro and Ziemer 1968) it must

be recognized that the K-S test is distribution free whereas the Shapiro-Wilk

test applies only to tests of normality.

In particular if F(Y) is the true but unknown cumulative probability
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distribution and P(Y) is the hypothesized CDF then the null hypothesis of the

goodness of Fit test is H.: F(Y) = P(Y). The alternative hypothesis is a

composite hypothesis which includes all distributions other than the hypothesized

one (Birnbaum 1953).

The K-S test is based on a distance measure equal to Dri = Sup[F(Y)-P(Y)1

with Dfl being distribution free for any continuous P(Y) (Gibbons 1985). Being

distribution free enables the comparison of different Dn's for different

hypothesized distributions. If more than 1 distribution type is hypothesized it

is possible that the K-S test could fail to reject all null hypotheses. However,

a feature of the distance measure is that the hypothesized distribution with the

lowest Di, value can be used with more confidence. Hence, while the K-S test

provides credibility for selection of a particular distribution type there always

exists a possibility of Type II error. Even though the K-S test is consistent

against any alternative F(Y) P(Y) it may be asymptotically biased with a finite

sample. Fortunately, a significant advantage of the K-S test statistic is that

it has small (finite) sample properties, so that the test can be considered exact

with small sample size (Bradley 1968). This provides a considerable advantage

over other goodness-of-fit tests (e.g. Chi Square) when the sample size is small

(Gibbons 1985). However, a major disadvantage of the K-S test is that confidence

levels are based on the assumption that F0(x) is fully described by the

population parameters. When mean and variance are estimated from the sample, the

K-S test may be conservative (Gibbons 1985).

Premium Estimation

Premiums for the 3 parametric and 1.non-parametric distributions were

computed according to equation (1). Since no closed form for the integration in



(1) exists, integration was calculated by numerical approximation. The interval

[0,Z] was divided into 1000 ordered sub-intervals of equal width. Each sub-

interval was taken as a trapezoid and its area calculated accordingly. The value

of the integration was the sum of the areas of all the sub-intervals multiplied

by their respective values of P(Z-Y) where Y was taken as the lower point of the

interval and P is the exogenously set price.

Data

Data were drawn selectively from over 96,000 individual farm yield

observations provided by the Ontario Crop Insurance Commission. The selection was

restricted to those farms with continuous yield observations over the maximum

time horizon permitted by the data. Yield histories therefore ranged from a high

of 19 years to a low of 13 years. Since these data were already adjusted for

trend by the commission no further adjustments were made. A Wald-Wolfowitz test

applied to a subsample of the data indicated that the null hypotheses of

randomness could not be rejected, thus implying that attempts to adjust for trend

beyond what was employed by the insurance commission was not required. In total

a rich data set comprising 609 farms covering 5 crops, (spring grain, wheat,

corn, soybeans, and white beans) and distributed across 10 Ontario counties

(spanning the province) were used. Elected prices were established by the

average 1991 crop price reported by each county.

Procedures Summary

In summary, a K-S test will be used to test whether or not each of the 609

crop yield series is described by either a normal, gamma or beta distribution.

While it may be possible to accept the null hypotheses for all 3 distributions
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on a single crop for a given farm, the distribution with the lowest Dfl value will

be taken as the correct distribution. Accordingly, the correct distribution can

very across crops and regions. The kernel density function will be tested

against these 'correct' distributions. Finally, insurance premiums at 80A

coverage (actual coverage levels in Ontario range from 75-85',1) will be estimated

for each of the 4 distributions and compared.

RESULTS

This section presents the results. First the distribution form of the crop

yields will be compared; second, the best candidate distribution from the

parametric form will be compared to the kernel functions; and third the effects

of the distributional assumptions on insurance rate making will be assessed.

Croo Yield Distributions

Crop yield distributions for spring grain, wheat, corn, soybeans and white

beans were first assessed using the 3 parametric forms. The results are reported

in Table I. For only 1 of the 609 distributions were all 3 candidate functions

rejected at the 10A level by the K-S test. Of the remaining farms the gamma

distribution was rejected for only 7 farms, while normal and beta distributions

were rejected for none. Of those farms with more than 1 candidate functions as

possibilities the one with the smallest distance measure Di, was considered

'best'.

The results are displayed in Table I. Of 609 farm/crops, 28.08 were

characterized by a normal distribution, 50.08 by a beta distribution and 21.84°1

by gamma. The results appear to support Days conclusion that the beta

distribution should be used to describe crop yields. But the conclusion is not
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general; Beta distribution describes only 44.6% of wheat, 44% of grain, 55% of

corn, 49% of soybeans and 39% white beans; Type II error would be approximately

50% for all crops on average, and nearly 60% for some crops such as white beans.

None-the-less, the normal distribution is clearly not representative, nor is

gamma.

Premium Estimation

Crop insurance premiums at 80% coverage levels were numerically estimated

for all 3 parametric distributions and the kernel estimator. A coverage level

of 80% was chosen because it lies midrange between typical Ontario levels of 75%,

80%, and 85%. The premiums and support prices are listed in Table II.

No discernable patterns appear in the premiums in Table II. What is

striking is the range of premiums. For example spring grain premiums in Russel

county range from $13.60/acre using a beta distribution to low of $8.33 for the

normal distribution; a 63% difference. On average the % difference between the

high and low is 40% for wheat, 40% for grain, 29% for corn, 33% for soybeans, and

26% for white beans. Clearly such variance due solely to assumption of

probability distribution could lead to problems of adverse selection. The

problem of course is determining means by which such differences may be reduced,

and hence the focus on the kernel function.

.Kernel Estimates 

In Table II the listed numbers and premiums for normal gamma and beta

distribution reflectthe 'best' choice distribution based first on a 10% K-S test

and second on the least distance criteria (i.e. minimum Dc). In this section

these premiums are to be compared to the premiums generated from the kernel

10



estimate.

For all 609 farms, premiums were computed for each parametric distribution

as well as the kernel and using Di, the 'best' was recorded. Each was subtracted

from the premium obtained from the best of the four distributions. Operating

under a null hypothesis that the minimum error is obtained through use of the

kernel estimates, the overall performance of the four estimators was evaluated

by finding the minimum square root of the sum of the squared error (SRSSE);

where 'd n' he difference between the 'best' crop premium and the other

dagla. )2( R*149n)- -2s the number of farms in each crop category. Four SRSS(0-1,

were therefore computed for each crop/county category.

Selecting which of the four distributions would minimize error in premiums

can be made by comparing mean deviations or the SRSSE. In terms of mean

deviations, results show that beta and kernel distributions were consistently

positively deviated while normal and gamma premiums were consistently negatively

deviated (Table III). The implication is that if either the kernel or beta

estimators are universally assumed, premiums would tend to be biased upward while

if gamma or normal estimators are universally assumed, estimated premiums would

tend to be biased downward. Low risk farmers would be discouraged from

purchasing crop insurance under the first case while high risk farmers would be

encouraged in the second case.

Interpretation of the results in Table III is given by the following

examples: Suppose a normal distribution was assumed for all wheat crops From

previous discussions and Table I, of 47 wheat crops only 13 (27.6) had

distributions closely approximated by a normal distribution, implying 72.3°1 of

wheat crops were best described by an alternative. Relative to these

alternatives an assumption of normal distribution would result in average
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premiums being $.48/acre below the 'best' actuarial values (Table III) with a

relatively high standard deviation of $.77/acre. Using the average deviation as

a selection criteria suggests that presumption of a kernel distribution for all

crops and all farms would result in a minimum error (.45), with beta placing

second (.99), normal third (-1.11) and gamma fourth (-1.18). Use of this measure

assumes that the overall objective is to minimize the error across all farms,

without much concern for error at the individual farm level.

An alternative to using mean deviations to select distribution type is the

SRSSE. Since the SRSSE is the geometric mean of the premium deviations for all

of the farm crops, it represents the total deviation regardless of whether the

deviations were positive or negative. Use of the SRSSE therefore minimizes the

deviation at the individual farm level. On average SRSSE is minimized for the

beta distribution (56.8) with the kernel estimates second (46.7). Gamma and

normal distributions had the highest average SRSSE with 48.2 and 56.8,

respectively.

Neither the mean deviation or SRSSE provide consistent assessments across

Except for soybeans the deviation is lowest for the kernel function,crops.

although for soybeans the difference between the minimum (for normal

distribution) and the kernel function, are not statistically different from one

another. In contrast, SRSSE indicates minimum error with a beta distribution for

wheat and corn, a gamma distribution for grains and white beans and a normal

distribution for soybeans.

The ambiguity in the rankings of the distributions in Table I and the clear

differences in their premium estimates in Table II provide an added complication

to the insurance problem. Clearly it would be impractical and costly for

insurance agencies to first approximate each distribution and then test to find
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which provided the minimum error relative to the empirical data in order to

compute actuarial premiums. It would, therefore, be advantageous for insurers to

adopt a single distribution form which minimizes the error in premiums.

The results thus far show that either the beta distribution or the kernel

estimator could be used for setting premiums. As shown in Table I the beta

distribution was selected as best of the 3 parametric forms for 50.08(% of all

cases while the normal and gamma distributions were best for only 28.08%„ and

21.84 of the cases, respectively. Based on the premium deviation criterion the

kernel estimator could not be rejected as the 'best' criterion in 305 of the 609

cases (50%).

In comparing the non-parametric distribution to the three parametric ones

the kernel was rejected in 134 of 171 cases where the normal distribution was

considered best; in 79 of 305 cases where beta was considered best; and 91 of 133

cases in which gamma was considered best. The kernel was pot rejected in 268 of

438 cases in which the normal distribution was rejected; 79 of 304 cases in which

beta was rejected; and 263 of 476 cases in which gamma was rejected.

What is interesting about these results is the flexibility which the kernel

estimates possess: In the absence of unambiguously defined parametric

distributions the kernel estimates are able to mimic all 3 parametric

distribution types and in the process generate premiums with minimal error

against the 'best' of the 3 distributions in at least 50%, of the cases. There

is an advantage in this; by minimizing the error in distribution choice, with the

added flexibility of a non-parametric form, the kernel estimate can more

accurately reflect yield risk, thereby increasing the likelihood that premium

estimates are correct and thus minimizing the problem of adverse selection.
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CONCLUSIONS

The problem of adverse selection is one in which insureds have more

information about the probabilities of risky outcomes than the insurers. In the

context of crop insurance this study has illustrated the ambiguous nature of

Ontario crop yield distributions. This ambiguity spanned both crop type and

region. In the absence of perfect information it would appear, therefore, that

adverse selection cannot be eliminated without substantial information costs

assessing each crop's distribution.

The kernel function in this study has shown substantial flexibility in

minimizing errors in premiums. That is, flexibility in the nonparametric form

can approximate, in 5n of the cases, the appropriate level of down-side risk on

which premiums are based. However, this implies an overall type II error of 5n.

Nonetheless, in terms of mean error it was found that errors (measured relative

to the empirical distribution) in premiums were generally low with the kernel

function. Unfortunately, such gains in efficiency are obtained only with the

added complexity of the kernel estimator.

Finally, although there is a substantial variance in the premiums across

,farms, the average range of premiums does not appear to be high on a per acre

basis. However, crop insurance is considered a variable cost of production, and

any errors, even moderately significant, can have an effect on farmers' budgeted

returns. For example, an error of $5.27/acre for grain in Russel county could

account for a decrease in per acre returns of greater than ln. The extent to

which farmers acknowledge possible errors depends upon their own perception of

underlying down-side risk relative to that reflected in the offered premiums.

The behaviourial response to perceived differences is the mitigating factor for

adverse selection and moral hazard. The extent and costs of adverse selection
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and moral hazard is left for future study.
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Table I: Candidate Yield Distributions of Ontario Field Crops

Number of Number of Expected . Number of Farms'

County Crops Observations Farms Yield a Normal Beta Gamma

Prescott Grain 18 23 53.85 23.39 15 7 1 Corn

18 43 76.59 20.68 15 23 5

Russel Grain 17 21 43.28 18.04 3 11 7

Corn 18 33 79.35 21.08 7 21 5

Dundas Corn 14 34 82.76 16.19 7 19 8

Ottawa Grain 18 24 52.60 16.88 16 7 1

Corn 18 44 84.78 12.81 7 29 8

Wellington Grain 14 30 63.67 12.40 6 18 6

Corn 15 25 82.01 12.48 8 5 12

Norfolk Wheat 14 14 38.76 9.12 4 7 3

Perth Wheat 15 16 64.25 7.55 6 7 3

Grain 18 25 65.40 11.69 10 11 4

Corn 19 32 99.39 16.14 8 17 7
Soybeans 8 31 36.23 3.44 4 12 15
White beans 19 28 23.88 5.85 14 11 3

Kent Corn 18 19 115.71 13.40 5 9 5
Soybeans 19 29 38.28 7.55 6 15 8

Essex Corn 17 8 102.01 21.54 1 6 1
Soybeans 19 36 35.42 7.48 7 19 10

Lambton Wheat 18 5 65.96 7.98 0 4 1
Corn 17 16 106.50 17.47 4 11 1
Soybeans 19 21 33.71 5.27 6 12 3

Middlesex Wheat 16 12 60.04 7.84 3 3 6

Corn 18 21 103.20 12.95 5 12 4
Soybeans 13 19 34.80 2.37 4 9 6

Summary Wheat 47 13 21 13
Grain 123 50 54 19

Corn 275 67 152 . 56
Soybeans - 136 27 67 42
White beans 28 14 11 3

Total 609 171 305 133
Percent 100 28.08 50.08 21.84

• The numbers in these 3 columns represent the frequency by which the 'best. distribution was selected usingtheK-S
test and the lowest D. value. For example, of the 23 farms in Prescott county growing grain, 15 farmshadyieldsbest characterized
by a normal distribution, 2 a beta distribution and 2 a gamma distribution. For all farms and all crops 28.08% were. 'best.
characterized by a normal, 50.08% beta, and 21.84% gamma distributions.
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Table Mean Crop Insurance Premiums of Different Estimators

County Crop Elected Price Normal Beta Gamma Kernel Range'

($/bu.) ($/acre) ($/acre) ($/acre) ($/acre) ($/acre)

Prescott Grain 2.02 9.64 14.4 11.9 10.7 4.76

Corn 2.89 15.2 19.4 15.7 18.7 4.20

Russel Grain 2.02 8.33 13.6 11.4 10.5 5.27

Corn 2.89 14.4 17.9 14.3 18.1 3.80

Dundas Corn 2.89 8.64 10.8 8.40 10.3 2.40

Ottawa Grain 2.02 8.58 11.2 9.19 9.33 .75

Corn 2.89 8.95 11.2 8.64 11.4 2.76

Wellington Grain 1.86 4.36 5.43 4.14 5.58 1.44

Corn 2.67 6.28 7.60 5.77 7.01 1.83

Norfolk Wheat 3.13 5.67 6.99 5.54 6.77 1.45

Perth Wheat 3.81 2.38 3.39 2.10 3.34 1.29

Grain 1.86 4.49 5.46 4.24 5.62 1.38

Corn 2.67 6.86 8.31 6.11 8.78 . 2.67

Soybeans 6.21 2.35 3.64 2.31 2.88 1.33

White beans 9.12 11.9 14.4 11.4 12.3 3.00

Kent Corn 2.57 4.78 6.06 4.23 6.02 1.79

Soybeans 6.21 7.04 8.40 6.33 8.56 2.23

Essex Corn 2.57 8.96 10.8 8.10 11.2 3.10

Soybeans 6.21 8.20 9.75 7.55 9.73 2.20

Lambton Wheat 3.13 1.43 2.14 1.21 2.38 1.17

Corn 2.57 6.53 8.22 5.91 8.92 3.01

Soybeans 6.21 5.02 6.12 4.46 6.41 1.95

Middlesex Wheat 3.13 2.61 3.40 2.32 3.17 1.08

Corn 2.57 5.23 6.56 4.65 6.94 2.29

Soybeans 6.21 3.52 3.50 2.29 3.15 1.23

Average' Wheat 3.32 4.33 3.09 4.22 1.24

Grain 6.88 9.64 7.83 8.15 2.76

Corn 9.33 11.7 9.05 11.7 2.65

Soybeans 5.34 6.63 4.88 6.49 1.61

White beans 11.90 14.40 11.40 12.30 3.00

The range indicates the difference between the highest premium and the lowest premium. For example, gmdmirmium

in Prescott county range from a low of $9.64/acre for the normal distribution, to a high of $14.40/acre for the beta distribution.

The difference is $4.76/acre.

The averages reported here are measured across all farms and counties.
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Table III: Evaluating Different Estimators With Premium Deviation ($/acre).a

Crop Measure Normal Beta Gamma Kernel

Wheat Mean -.48 .53 -.71, .41*

Standard Deviation .73 .55 .68 .69

SRSSE 6.02 5.22* 6.75 5.50

Spring Grain Mean -1.38 1.39 -.42 -.10*

Standard Deviation 2.43 1.93 1.73 2.08

SRSSE 30.9 26.3 19.8* 23.0

Corn Mean -1.38 .96 -1.67 .93*

Standard Deviation 2.30 1.40 1.61 1.93

SRSSE 44.5 28.1* 38.5 35.6

Soybeans Mean -.57* .73 -1.03 .58
Standard Deviation .92 .90 1,.04 1.11

SRSSE 12.7* 13.5 17.10 14.4

White Beans Mean -.88 1.62 -1.36 -.45*
Standard Deviation 1.49 1.64 1.53 2.17
SRSSE 9.16* 12.22 10.8 11.7

Average Mean -1.11 .99 -1.18 .54*
Standard Deviation 2.02 1.43 1.55 1.81
SRSSE 56.8 39.1* 48.2 46.7

a The means in this table are computed by subtracting the premiums under
each category from the parametric distributions found to be 'best' using
the K-S, Dr, criteria. For example, if wheat yield distributions were
assumed to be normal, the mean deviation across all wheat crop

distributions from the 'best' distribution is -.48. The standard deviation
is the standard deviation of the differences.

The SRSSE = T E (deviation)2 as defined in equation (11). Values which

i=1

are starred (*) indicate a minimum for the criterion indicated.
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ENDNOTE

1. To be more precise, other kernels including the biweight, the normal and

the Epanechivok, were also tried (see Silverman). Biweight and Triangular

results were comparable, and normal and Epanechivok were comparable, but

results from the former were more realistic than the latter. In addition,

an adaptive kernel, in which h is constructed to differ at varying

locations, was also tried but improvements were negligible.

2. If f(x) is an estimate of the true distribution f(x) then the mean square

error (MSE) is E(f(x) - f(x)12 and the mean integrated square error is MISE

= fMSE (f(x))dx = E f[f(x) - f(x)12dx. The MSE measures error at a point

whereas MISE is a global measure of efficiency.
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