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Abstract 

A Markov decision model is used to determine optimal management strategies 

for controlling an agricultural pest. The management options evaluated include 

the use of resistant varieties, nonhost crops, and chemical control. Decision 

rules were sensitive to expected product prices and yield of nonhost crop. 
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Figure l. Block Diagram Representation of a Multi-Season Control Process 
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( 1 ) 

where Xh, the level of infestation at harvest, is a function of XP and dp the 

infestation level and decision occurring at planting, respectively. Ip 

Illinois the fall temperatures are too cool to allow further hatch of the SCN, 

thus the life cycle is terminated for the season with the infestation at 

harvest providing a good estimate of preplant density in the upcoming 

season. eh is a stochastic disturbance term which represents the factors that 

we are unable to incorporate into our model given our present understanding of 

the system. More will be said about the statistical properties of the 

disturbance term in later sections. 

The data required to estimate Eq. (1) were obtained from SCN population 

dynamics experiments performed by members of the Department of Plant Pathology 

at the University of Illinois. By combining the results from two experimental 

plots, fourteen observations relating preplant infestation to infestation 

level at harvest were available for each of the three soybean management 

alternatives. Statistical results using ordinary least squares (OLS) are 

reported below. 

Intuitively, we expect that a zero level of SCN at planting would be 

associated with a zero level at harvest. Thus, the regressions relating SCN 

at harvest to preplant density were fit through the origin. For the no 

treatment alternative, the data indicated that SCN counts at harvest reached a 

maximum, then begin to decline at higher levels of preplant infestation. A 

quadratic equation was used to characterize this behavior 

X = 3.0343X 
h (0.91) p 

0.0682 x2 
(-1 .54) p 

(2) 
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where Xh and Xp are cyst counts per 250 cc 3 of soil at harvest and at 

planting, respectively. Coefficients in parentheses are computed t-values. 

Under the chemical control alternative a simple linear equation appeared 

to fit the data quite well. 

xh = l .2465 xP • 
(3.79) 

(3) 

Lastly, a semi-logarithmic form was found to perform well for the 

resistant variety option. 

xh = 3.2717 ln (X ) • 
(2 .63) p 

(4) 

Unfortunately, the data set did not contain observations relating SCN 

density to crop rotation. However, the University of Illinois Cooperative 

Extension Service reported that when corn is used as a nonhost crop for SCN 

control, the population is reduced by 50 to 90 percent (Edwards et al. 

1982). The midpoint of this range, 0.70, provides an estimate of the rotation 

effect. 

The Influence of SCN on Soybean Yield 

Since the management alternatives we are considering are available only 

at the beginning of the season, it seems reasonable that an estimate of crop 

yield as a function preplant infestation level would be extremely useful in 

determining the optimal decision. Regression analysis of the yield data 

obtained from the SCN-population experiments did not indicate a statistically 

significant relationship between preplant infestation and commercial soybean 

yield due to the low densities observed, however, data from other experimental 
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plots in which densities were higher do indicate significant yield effects 

when susceptible varieties are grown. Using a semi-logarithmic 

transformation, the following results were obtained for the treated and 

untreated susceptible variety alternatives, respectively, 

Y = 57.571 - 3.698 ln (Xp) 
(23.53) (-5.89) 

Y = 45.031 - 4.293 ln (Xp) 
(19.02) (-6.31) 

(5) 

(6) 

where Y is soybean yield and Xp is the preplant infestation level of SCN. 

Since the available data did not indicate a yield effect for the resistant 

variety alternative, a mean yield of 33.91 bushels per acre computed from the 

experimental data was used as an estimate of expected soybean yield when 

planting resistant varieties. 

The Economic Optimization Model 

Having developed the biological component of the system we are now in a 

position to discuss the economic model and its optimization. Let us initially 

consider the deterministic net returns realized at any stage in the planning 

horizon. These net returns are functions of product prices, crop yields, and 

production costs. Keeping in mind that soybean yield is a function of both 

the numbers of SCN present and the decision at planting we can write the 

following net return function for the three soybean alternatives. 

( 7) 
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For corn, the net return function is simply 

n = o* (PSB*YC - c (C)) (8) 

where o is the discount factor. PSB and PC are tt1e product prices of soybeans 

and corn, respectively. Similarly, Y and YC are the yields of soybeans and 

corn, respectively. The function c( •) denotes the respective non-land 

variable cost for each alternative. c(•) will reflect any differences due to 

crop selection, pesticide application, and costs associated with susceptible 

or resistant soybean seed. 

Our interest is in the inter-temporal solution which is characterized by 

the population dynamics of the SCN. Given the discrete nature of the decision 

structure, it is convenient to view the management problem as a sequential 

Markov decision process solvable via dynamic programming. Within the Markov 

decision framework, a particular level of infestation is defined to be a 

state-of-the-system. Thus, Eq. (l} can be thought of as the state 

transformation function relating changes in the level of SCN to a particular 

decision and stochastic disturbance. 

For purposes of solution, the transformation function is mathematically 

described in terms of discrete conditional probabilities. The fundamental 

dynamic programming recurrence relation for this optimization is written as 

follows 

k 
= max 1f. + 6 

1 
dk 

M k 
E pi j VJ. ( n - l ) • 

i = l 
(9) 

Defining terms, we have Vi(n) as the total expected return resulting from an 

n-stage process for i = l, ••• ,M discrete levels of the state variable. We 
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define n as the number of stages remaining in the process. For large n we 

expect the optimal policy to converge, thereby providing the optimal decision 

rule for any state of the process regardless of stage. k is the subscript 

denoting the decision variables d, where k = 1 ,2,3,4 for this application 

and o has been previously defined as the discount factor. The p~j are the 

conditional Markovian transition probabilities. For a given decision k and 

given state i, p~j is the probability that the state of the process will 

transit to state j in a specified time interval. Further discussion of the 

transition probabilities and their estimation is reserved for a later 

section. 

The Role of Product Prices in a Pest Manag~ment Model--A Digression 

At any stage in the decision-making process expectations concerning 

product prices are an important feature of the management system. In an 

economic setting, information is gathered and decisions are based on the 

relative profitability or the utility associated with the relative 

profitability for each of the available management alternatives. Since the 

traditional economic threshold commonly encountered in the pest management 

literature is price dependent it seems reasonable to incorporate a price 

expectation or forecast mechanism directly into our model, especially since 

the decision rules we wish to derive are inter-temporal and involve the choice 

between multiple products. Little is known about the process by which farmers 

formulate expectations even though it is widely recognized that price 

expectations are an important component of economic behavior models (Fisher 

and Tanner 1978). The question then becomes, what is an adequate formulation 

of expectations in an applied model? Two criteria are advanced here. First, 

to be viable, the expectations model or mechanism must possess some predictive 
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ability, and second, in order for the overall pest management model to be 

operational, the mechanism should be as simple as possible. 

One possibility for a price expectation mechanism is use of the futures 

market. Several agricultural economists have examined the explanatory role of 

future market prices and found that the futures prices for storable 

commodities perform quite well in relation to either sophisticated 

expectations mechanisms, such as the adaptive expectation and partial 

adjustment models developed by Nerlove (1958) or large scale econometric 

models (Gardner 1976, Just and Rausser 1981). The literature suggests that 

future prices provide an unbiased point estimate of the subsequent spot 

price. 

Some of the early empirical work in this area was done by Tomek and Gray 

(1970). In their article, it was argued that for commodities such as corn and 

soybeans in which continuous inventories are maintained 11 the spring-time price 

of the harvest-time contract is, • , a reasonable forecast of the 

subsequent harvest-time price. 11 The authors then tested the following linear 

statistical models 

HTPC = a + b * STHC + u (10) 

HTPSB = a + b * STHSB + u {11) 

where HTPC and HTPSB are the closing prices on expiration date of corn and 

soybeans for the December and November futures contracts, respectively. STHC 

and STHSB are the closing corn and soybean prices for the December and 

November contracts on the preceeding April 30, respectively. The variable u 

is a stochastic disturbance term. 
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Conceptually, if the intercept term, 11 a 11 , is not significantly different 

from zero and the slope term, 11 b11 , is not significantly different from l, the 

expectation or forecast is self-fulfilled. In their analysis, Tomek and Gray 

estimated Eqs. (10) and (11) and obtained meaningful results. Based on their 

results and the findings of other studies, it seems that the Tomek and Gray 

specification would be appropriate for our purposes here. The same equations 

were re-estimated using data for the period 1969-1982. A discussion of the 

analysis is presented below. 

Statistical results for the corn and soybean price equations are shown in 

Table l. Both intercept terms were not significantly different from zero 

using a standard hypothesis test. Significance of the slope term was 

determined using a linear restrictions test under the null hypothesis that the 

slope was not significantly different from one (Johnston 1972). The results 

support the Tomek and Gray hypothesis, further still, the price equations 

fulfill the criteria established earlier for an expectations formulation. 

Statistically, the equations perform well. In addition, the functional form 

is quite simple. The reader will note, however, that the above relation is 

non-Markovian, this, of course, has implications for purposes of solution. 

To determine the optimal set of decision rules using the future price 

specification the following optimization problem will be solved. First, the 

long run average spring-time futures price can be used as a deterministic 

value in a multi-stage model with SCN infestation as the only probabilistic 

element. Upon convergence, the total expected return from the multi-stage 

optimization is used as a terminal value for the one-stage problem. The one

stage problem is then solved for various combinations of corn and soybean 

prices. Thus, the decision rule is conditional upon product prices even 

though the expectations mechanism is non-Markovian. An example of this type 
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Table 1 Statistical Results for the Corn and Soybean Price Equations 

Intercept Slope "2 R2 F C1 

Corn 
o. 7776 0.6659 0.3344 0.47 10.69 

dfc = 12 
(-l.64)b (l .59)a 

Solbeans 
1.3194 0.7947 1.612 0.60 18.05 

dfc = 12 
(-1.lO)b 

a 

b 

c 

(l .27)a 

Computed t value under the null hypothesis that the intercept is not 
significantly different than zero. The levels of significance were 
approximately 14 percent and 22 percent for corn and soybeans, 
respectively. 

Computed t value under the null hypothesis that the intercept is not 
significantly different than one. Levels of significance were 
approximately 11 percent and 30 percent for corn and soybeans, 
respectively. 

Degrees of freedom on 14 observations for the years 1969 through 1982. 



13 

of problem formulation is found in Burt and Allison (1963). In terms of 

computational burden, the above formulation is quite advantageous. If the 

price relationships were Markovian, two additional state variables would be 

required for the multi-stage problem. Also, since expectations enter the 

objective function linearly, and the decision rule is one-stage, we need not 

be concerned with the bivariate probability distribution of product prices. 

An Illustrative Example 

To illustrate the operation of the model, a numerical example is 

presented in this section. In our model, the stage of the process is defined 

to be a single growing season for either corn or soybeans. At the beginning 

of the season the preplant infestation level of the SCN is known. With this 

information, expectations for the current crop yield and the infestation level 

in the next crop season can be formulated. Let us designate four discrete 

state variable levels of preplant infestation levels as low, moderate, severe, 

and very severe indexed i = 1, ••• ,4, respectively. Expected yields and net 

returns for each management alternative and each state level are given 

below. 

Chemical Control Alternative (Susceptible Variety) 

Infestation Level (i) Expec~ed Yield Y(i,SVT) Expe~ted R~~~.!.~ __ C!iVT.l_ 

Low (1) 

Moderate (2) 

Severe ( 3) 

Very Severe (4) 

40.0 

36.0 

33.0 

30.0 

135.8 

111 .8 

93 .8 

75.8 
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Resistant Variett Alternative 

Infestation Level ( i ) Expected Yield Y(i ,RV) Expected Return ( n~v) 
l 

Low ( 1 ) 34.0 129.8 

Moderate (2) 31.5 114 .8 

Severe (3) 29.0 99.8 

Very Severe (4) 28.0 93.8 

In this example it is assumed that susceptible varieties are higher yielding, 

yet at higher infestations the expense of nematicides favors the use of 

resistant varieties. Since corn is a nonhost, its yield and return are 

independent of infestation level. A net return of $100.2 for corn is used in 

this example. The transition matrices under each alternative are as follows: 

Chemical Control Alternative 

State i/j 2 3 4 

0.9674 0.0326 o.o o.o 

2 0.8095 0. 1905 0 .o o.o 

3 0.6079 0. 3921 o.o o.o 
4 0.5146 0.4854 o.o o.o 

Resistant Vari ett A 1 ternat i ve 

State i/j 2 3 4 

0.991 0.009 o.o o.o 

2 0.4956 0.5044 o.o o.o 
3 o.o 0.8324 0 .1676 o.o 

4 o.o 0.3902 0.6098 o.o 
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Nonhost Cro~ Alternative 

State i/j l 2 3 4 

l l .o o.o o.o o.o 

2 0.521 0.479 o.o o.o 

3 0.479 0.4272 0.0938 o.o 
4 0.0938 0.4272 0.479 o.o 

Using a discount rate of 0.03 which is equivalent to a 6 of 0.97 and assuming 

the terminal values, the Vi(O), to be zero, we can write the recurrence 

relation occurring at each state level for the first stage. 

[ ( .. s1 VT+ M SVT ( ) ) ( RV * M RV ( ) ) max II 6* t Pij vj 0 ' lfl + 6 t Pij vj 0 ' 
{SVT ,RV ,C} 

= max[(l35.8 + 0.0), (129.8 + 0.0), (100.2 + 0.0)] 

= 135.8; for which the optimal decision is di (1) = SVT. 

= max[(lll.8 + o.o), (114.8 + o.o), (100.2 + o.o)J 

= 114.8; for which the optimal decision is d2 (1) =RV. 
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= max[(93.8 + o.o), (99.8 + o.o), (100.2 + o.o)J 

= 100.2; for which the optimal decision is dj (1) = C. 

( ) [( SVT M SVT ( )) ( RV M RV ( )) v4 l =max ~4 + o* r p4j vj o , ~4 + o* r p4j vj o , 

= max [ ( 7 5. 8 + O. O) , ( 9 3. 8 + O. O) , ( l 00. 2 + 0. 0) ] 

= 100.2; for which the optimal decision is d4(1) = C. 

Summarizing the results for Stage 1: 

Second Stage Recurrence Relation for State 1 
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= max[(nSVT + ~*(pSVT V (l} + PSVT V (l} + 
l 11 1 12 2 

. 

pr~T V3(l} + pr~T V4(l}}}, (n~V + ~*(p~r Vl(l} + 

= max[(l35.8 + (0.97)*(0.9674* v1(1) + 0.0326* v2(1) + 

0.0* V3(1) + 0.0* V4(1)}), (129.8 + (0.97)*(0.991* v1(1) + 

(100.2 + (0.97)*(1.o* v1(1} + o.o* v2(1) + o.o* v3(1) + 

= max[267.66, 261.48, 232.06] 

= 267.66; for which the optimal decision is df(2) = SVT. 

Stage 2; State 2 
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= max[(lll.8 + (0.97)*(0.8095* v1 (1) + 0.1905* v2(1) + 

0.0* V3(1) + O.O* V4 (1 ))), (114.8 + (0.97)*(0.4956* V1(1) + 

(100.2 + (0.97}*(0.5210* v1 (1) + 0.479* V2(1) + 

= max[239.78, 236.25, 222.17] 

= 239.78; for which the optimal decision is d2(2) = SVT. 
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Stage 2; States 3 and 4 

V3(2) = 220.ll; dj(2) = C 

Stage 3; All States 

v3(3) = 343.89; d3(3) = C • 

Thus, for one stage the optimal policy is chemical control when 

infestations are low, and at moderate levels select the resistant variety. As 

infestations becomes severe, farmers should rotate to corn. Solving for the 

next two stages we find that the resistant variety is relatively less 

profitable over time at moderate infestation levels than the option to use 

chemical control. For stages 2 and 3 the optimal policy was to use chemical 

control at low and moderate infestations while higher infestations required 

rotation to the nonhost crop. Inspection of the second row of the transition 

matrices for the resistant variety and chemical control options reveals why 

this is indeed the case. If the process is in state 2 the probability of 

transiting to state l under chemical control is quite high, 0.8095, relative 

to the 0.4956 probability associated with the use of the resistant variety. 
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The example just shown was purely hypothetical and served only to 

illustrate to the reader the structure of the model and the optimization 

procedure. In a later section, an empirical application of the model 

involving more state variable designations and an additional decision variable 

will be presented. Numerical solution of this larger problem is obtained by 

computer. 



21 

III. ESTIMATION OF PROBABILISTIC ELEMENTS 

The transition probabilities referred to earlier are a key feature of our 

decision model. In this section a method for systematically estimating these 

elements will be presented. The method is general in its approach, however, 

only a special case will be shown here since our primary focus in this paper 

is the overall modeling effort. 

Mathematically, we are interested in the cummulative distribution 

function (cdf) of the preplant infestation level in the current season which 

is dependent upon the infestation and decision taken in the previous season. 

Since the decision taken is deterministic we can ignore its presence in the 

discussion which follows. For a first order Markov system, the level of SCN 

infestation, Xh, is a random variable which takes on discrete values as the 

production process transits from state to state. Following the notation of 

Lee et al. we can write. 

x.1x = x.) 
J p 1 

= P· .(t) = lJ pij for all t. ( 12) 

The above probability statement tells us that the value of the random 

variable, Xh, is conditional only on its value in the preceeding time 

interval; further, this conditional probability is constant across all time 

intervals. For the probability statement to be valid, we require 

and 

0 ( p. . ( l .o 
lJ 

M 
E 

j=l 
p .. =l.O. lJ 
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Anderson and Goodman (1957) have shown that the maximum likelihood (ML) 

estimator of Pij is 

M 
P·. = x .. / l: x .. 
1J 1J i=l 1J 

( 13) 

where the right hand side of (13) is the sample frequency of going from i to j 

for all states i = 1, ••• , M. In certain applications to decision analysis the 

Anderson and Goodman estimator is undesirable since the data required to 

estimate equation (13) may be few relative to the number of state variable 

designations one might wish to specify. The estimated transition 

probabilities would be 11 rough 11 as indicated by a substantial number of empty 

cells and trapping states in the transition matrices. 

Taylor (1981) has recently proposed an alternative procedure for 

estimating the probability parameters of Markov-type decision processes which 

yields a continuous cdf and is readily applicable for computer-based models. 

The method requires an hyperbolic trigonometric (HT) transformation of the 

data and allows the researcher to statistically estimate the cdf directly 

using either OLS or ML. The HT transformation is sufficiently flexible so 

that the more common theoretical distributions can also be estimated 

Additionally, the procedure constrains values to fall within the range zero-

one. 

For the problem of determining the probabilistic movement of SCN 

infestations consider the following transformation. 

( 14) 
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where F(•) is a continuous cdf, tanh is an hyberbolic tangent transformation, 

and G(•) is an implicit function. Two approaches for estimating the parameters 

of F(•) have been suggested Taylor (1983) 1• The first is to estimate (14) 

directy2• Direct OLS estimation for the susceptible variety alternative 

resulted in the following cdf 

0.5 + 0.5 tanh [-1.1709 + 0.0065 xh 
(-0.29) (0.31) 

+ 1.078 E-7 (Xh•Xp) 2 - 4.928 E-6 XX~+ 1.53 E-7 X~]. 
(l.39) (-1.29) p (l.06) 

(15) 

The second approach which is shown here is somewhat simpler and applies 

the state transformation equations estimated in Section II. To simplify 

matters it was assumed that the stochastic disturbances were normally 

distributed. Using the estimated equation which relates SCN at planting to 

SCN at harvest for the chemical control alternative we can write the following 

conditional probability density function (pdf). 

{16) 

where a is the estimated coefficient of the regression equation and an 
,. 

estimate of ae is given by ae. The standardized error is: 

1 
2 

,. 

Xh - aX z = ___ .._p ( 17) 

Personal Communication, September 30, 1983. 
A full description of the direct estimation procedure is somewhat tedious 
and inappropriate here. The interested reader should see Taylor (1981). 
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Since a particular state designation for a transitional probability (Pij) is 

merely a range of values, upper and lower limits of the standardized error can 

be determined in order to specify the upper and lower limits for the range of 

the future state, state j, given the current state, state i. This can be done 

by computing two values for the standardized error. 

.... .... 

ZU = (Xh(U) - a Xp)/ae ( 18) 

.... .... 

ZL = (Xh(L) - a Xp)/ae ( 19) 

where U and L respectively denote the upper and lower limits of the future 

state as determined by the researcher and Xp is set equal to some measure of 

central tendency for the range of the current state, usually the midpoint. 

An hyperbolic tangent transformation which approximates the normal cdf 

(Taylor, 1981) is F(Z) = 0.5 + 0.5 tanh (0.7971*Z + 0.0371*Z3 - 0.003923*z5. 

Hence, the cumulative distribution values for ZU and ZL are 

F(ZU) = 0.5 + 0.5 tanh(0.797l*ZU+0.037l*ZU3- 0.003923*ZU5) (20) 

F(ZL) = 0.5+0.5 tanh(0.797l*ZL+0.037l*ZL3-0.003923*Z5) (21) 

where ZU and ZL are the respective upper and lower values of the approximated 

cdf. For any Pi j, ZU represents the upper bound on the cdf for state j given 

state i. Likewise, ZL represents the lower bound on the cdf for state j given 

state i. Since Pij is simply the area under the normal curve, 

P;j = F(ZU) - F(ZL). (22) 
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Sensitivity of the optimal decision with respect to the estimated 

transition probabilities can be determined by altering (i) the upper and lower 

limits of the state variable designations; (ii) the estimate of the standard 

deviation used to normalize the disturbance terms; or (iii) by respecifying 

the form of the cdf. The above procedure is easily implemented for co;nputer 

applications in which a nontrivial nwnber of state variable designations is 

desired. Transition matrices for each alternative at ten discrete levels of 

the state variable are presented in the Appendix. The reader should be warned 

that the d1ta used in estimating the parameters of the transition matrices are 

quite limited and do not encompass the entire range of possible SCN 

infestation levels. Also, the assumption of normality for the SVT, RV, and C 

alternatives may or may not be appropriate. For these reasons, the 

distributions depicted should not be considered as an adequate description of 

the actual process, but rather an initial attempt to :nodel the system. 
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IV. THE ANALYSIS 

Two sets of results are presented in this section to illustrate the 

applicability of the model in analyzing the SCN control process. Because the 

confidence intervals encompassing certain estimates of parameter values used 

in the model are quite wide, the extension of these results to actual farm 

proictice would be preinature. 1'\s 1nore and better data become available, the 

estiinaUon and optimization procedures can be re-performed to generate results 

with narrower confidence intervals. 

Nature of the Decision Rule 

The optimal solution is found by solving Eq. (9) for a relatively large 

number of stages, sufficiently large such that convergence in policy space is 

obtained3• That is, upon convergence, the selection of an alternative does 

not change across stages for any given state of the system. For a discounted 

process as we have described here the value of Vi(n) approaches a finite 

number as n + 00 • Moreover, for a stochastic; 'Tiultistaye process, the decision 

rule is a single stage rule and is dependent upon both the state of the 

process and the outcome associated with the random variable. 

Results 

Table 2 contains the numerical values of the coefficients used in the 

model. Generally speaking, these coefficients assume values which are 

representative of farming operations located in Southern Illinois. However, a 

brief statement concerniny product prices is in order. 

3 A computer code developed at Montana State University was used in 
calculating the numerical solutions reported in this section. 
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Table 2 Numerical Values of the Coefficients Used in the Analysis 

Variable Numerical Value 

Price of Soybeams (dollars per bushel) 5.24 

Nonland Variable Production Costs for Soybeans 
(dollars per acre) 75.00 

Nematicide Costs (dollars per acre) 30.00 

Differential Cost Increase for Using 
SCN-Resistant Soybean Seed (dollars per acre) 5.00 

Price of Corn (dollars per bushel) 2.28 

Expected Yield of Corn (bushels pr acre) 105.00 

Nonland Variable Production Costs for Corn 
(dollars per acre) 138.00 

Discount Rate (net of inflation) 0.03 
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Since the estimated coefficients from Eqs. (10) and (11) were 

statistically insignificant, estimates of the expected product price for an 

infinite stage planning horizon were computed by taking the mean of the 

independent variable for the futures price equations {springtime futures price 

of harvesttime contract). Thus, the product prices depicted in the model 

represent the long run expected price the farmer would anticipate when using 

the futures market as a tool in decision making. 

The values in Table 2 along with Eqs. (5) and (6) and the transition 

matrices (see Appendix) completely specify the model and allow us to determine 

an optimal strategy. An interesting aspect of Eqs. (5) and (6) is that for 

all levels of SCN infestation, the chemical control alternative always yields 

a higher level of return than nonchemical control when using fairly 

representative nematicide cost estimates. Although we might expect this to be 

the case at high levels of SCN infestation, this result is somewhat surprising 

at the lower levels. Hence, the nonchemical control alternative does not 

enter the optimal solution. 

The resulting optimal decision rules for various nonhost crop yields are 

presented in Table 3. For the 95 bushel per acre level of corn the resistant 

variety alternative (RV) is more profitable at the higher levels of 

infestation; while at the 105 bushel per acre level the nonhost alternative, 

corn, should be used unless infestations are negligible. The decision rule is 

a bit more complex when the expected corn yield is 100 bushels per acre. At 

this yield level the net return associated with corn in $90.00, the net return 

of RV is $97.66. Inspection of the transition matrices (see Appendix) reveals 

that at intermediate levels of infestation the ability to suppress 

reproduction of SCN is greater for corn and offsets the net return 

differential. This is not the case at the higher state levels, a result which 



30 

Table 3 Optimal Decision Rules for Control of Soybeam Cyst Nematodes Under 
Alternative Assumptions Concerning the Expected Yield of the Nonhost 
Crop 

Expected Corn Yield 
(bushels per acre) 

SCN Infestation 3 
Cysts per 250 cc 95 100 105 

0-5 SVT SVT SVT 

6-10 SVT SVT SVT 

11-15 SVT SVT c 

16-20 SVT c c 

21-25 RV c c 

26-30 RV RV c 

31-35 RV RV c 

36-40 RV RV c 

41-45 RV RV c 

46-50 RV RV c 

1 Notation: SV--The decision to plant an SCN-suceptible soybean variety on 
untreated soil; SVT--The decision to plant a susceptible variety 
on nematicide treated soil; RV--the decision to plant an SCN
resistant soybean variety; c--the decision to plant corn, a 
nonhost crop. 
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conflicts with current thinking in SCN control and indicates an error in the 

present specification of the model. Two probable sources of error are (i) 

lack of sufficient experimental data to estimate the relationship between SCN 

and the nonhost crop and (ii) inappropriateness of the normality assumption. 

Results for the one-stage optimization under alternative produce price 

specifications with expected corn yield at 105 bushels per acre are presented 

in Table 4. Price levels were arbitrarily selected from the futures price 

time series. As expected, only SVT and RV are optimal at a price ratio 

favorable to soybeans. Conversely, the model selects the rotation alternative 

when corn prices are high relative to soybeans. 
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Table 4 One Stage Optimal Decision Rules for Control of Soybean Cyst 
Nematode Under Alternative Product Price Specificationst 

Range on Product Prices 

(dollars per bushel) 

SCN Infestation 
Corn 3.75 2.50 2.80 

Cysts per 250 cc3 Soybeans 8.20 7 .10 6 .75 

(1) 0 - 5 SVT SVT SVT 

( 2) 6 - 10 c SVT SVT 

(3) 11 - 15 c SVT SVT 

(4) 16 - 20 c SVT c 
( 5) 21 - 25 c SVT c 
( 6) 26 - 30 c SVT c 
( 7) 31 - 31 c RV c 
( 8) 36 - 40 c RV c 
(9) 41 - 45 c RV c 
( 10) 46 - 50 c RV c 

t See Footnote Table 2. Corn yield assumed to be 105 bushels per acre. 
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V. SUMMARY 

The model presented in this paper has potential application to a wide 

class of integrated pest management systems in field crop agriculture. Most 

notable is the model's ability to address the issues of rotation to a nonhost 

crop and the use of resistant varieties. With only slight modifications the 

optimal pesticide rate could also be determined within the model. This use of 

multiple controls in a ~namic and probabilistic setting is not encountered in 

most pest management studies (Mccarl, 1981). Additionally, a relatively new 

procedure for estimating probability parameters has been implemented. Thus, 

the analysis shown here represents a unique contribution to the existing 

literature in terms of its application and modeling effort. 

To be sure, the results presented here are tentative and reflect a narrow 

range of experimental conditions. In the future, more emphasis will be placed 

on statistical analysis of the available data and proper specification of the 

probabilistic elements in the model. Also, a thorough sensitivity analysis of 

the model must be performed, which may result in recommendations for further 

experimental work in areas revealed by the sensitivity analysis to be 

important. Finally, future efforts will also consider multiple pest 

infestations and the attitudes of farmers toward risk. 
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Appendix Table 1 Transitional Probability Matrix for the SCN-Susceptible Soybean Variety 
Without Nematicide 

SCN Infestation 3 
Cysts per 250 cc 1 2 3 4 5 6 7 8 9 10 

0 - 5 1 .093 .0055 .0057 .006 .0063 .0066 .0069 .0073 .0077 .8549 

6 - 10 2 .093 .0053 .0053 .0053 .0053 .0053 .0054 .0054 .0054 .8643 

11 - 15 3 .0929 .0051 .0049 .0048 .0046 .0045 .0043 .0041 .0039 .8708 

16 - 20 4 .0929 .0050 .0047 .0045 .0042 .0048 .0037 .0034 .0031 .8746 

21 - 25 5 .0929 .0049 .0047 .0044 .0041 .0038 .0035 .0031 .0028 .8759 

26 - 30 6 .0929 .0051 .0049 .0045 .0042 .0039 .0036 .0033 .0030 .8749 
w 

31 - 35 7 .0929 .0051 .0049 .0048 .0046 .0044 .0042 .0040 .0038 .8714 ""'-I 

36 - 40 8 .0930 .0052 .0052 .0052 .0052 .0052 .0052 .0052 .0052 .8653 

41 - 45 9 .0930 .0055 .0057 .0059 .0061 .0064 .0067 .0070 .0074 .8563 

46 - 50 10 .0931 .0058 .0063 .0068 .0073 .0081 .0087 .0095 .0104 .8440 



Appendix Table 2. Transitional Probability Matrix for the SCN-Susceptible Soybean With Nematicide 

SCN Infestation 3 
Cysts per 250 cc l 2 3 4 5 6 7 8 9 10 

0 - 5 1 .5190 .0502 .0491 .0473 .0448 .0418 .0384 .0347 .0308 .1438 

6 -10 2 .4561 .0505 .0504 .0495 .0478 .0455 .0426 .0393 .0356 .1828 

11 -15 3 .3943 .0495 .0504 .0505 .0498 .0483 .0461 .0434 .0401 .2278 

16 - 20 4 .3350 .0473 .0491 .0502 .0505 .0500 .0487 .0467 .0441 .2783 

21 - 25 5 .2795 .0442 .0468 .0488 .0500 .0505 .0502 .0491 .0473 .3337 

26 - 30 6 .2289 .0402 .0434 .0462 .0483 .0498 .0505 .0503 .0494 .3929 

31 - 35 7 .1838 .0357 .0394 .0427 .0456 .0479 .04950 .0504 .0505 .4547 
w 
CXl 

36 - 40 8 .1446 .0310 .0348 .0385 .0419 .0449 .0474 .0492 .0502 .5176 

41 - 45 9 .1114 .0262 .0300 .0339 .0376 .0411 .0442 .0468 .0488 .5801 

46 - 50 10 .0839 .0216 .252 .291 .0329 .0367 .0400 .0435 .0462 .6406 



Appendix Table 3 Transitional Probability Matrix for an SCN-Resistant Soybean Variety 

SCN Infestation 3 
Cysts per 250 cc 1 2 3 4 5 6 7 8 9 10 

0 - 5 1 .6525 .2631 .0761 .0081 .0002 o.o 0 .o o.o o.o 0 .o 
6 - 10 2 .3776 .3702 .2034 .0453 .0035 .0001 o.o o.o o.o o.o 

11 - 15 3 .2613 .3717 .27 41 .0832 .0094 .0003 0 .o 0 .o 0 .o o.o 
16 - 20 4 .1962 .3533 .3160 .117 .0168 .0007 o.o o.o 0 .o o.o 
21 - 25 5 .1546 .3309 .3419 .1465 .0248 .0013 o.o o.o o.o 0 .o 
26 - 30 6 .1258 .3087 .3579 .1723 .0032 .0021 o.o o.o o.o o.o 

31 - 35 7 .1048 .288 .3675 .1949 .0417 .0031 0 .o 0 .o o.o 0 .o w 
t..O 

36 - 40 8 .0889 .2691 .3728 .2147 .0502 .0041 .0001 o.o o.o o.o 
41 - 45 9 .0765 .252 .3752 .2322 .0587 .0053 .0001 o.o 0 .o 0 .o 
46 - 50 10 .0667 .2365 .3754 .2477 .0669 .0066 .0002 o.o o.o o.o 



Appendix Table 4 Transitional Probability Matrix for Corn 

SCN Infestation 3 
Cysts per 250 cc 2 3 4 5 6 7 8 9 10 

0 - 5 .8023 .1656 .0300 .0021 .0001 o.o 0 .o 0 .o o.o o.o 
6 - 10 2 .7087 .2307 .0552 .0052 .0002 o.o 0 .o o.o o.o 0 .o 

11 - 15 3 .5986 .2957 .0934 .0117 .0006 0 .o 0 .o 0 .o 0 .o o.o 
16 - 20 4 .4801 .3488 .1455 .0240 .0015 o.o o.o o.o o.o o.o 
21 - 25 5 .3633 .3788 .2085 .0454 .0039 .0001 o.o 0 .o 0 .o o.o 
26 - 30 6 .2580 .3788 .2748 .0791 .0090 .0004 o.o o.o o.o o.o 

+:> 
0 

31 - 35 7 .1 711 .3488 .3332 .1267 .0190 .0011 0 .o o.o o.o 0 .o 
36 - 40 8 .1056 .2957 .3719 .1867 .0371 .0029 .0001 o.o o.o o.o 

41 - 45 9 .0605 .2307 .3822 .2530 .0664 .0069 .0003 0 .o o.o o.o 
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