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Summary — The statistical languages and softwares wsed in economics vepresent nume-
rical data in multidimensional tables by means of the usnal conventions of classical alge-
bra. This logical model, when associated with numerical compurations, is not very effec-
tive in veorganmizing magor sets of hetevogeneous and complex data, e.g. in harmonizing
Surveys, monitoring panels, managing multiple nomenclatures, constructing time series,
recognizing bierarchical structures, etc.

The theory of relational algebra makes it possible to define an alternative logical model
of representation of multidimensional data which relies on the index notation of the sta-
tistician. The data are represented in the form of sets of n-tuples, each element being iden-
tified by a single identification “key” which corvesponds to the index values for an obser-
vation. This model makes it possible, through the use of simple mathematical rules, to
formalize cumbersome and appavently complex operations, such ar the handling of surveys
over 2 long period or the use of a single nomenclature to deal with data obtained from
differing institutional contexts, The reorganisation of the data is carvied out by means of
the so-called “relational algebra” operations devived from ser theory. A “vectorisation”
Junction makes 1t possible te genevate classical data structures that are recognized by sta-
tistical langnages and softwares.

The application of vhis theoretical approach raises some practical difficulties with some
relational data base management softwares, and this entails analysing the minimum
Jfunctianalities needed ro manage effectively the major staristical data bases. Market soft-
wares appear to bave been developed in a high-flow transactional framework, in which a
substantial number of users make vegulay day to day changes from their personal compy-
ters. However, the statistician needs a system that is able to extract and reorganize a
large flow of factual informations, and to manage the hievarchical relations in these
magor sets. This paper attempts to define a “benchmark” whose function is to give an ac-
count of the bebaviour of a system concerning limating velational calculation operations.
This theoretical analysis 15 completed by a description of the findings obtained when mo-
delling feed consumption, By means of this example, we are able to make more explicit the
methods used in order to carry out matricial calculation with relational algebra opera-
tors. To conclude, the stmple relational model, as it was defined and used in the seventies
is sufficient ar the present time to move beyond proprietary bavdware and software, and
to define solutions to deal with present and future computing configurations in research
laboratory enviranments.

Résumé — Les logiciels statistiques représencent les données numériques dans des
tables avec les conventions usuelles de 'algébre classique. Ce modele logique est
peu efficace pour rescructurer de grands ensembles de données hérérogéncs et
complexes : harmonisation d'enquétes, suivi de panels, gestion de nomenclatures,
construction de séries chronologiques, reconnaissance de structures hiérarchisées,
etc.

TLa théorie de 'algébre relationnelle permet de définir un modéle alternatif de re-
présentation de ces données, qui s'appuie sur la norarion indiciaire usuelle. La ré-
organisacion des données s'exprime au moyen d'opérations ensemblistes dites de
“calcul relationnel”. Une fonction de “vectorisation” permet de générer les tables
reconnues par les logiciels statistiques. L'application de ce modtle théorique pose
des problemes avec les logiciels du commerce, ce qui conduir 3 analyser les fonc-
tionnalités minimales requises pour gérer efficacement les grandes bases stacis-
tiques, et & proposer un test d'évaluation des performances.

* Station d'éonomie et sociologie yurales de VINRA, 65, rue de Saint-Brieur, 35042
Rennes cedex.
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es ressources informatiques nécessaires pour effectuer les traite-

ments statistiques en sciences sociales ont pendant longtemps été
fournies exclusivement par les Centres de calcul. Dans le courant des an-
rées 80, le micro-ordinateur a pris place a c6té du terminal classique.
Laccroissement exponentiel de la puissance de calcul offerte et I'explo-
sion de l'offre logicielle ont entrainé un transfert progressif des traite-
ments statistiques usuels vers des équipements individuels. Les grands
fonds d’informations statistiques, telles les enquétes nationales et les sta-
tistiques internationales, demeurent néanmoins sur des serveurs cen-
traux. Ils sont régulierement interrogés pour extraire des jeux de don-
nées, transmis sous forme de fichiers pour des traitements locaux.

Les années 90 voient l'arrivée sur le marché des stations de travail et
serveurs de laboratoires, qui offrent en local les ressources matérielles et
logicielles et la puissance de calcul numérique des grands serveurs clas-
siques. Le colit de la ressource disque décroit régulierement et il semble
désormais possible de disposer des grands fonds d’informations statis-
tiques sur des équipements de laboratoires. Or, cette migration se réalise
lentement: la gestion des grandes bases de données statistiques souléve
des probleémes spécifiques tant au niveau des volumes que de la com-
plexité (Shoshani, 1982). Les données des grandes enquétes statistiques
restent gérées de fagon traditionnelle et les logiciels utilisés, souvent dé-
veloppés sur mesure, ne sont pas portables dans I'environnement des sta-
tions de travail et serveurs de laboratoire. Les équipes de recherches en
sciences sociales sont de ce fait confrontées a deux informatiques discor-
dantes: bien que 'ensemble des traitements numériques puisse se faire
sur des équipements propres, le recours au serveur central demeure in-
dispensable pour extraire les données.

Dans le domaine des sciences économiques, l'intérét des systemes de
gestion de bases de données relationnelles a été plus récemment évoqué
a propos de la gestion des données de panel (David, 1989). Un tel sys-
teme est décrit comme apportant des fonctionnalités nouvelles significa-
tives: suivi chronologique de vagues d’enquétes, partage des données,
disponibilité d'une méthode de structuration des informations, maitrise
de la complexité, portabilité entre systémes informatiques ...

LINRA a engagé en 1990 un programme de recherche lié 2 la mise
en Flace d'un Observatoire des consommations alimentaires en Fran-
ce”). Cet observatoire doit permettre I'étude de la dispersion des

1) Ce programme de recherche est financé par la Direction générale de la
concurrence, de la consommation et de la répression des fraudes (DGCCRF), par la
Direction générale de l'alimentation (DGAL), par la Direction générale de la santé
(DGS), et par le ministere de la Recherche et de la Technologie {(MRT).
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consommations ainsi que l'analyse de I'évolution des comportements
dans le temps. Pour cela, il doit rassembler les données élémentaires de
I'ensemble des enquétes disponibles. C'est dans cette perspective que
I'INRA a élaboré une méthode de gestion des bases de données statis-
tiques. Face aux difficultés rencontrées pour mettre en ceuvre une solu-
tion efficace avec les systémes commercialisés, 2 vocation dite “uni-
verselle”, nous avons choisi plus prosaiquement d’examiner les repré-
sentations mathématiques élémentaires utilisées par les statisticiens et
les informaticiens: espaces vectoriels, relations, arbres, treillis, graphes.
Ce retour aux définitions s'est poursuivi par la formalisation des régles
qui permettent de passer d'une représentation a l'autre. Cet article décrit
les méthodes adoptées et propose une traduction concréte, actuellement
utilisée par les équipes scientifiques de 'INRA sur un réseau de stations
de travail UNIX et de micro-ordinateurs.

La premiére section de ce document situe la dimension du probleme
dans le cas des statistiques de consommation alimentaire. La seconde sec-
tion introduit les fondements mathématiques du modele relationnel et
propose un mode de représentation des vecteurs au moyen de ce modele.
Les fonctions fondamentales qui permettent d’utiliser le modele rela-
tionnel pour “naviguer” dans des espaces vectoriels multiples sont dé-
crites dans la section 3. La section 4 analyse la faisabilité théorique de la
solution au moyen de fonctions dites de complexité. Elle se prolonge par
la présentation des fonctionnalités minimales nécessaires dans un sys-
teme de gestion de bases de données statistiques et met en évidence les
carences actuelles de I'offre du marché. La derniére section présente les
tésultats obtenus pour les données de consommation alimentaire. La mé-
thode présentée ici est relative 2 la structuration des données factuelles
en amont des procédures de traitement statistique: elle ne traite pas I'ac-
quisition des données et le chiffrement.

Un premier résultat est la démonstration théorique et pratique du
fait que la complexité des données en sciences sociales n'est pas un fac-
teur limitant sur une station de travail d'équipe. Un second résultat est
la disponibilité d’'une méthode de calcul non numérique pour régler des
problémes jusqu’alors mal résolus: gestion des données de panels, mise
en correspondance de sources hétérogeénes, gestion de nomenclatures
multiples et évolutives, etc. La solution est en outre portable sur toute
une gamme de matériel, de la station de travail au serveur central.
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LES DONNEES STATISTIQUES EN SCIENCES SOCIALES:
LEXEMPLE DES ENQUETES
DE CONSOMMATION ALIMENTAIRE

Le Laboratoire de recherche sur la consommation de 'INRA, en col-
laboration avec la Division “Conditions de vie des ménages” de I'INSEE,
élabore la méthodologie de construction d'une base de données de
consommation alimentaire, combinant des données issues de panels et
d’enquétes classiques. Lobjectif est d’'améliorer I'information statistique
disponible. Ces travaux s'appuient sur deux sources principales de don-
nées: les enquétes bisannuelles de 'INSEE et les panels hebdomadaires
SECODIP qui sont suivis annuellement.

Description des données

Les enquétes de consommation alimentaire observent principalement
les achats et les repas d'un échantillon de ménages. Un ménage regroupe
un ensemble d’individus. Les achats et autres approvisionnements sont
notés pour chaque produit pendant sept jours consécutifs, sous la forme
d’inscriptions sur les lignes d’'un “carnet de comptes”. LINSEE réperto-
rie les repas pris 4 'extérieur pour les individus du ménage, pendant la
période d’observation. Les caractéristiques des ménages sont établies an-
nuellement. Les enquétes sont restreintes 4 une semaine de référence,
I'échantillon de base étant éclaté en sous-échantillons observés sur des
périodes différentes de l'année. Les panels SECODIP sont suivis sur
toutes les semaines d'une période annuelle: on dénombre donc 52 vagues
d’observations.

D’un point de vue statistique, la grandeur élémentaire inscrite sur la
ligne d’un carnet de comptes est de la forme x’f Cette notation désigne
I'observation d’une variable x pour la £ occurrence d’acquisition du
produit p, par le ménage 7 a la période #. Une fourniture élémentaire est
en pratique décrite par plusieurs variables: valeur, quantités exprimées
avec plusieurs unités, nombre d’articles, ...

Les ménages sont décrits de facon simple par un ensemble de vec-
teurs définis sur l'espace de I'échantillon: la grandeur notée y, désigne
I'observation de la variable y pour le ménage i. Une suite de m variables
sur un échantillon de taille 7 est représentée dans une matrice A de type
(n x m), le terme a;; désignant la valeur observée de la variable 7 pour le
ménage 1.
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Dans le cas des panels SECODIP, les ordres de grandeur des inter-
valles de définition sont les suivants:

i€ [1,..,5000]: échantillon des ménages,

pe (1, ..,32000}: nomenclature détaillée,

t€ [1, ..., 52]: observations hebdomadaires sur une période annuelle,
ke [1,..,7]: restriction a un achat quotidien par produit.

Pour I'INSEE, I'indice p est défini sur un intervalle [1,..., 400], l'in-
dice ¢ pour une seule période par ménage. Les nomenclatures INSEE et
SECODIP sont élaborées indépendamment 1'une de l'autre. Les deux pa-
nels SECODIP regroupent respectivement 2 millions et 2,5 millions
d’inscriptions élémentaires. Les enquétes INSEE sont de taille plus mo-
deste avec quelques centaines de milliers d’inscriptions.

La représentation vectorielle

De la statistique descriptive a la modélisation économétrique, les fa-
cons de voir les données sont multiples: elles s’appuient cependant sur la
représentation vectorielle. Les fichiers d'enquétes regroupent les valeurs
observées pour une entité du monde réel dans une zone de longueur
constante, structurée en champs, décrite par un format, appelée enregis-
trement ou article. Les entités de méme nature (ménages, achats ...) sont
regroupées dans des ensembles homogenes. Avec » articles et 7 champs
par article, un tel ensemble est habituellement représenté par une ma-
trice X de type (z x m): le terme x;, toujours défini, désigne la valeur
lue dans le 7 champ du 77 article. Les logiciels statistiques utilisés
en sciences économiques gerent les données sous cette forme.

La définition des espaces vectoriels

En se situant au niveau de I'entité ménage, la matrice X contient les
vecteurs d’observations associés aux variables descriptives des ménages.
Avec I'entité achat, cette représentation est difficilement utilisable par le
statisticien: Je nombre de lignes par ménage est variable et dépend du
nombre d’achats; un ménage qui n’a rien acheté n'est pas représenté. Le
probléme est de méme nature pour l'entité individu, un ménage étant
toutefois composé d'au moins un individu. La complexité est maximale
dans les enquétes réelles, qui sont constituées de plusieurs dizaines d’en-
tités réparties dans des générations distinctes(?,

(2} L’enquéte "Consommation alimentaire” de 'INSEE regroupe 17 entités ré-
parties dans 3 générations. L'enquéte “Budget des familles” répertorie 33 entités
réparties dans 4 générations.
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Les relations entre espaces vectoriels

Sur la base de I'information brute acquise sont calculées des variables
nouvelles, définies par exemple sur l'espace des ménages: nombre d'in-
dividus, nombre d’enfants, nombre d’inscriptions sur le carnet de
comptes, valeur totale des achats, moyenne des achats, valeur maximale
d'un achat, ... Cette opération, définie d'un espace vectoriel dans un
autre, utilise les opérateurs classiques d'agrégation: dénombrement,
somme, moyenne, maximum, minimum, ... Elle est appelée agrégation.

A Pinverse il peut étre utile de disposer, par exemple dans I'espace
des individus, de variables qui qualifient le ménage, répétées pour
chaque individu d’un méme ménage. Cette opération, définie d'un es-
pace vectoriel dans un autre, est appelée généralisation.

Les combinaisons lindairves dans un espace vectoriel

Le traitement des données SECODIP au moyen de la nomenclature
INSEE nécessite la définition d’une application qui associe aux 32000
produits SECODIP un code INSEE. La construction des variables des-
criptives des achats sur I'échantillon des ménages est une combinaison
linéaire de vecteurs: le produit p de la nomenclature cible (INSEE) est
I'image d'un ensemble de codes de la nomenclature source (SECODIP);
la quantité totale achetée est une somme d’achats élémentaires, pondérée
en fonction des unités de mesure propres a chaque produit.

La représentation arborescente

Ce mode de représentation, appelé modéle de données hiérar-
chique, reste trés présent sur les sites informatiques centraux pour gérer
les grandes enquétes. Une base de données hiérarchique se représente
dans un graphe: les sommets sont les articles, et les arcs représentent des
liens de type pere-fils. La figure 1 illustre les régles de construction de
ce graphe. Dans I'enquéte ¢, le ménage m,,, qui regroupe deux indivi-
dus, a effectué trois achats, pour les produits p,y, #112, £113- Les indivi-
dus 7,,, et 7;,, ont consommé chacun deux repas. Le ménage m,,
constitué d’'un seul individu, n’a pas effectué d’achats.

Le graphe d’une structure de données hiérarchique de ce type est par
construction sans circuit et en tout point arrive une fleche et une
seule?/. Le logiciel LEDA de I'INSEE est construit sur la base de ce mo-
dele. Il gere des bases représentées par des graphes dont le nombre de
sommets se mesure en millions. Lopération d’agrégation revient a exa-

(3) Cette propriété est propre au modele hiérarchique et n'est plus vérifiée pour
le modele réseau.
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miner les “fils” d’'un sommet, et a calculer des statistiques qui “remon-
tent” vers la racine de 'arborescence. Inversement, la généralisation fait
“hériter” les fils des caractéres du pére.

Figure 1.
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Les limites des solutions classiques

Les représentations hiérarchique et vectorielle ont été valorisées par
les équipes de recherche dans le contexte d’une informatique centralisée.
Ces solutions ont des limites qui font que certains traitements ne sont
pas réalisés du fait de la difficulté, voire I'impossibilité, de restructurer
convenablement I'information disponible. Par exemple, bien que la cor-
respondance entre nomenclatures de produits puisse s'exprimer par
simple combinaison linéaire de vecteurs, la mise en relation de sources
de données hétérogenes au moyen de ces seuls ourils apparait comme une
gageure. Ces modeles permettent difficilement de représenter simple-
ment les données de panels sur de vrais échantillons, pour lesquels la
composition et la taille varient d'une vague a l'autre, du fait de 'usure
et des modifications des caractéristiques socio-professionnelles dans le
temps.

LA REPRES]@NTATION RELATIONNELLE
DES DONNEES

Le mode de représentation des données statistiques proposé dans cette
section découle naturellement de la notation indiciaire: la 74 occurrence
d'une variable x est notée x,. Dans une enquete simple, la notation x;; dé-
signe la valeur x de la variable numéro 7 pour I'individu numéro :. “Avec
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un panel suivi sur T périodes, I'observation élémentaire est notée x,, pour
désigner la valeur x de la /“ variable pour I'individu & la période .
Lajout de la dimension spatiale introduit un quatrieme indice £, pour
identifier la région, ce qui donne x*. Ce processus peut se prolonger avec
Iintroduction d’autres dimensions. £ notion de relation permet de redéfi-

nir précisément les bases mathématiques de cette convention de notation.

Définition et propriétés du modele relationnel

Origine du modéle: les relations

La théorie des ensembles introduit la notion de relation binaire.
Une relation binaire entre un ensemble E et un ensemble F est une par-
tie du produit cartésien E x F. Dans un espace vectoriel de dimension #,
un vecteur peut étre décrit comme une relation binaire entre I'ensemble
N des entiers naturels et 'ensemble R des réels: c’est un ensemble de
couples {(7, x) | / € N, x € R}, un élément étant noté x;. Par définition
du produit cartésien, il o'y a pas de couples identiques dans une relation
binaire,

Cette notion se généralise a un produit cartésien de p ensembles: une
relation p-aire entre les ensembles E,, E,, ..., E, est une partie du pro-
duit cartésien E; x E, x ... x E,, p étant le degre de la relation. Un élé-
ment d'une relation p-aire est appelé p-uple ou p-uplet. La théorie du
modele relationnel (Codd, 1970) s’appuie sur ces fondements théoriques.

Le modéle relationnel de Codd

Les ensembles de départ, opérandes dans I'expression du produit car-
tésien, sont appelés domaines. Les éléments d'une relation, quel que
soit son degré, sont appelés tuples. Une base de données relationnelle
est un ensemble de relations dont les valeurs évoluent dans le temps, par
ajout, modification ou destruction de tuples: la notation B(z) désigne
la base a l'instant #.

Les relations sont usuellement visualisées sous forme de tableaux a
deux dimensions, auxquels sont associées les propriétés suivantes:

(1)  une ligne représente un tuple,
(i) il n'y a pas de lignes identiques,
(it1) l'ordre des lignes est quelconque,

(iv) chaque colonne est identifiée par un nom, appelé attribut, qui la
désigne de facon non ambigué.
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Une clé primaire désigne un ensemble d'attributs d’une relation
dont les valeurs identifient de fagon unique tout tuple de la relation.
Une clé étrangére est un ensemble d’attributs d’une relation dont les
éléments sont clé primaire dans une autre relation. Les domaines sont
des ensembles quelconques. Un domaine simple est un ensemble d’élé-
ments indivisibles, dits atomiques: les exemples classiques sont les
nombres et les dictionnaires de termes. Un domaine complexe est
composé d’éléments non atomiques: vecteurs, matrices, liste de termes,
phrases, etc... Les éléments d'un domaine complexe sont construits avec
des éléments atomiques. La théorie de la normalisation, introduite par
Codd, décrit un algorithme qui décompose une relation définie sur des
domaines complexes en un ensemble de relations définies sur des do-
maines simples, donc représentables dans des tableaux a deux dimen-
sions. Le processus de normalisation se poursuit par I'application d’algo-
rithmes qui éliminent progressivement les redondances dans la
reptésentation logique de l'information.

Codd définit plusieurs opérations sur l'ensemble des relations. Les
opérateurs ensemblistes usuels s’appliquent: union, intersection, diffé-
rence, produit cartésien. Les trois opérations fondamentales sont la
projection, la restriction et la jointure. Globalement, la projection
supprime des attributs de la relation opérande. La restriction supprime
des tuples et rend un sous-ensemble d'une relation. La jointure est une
combinaison de deux relations qui possédent un ou plusieurs domaines
communs. Ces opérations sur l'ensemble des relations définissent une al-
gébre: l'algébre relationnelle.

Représentation des données statistiques dans
une base de données relationnelle

Limage tabulaire associée au modele relationnel suggere naturelle-
ment de représenter une enquéte simple sous forme d'une relation dans
laquelle les variables définissent les attributs et les observations les
tuples. Un atcribut supplémentaire, clé primaire de la relation, est ajouté
pour identifier de facon unique toute observation: a défaut, le modele
supprimerait les observations identiques pour des entités différentes. Les
enquétes simples, non hiérarchisées, peuvent facilement étre gérées sous
cette forme.

Les grandes enquétes statistiques décrivent souvent plusieurs dizaines
dentités regroupant plusieurs centaines de variables?’. La manipulation
de relations de degré élevé souléve des difficultés pratiques importantes: il
y a lien de nommer explicitement un grand nombre d'attributs répartis

4) L'enquére “Budget de famille” de I'INSEE regroupe, en 1989, 1 035 va-
riables, dont 568 pour l'enregistrement “ménage”.
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dans plusieurs relations, sans possibilité de paramétrage. Du point de vue
des performances l'optimisation est complexe dans le sens ou le nombre
de stratégies est quasi infini®, et le choix de ces stratégies trés lié au
contexte d’utilisation. Pour de grandes enquétes, cette forme est inefficace
et peu performante, sauf accessoirement sur un sous-ensemble restreint.

Représentation élémentaive des structures numériques
multidimensionnelles

Un vecteur V est représentable dans une relation binaire R, : N, x : R).
Cette notation signifie que I'actribut 7 est défini sur le domaine des entiers
naturels et l'attribut x sur I'ensemble des nombres réels. La relation est un
ensemble d'éléments (7, x), un tuple (7, x) désignant la composante x; du
vecteur V. Lattribut 7 est clé primaire de la relation, ce qui exprime I uni-
cité de la composante x;; par convention, les attrlbuts de la clé primaire
sont soulignés dans la notation de la relation.

De la méme fagon, une matrice M peut étre représentée dans une re-
lation ternaire R,(: : N, ; : N, x : R). Un tuple (i, 7, x) désigne cette fois
le terme x;; de la matrice M. Les attributs 7 et j forment la clé primaire
de la relation, ce qui exprime l'unicité du terme Xy

Ce mode de représentation se généralise sans difficulté & lordre p.
Une structure numérique a p dimensions est vue comme une relation de
degré p + 1, notée R (d, : N, d, : N, . d N, x : R). Les attribucs d,
d,, ..., d, sont définis sur le domalne des entlers naturels et forment la cle
prlmalre de la relation.

Représentation des données statistiques dans les relations

Dans l'univers du calcul numérique, toutes les composantes d'un vec-
teur sont définies. La prise en compte du concept de donnée manquante
nécessite la définition d’une variable auxiliaire pour réaliser les traite-
ments statistiques. Dans ces conditions, on peut choisir de ne pas repré-
senter les valeurs nulles: la composante x; du vecteur V aura pour valeur
celle de I'attribut x si le tuple (7, x) est present dans la relation R, sinon
zéro. Avec cette convention, une matrice diagonale de dimension 7 est
représentée dans une relation contenant au plus # éléments, et non #?
éléments. Dans 'ensemble des achats en valeur pour un panel SECODIP,
la relation 5-aire A(G: N, p: N, £: N, &: N, x : R) contient quelque 2,5

%) Pour une relation -aire, il est possible de décrire 7 relations d’ordre total
sur une base 2 un instant donné. Avec # = 10, on dénombre 10! = 3 628 800 fa-
¢ons d'indexer la relation.
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millions d'éléments, au lieu de 36,4 milliards s'il fallait représenter les
valeurs nulles.

Cette convention traduit fidélement le processus réel d'observation:
si le ménage 7 n'a pas acheté le produit p, on n'introduit pas un enre-
gistrement spécifique dans le fichier d’enquéte. La valeur nulle est
introduite ultérieurement pour les besoins de la représentation vecto-
rielle, dans les procédures de traitement statistique. S'il est nécessaire de
représenter explicitement le fait qu'un ménage 7 n'a pas acheté un pro-
duit p a la période #, une solution alternative est de créer la relation
B(i: N, p: N, :N)qui contient les triplets (7, p, #) vérifiant cette pro-
priété.

Application a la représentation relationnelle
des données d'enquites

La notation indiciaire x; désigne I'élément de rang / dans une suite de
n objets notée (x,, x,, ..., x;, ..., x,, ). Cet élément fait référence dans une
enquéte 2 une entité du monde réel, par exemple un ménage dans un
échantillon, repéré par un identifiant unique. Soit 7; I'identifiant du
ménage de rang 7. Un vecteur d'observations d'une variable de I'échan-
tillon peut écre décrit comme |'ensemble des couples (m;, x;) d'une rela-
tion §,(m : A,, x : R). De fagon analogue, si p est I'idenrifiant de la va-
riable numéro j, l'ensemble des triplets (m;, by % j) de la relation
S,m: A, p: A, x:R) représente une matrice.

Pratiquement, les domaines de définition des identifiants, A, et A,,
sont confondus avec 'ensemble N des entiers naturels. La codification
utilise des tables de correspondances avec des lexiques de termes qui sont
des relations: ce volet, qui reléve des applications classiques de 'algebre
relationnelle, n’est pas traicé dans cet article.

Exemple

Soit un ensemble de 5 ménages {m,, m,, m;, my, ms) pour lesquels
sont observés les achats en quantité de 3 produits {f,, p,, p;} sur 2 pé-
riodes {2, #,). La figure 2 traduit la représentation matricielle usuelle. La
figure 3 illustre une représentation relationnelle sous forme d'une image
tabulaire, avec les attributs ménage, produit, période et valeur: 'ordre
des lignes est quelconque. Les ensembles d'identifiants R, R, et K, sont
des relations & un seul attribut, dites unaires. La relation R4 contient les
valeurs observées pour chaque triplet d'identifiants.
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Figure 2.
Représentation pl p2 p3 p1 p2 p3
matricielle d’'un tableau
tridimensionnel mi 0 0 1000 ml 500 (o] 0
m2 (o] 1000 0 m2 0 0 1000
m3 0 500 0 m3 500 0 500
m4 2000 0 0 m4 0 1000 4]
m5 0 0 100 mS 0 500 0
période ¢/ période 12 [
Figure 3.
Represgntauon ménage produit ménage| produit | période | valeur
relationnelle
d’un tableau m1 p1 m1 p3 t1 1000
tridimensionnel
m2 p2 m2 p2 t 1000
m3 p3 m3 p2 t1 500
m4 relation R, m4 p1 u 2000 | |
|
mS mS p3 t1 1000 ||
relation R, période m1 p1 2 500
t1 m2 p3 2 | 1000
2 m3 pl t2 500
relation R, m3 p3 © 500
m4 p2 2 1000
m5 p2 2 500 ||
relation R,

Dynamique de la base

Les équipes scientifiques accédent i une base de données statique qui
contient un fonds d’informations factuelles 2 une période donnée. Cette
base évolue par ajout de vagues successives, sous forme de flots de don-
nées apurées. La périodicité des mises a jour est souvent annuelle.

Lacces a cette base factuelle pour les utilisateurs n’est autorisé qu'en
lecture: les équipes extraient les données pour des traitements statis-
tiques, ou construisent des sous-bases pour leurs besoins propres. Les
méthodes d’accés sont présentées dans les sections suivantes.
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ALGEBRE RELATIONNELLE
ET ESPACES VECTORIELS

Le calcul scientifique en sciences économiques s’effectue traditionnel-
lement sur des espaces vectoriels. Le modele relationnel est une repré-
sentation logique de I'information étrangeére a 'univers du statisticien. Il
permet cependant de résoudre une série de problemes insolubles avec les
méthodes classiques de l'algebre linéaire. Cette section décrit des fonc-
tions élémentaires, définies sur des ensembles de relations, avec comme
ensembles d’arrivée des espaces vectoriels.

La fonction de vectorisation

La fonction de vectorisation admet comme ensemble de départ une
base de données relationnelle et rend une suite de vecteurs dans un es-
pace vectoriel. Les variables sont des relations qui possedent une clé pri-
maire unique, notée en soulignant les attributs qui la composent.

Restitution d'une matrice

Soit un échantillon M de » ménages {m,, m, , ..., m;, ..., m,} et un
ensemble P de g variables {py, p,, ..., p; > ..., b} qui désignent g pro-
duits répertoriés dans une nomenclature. Lensemble des achats de ces
produits par les ménages, mesutés avec la variable x (valeur des achats
par exemple), est représenté par le groupe de trois relations (I). Le couple
(m, p) est clé primaite de la relation C; l'attribut m, clé étrangere dans C,
est clé primaire de M; l'attribut p, clé écrangere dans C, est clé primaire

de P.

M(m : N),
P(p: N), @
Cm:N,p:N, x:R)

La fonction de vectorisation V(M, P, C), définie de la base de données
vers |'espace vectoriel de 'échantillon, admet comme parameétres trois re-
lations et rend une matrice X construite en appliquant la regle suivante:

Vi, Vjsi(m, p;, x) € C alors x;; = x sinon x;; = 0

i =

La propriété d’unicité des clés primaires fait que la définition d’une
telle matrice est compléte et non ambigué: tous les termes sont défi-
nis et il n'y a pas plusieurs candidats & l'intersection de la ligne 7 et de

la colonne ;.
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On remarquera que la fonction V(P, M, C) rend la matrice X', trans-
posée de X, vue comme une suite de vecteurs dans l'espace des produits.

Restitution d'un panel sous forme d'une suite de matrices

Lajout d’une dimension temporelle s'effectue en définissant un en-
semble T de r périodes {t,, #,, ... , #;, .... , #,}. Le panel des achats est
alors représenté par le groupe de quatre relations (II). Le triplet (m, p, 1)
est clé primaire de la relation C. Les attributs m, p et ¢, clés étrangeres
dans C, sont respectivement clés primaires des relations M, P et T.

M(m : N),

P(p : N), (I0)
T(t: N),

Cm:N,p:N, t:N, x:R)

Il existe plusieurs modes de vectorisation d'une telle base. Si I'analyse
économique traite des vecteurs de ménages sur un échantillon constant
de taille 7, le panel est décrit comme une suite de » matrices X,. Pour
générer ces matrices, il suffit de définir dans la base la relation supplé-
mentaire J(p : N, ¢t : N), produit cartésien de relations unaires P et T Le
couple (p, #) est clé primaire de la relation J, qui décrit les colonnes de la
matrice globale. La fonction de vectorisation associée V(M, J, C), définie
de la base de données vers U'espace vectoriel de I'échantillon, rend une
suite de matrices X, construites en appliquant la régle suivante:

Vi, Vj, Vk si (m;, p,, ty, x) € C alors xf-j = x sinon x/f]- =0

Si Panalyse économique traite maintenant des séries temporelles in-
dividuelles sur une durée de r périodes, le panel est vu comme une suite
de 7 matrices X. Les colonnes de la matrice globale sont alors décrites
par la relation J(m : N, p : N). La fonction de vectorisation associée
VIT, J, C), définie de la base de données vers I'espace vectoriel des
périodes, rend une suite de matrices X, construites en appliquant la
régle suivante:

Vi, V), Yk si(m, p, 1, x) € C alors Kpj =% sinon xéj =0

On remarquera qu’il est ainsi possible de définir six fonctions de vec-
torisation, par permutation des trois indices utilisés.
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Restitution d'une matrice structurée en blocs

La généralisation des enquétes a des groupes de pays, par exemple la
Communauté économique européenne, introduit une dimension spatiale
supplémentaire, décrite par un ensemble § de # régions {5, 5, ..., Spy e 5}
Lensemble des panels des achats est représenté par un groupe de cing rela-
tions (III). Le 4-uplet (m, s, p, 2) est clé primaire de la relation C. Les attri-
buts m, 5, p et ¢, clés étrangeres dans C, sont respectivement clés primaires
des relations M, S, P, T.

M(m : N),

S(s: N),

P(p: N), (III)
I(t: N),

:C(m:N,g:N,p:N,L:N,x:k).

Si les vagues sont regroupées en lignes et les régions en colonnes ,
il est nécessaire de définir deux nouvelles relations I(m : N , 5 : N) et
J@ N, t: N), qui décrivent respectivement les lignes et les colonnes de
la matrice globale. La fonction de vectorisation associée V(I, J, C), défi-
nie sur la base de données, rend une matrice structurée en blocs en ap-
pliquant la régle suivante:

Vi, VI, Vy, Yk si(m,, s, 2p e x) € C alors xfj = x sinon x‘jj =0

On remarquera que par permutation des quatre indices, on dénombre
24 fonctions de vectorisation.

Généralisation

Dans les exemples précédents, la relation globale C contient un seul
attribut, x,qui n’appartient pas a la clé primaire. Cet attribut désigne les
observations élémentaires de la variable X, par exemple des achats en va-
leur. En introduisant une nouvelle variable Y (par exemple les achats
mesurés en volume), le panel géographique précédent est représenté dans
la relation Cm : N, s : N,p: N, t: N, x: R, y : R). La fonction de vec-
torisation V(1, J, C) rend deux matrices structurées en blocs, respective-
ment pour les variables X et Y. Les attributs x et y de la relation C sont
dits en dépendance fonctionnelle totale des attributs de la clé pri-
maire: cette notion exprime simplement dans ce cas de figure la fonction
explicitée par la notation indiciaire du statisticien, qui associe a chaque
combinaison d'indices une valeur de variable.
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De fagon générale, la fonction de vectorisation fait correspondre a
chaque attribut qui n’appartient pas 2 la clé primaire et dépend totale-
ment de cette clé une matrice. Les attributs de la clé primaire sont ré-
partis dans deux relations [ et J, qui décrivent respectivement les lignes
et les colonnes des matrices. Les algorithmes de vectorisation associés a
ces structures et en cours de développement s’appuient sur ces formes
génériques.

Gestion des classes d'équivalence

Les vagues des panels sont définies sur des échantillons constants.
Implicitement, cela signifie que les ménages enquétés sont équivalents
d'une vague a l'autre. La notion d’équivalence est a2 définir. Un échan-
tillon, choisi a I'instant #,, évolue dans le temps: il est difficile de trai-
ter le couple sans enfant de I'année #, comme le méme individu statis-
tique que la famille nombreuse de I'année 7;. La modification des
caractéristiques et du comportement des ménages pérennes s’accom-
pagne d'un processus d’érosion par disparition de ménages. Il faut aussi
tenir compte des évolutions de la population étudiée. Cette composante
dynamique est prise en compte par la définition de classes d’équivalence:
les ménages sont des entités statistiques qui représentent des groupes, et
sont choisis au moyen de techniques d’échantillonnage. Il faut alors
gérer les correspondances entre vagues, par un mécanisme d'identifica-
tion des observations.

Un second probléme de méme nature est lié 2 la définition des va-
riables. Dans le cas de la consommation alimentaire, I'ensemble des pro-
duits évolue dans le temps. Les nomenclatures sont hétérogénes: elles
sont élaborées en fonction des objectifs des institutions qui produisent
les enquétes, et définies pour une période donnée. Il faut pouvoir passer
d’'une nomenclature a l'autre, en fonction de la vague.

Construction des classes d’équivalence

La démarche est explicitée sur I'exemple de I'exploitation des données
SECODIP, décrite dans une nomenclature de 32 000 éléments, au moyen
de la nomenclature INSEE qui contient moins de 400 éléments.

Soit I'ensemble P des # produits SECODIP {p,, ps, ..., p,} et l'en-
semble Q des v produits INSEE {g,, ¢,,..., ¢,}. On définit une applica-
tion f de P dans Q qui associe 2 tout produit SECODIP un code INSEE
unique. Un produit INSEE est généralement I'image de plusieurs pro-
duits SECODIP, éventuellement d’aucun. En conséquence, il n’est pas
possible de définir une application inverse qui décrirait les produits
INSEE 2 travers la nomenclature SECODIP. Lapplication f est représen-
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tée dans la relation binaire F (p : N, ¢ : N), qui contient tous les couples
¢ q j) tels que f (p,) = q; - Lattribut p est clé primaire de la relation F.

Représentation des relations d'équivalence

A partir des relations Cm : N, p: Nt : N,x: R)et Fp : N, g : N),
on définit la relation Dz : N, p : N, q: N,t: N, x: R) comme une ap-
plication de N? x R dans N4 x R qui associe a tout tuple (m, b e X)
de C le tuple (m,, bp f(p ), 1y, %) de D.

Cette application se calcule en algeébre relationnelle par une jointure
des relations C et F avec 'attribut de jointure p. Elle est totalement dé-
finie seulement si toute valeur de l'attribut p de la relation C est pré-
sente dans la relation F. Cette propriété est exprimée par le fait que l'at-
tribut p est clé étrangeére de la relation C et clé primaire de la relation F:
elle est usuellement appelée intégrité de référence.

Cette transformation de la base introduit une redondance dans la re-
lation D 'ateribut g est déterminé par la connaissance de l'attribut p. La
normalisation supprime habituellement cette redondance en décompo-
sant la relation D en deux relations, qui sont les relations C et F ini-
tiales. Nous introduisons donc un processus de “dénormalisation”, justi-
fié par le besoin de rapprocher le modele logique du besoin applicatif.

Les regroupements

Le processus de vectorisation décrit plus haut ne peut pas s'appliquer
sur la relation D avec comme paramétre la nomenclature Q, I'attribut ¢
n’appartenant pas 2 la clé primaire de D. Il faut construire une autre re-
lation E(m : N, ¢ : N, t : N, x : R) admectant le triplet (m, g, ) comme
clé primaire. Lobjectif étant de générer les vecteurs d’achats dans la no-
menclature Q, il s'agit d’exprimer la somme des vecteurs élémentaires
qui composent un produit ¢. L'algebre relationnelle permet de réaliser
cette transformation. Une opération de projection supprime 'attribut p
dans la relation D et regroupe dans l'attribut # 'ensemble des valeurs de
Fattribut x associées 2 une méme valeur du triplet (m, ¢, 7). On obtient
la relation W(m : N, g : N, ¢t : N, 2 : P(R)). La notation P(R) désigne
I'ensemble des parties de R, donc un domaine complexe au sens de

Codd.

Lattribut 2 contenant des valeurs non atomiques, on dit que la rela-
tion W n’est pas en premiére forme normale. Soit une fonction ¢, dite
d’agrégation, définie de P(R) vers R. La relation E, normalisée, se déduit
de la relation W en associant a tout tuple (m,, 9 e a) de W le tuple
(m, q, i T ®(a)) de E. Pour exprimer la somme des valeurs des achats
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13
{%), %5,...%;,...x,}, on choisit la fonction ¢ (2) = ¥ x;. Pour compter le
i=1

nombre d’achats élémentaires associé a tout triplet (», ¢, ¢), on utilise la
fonction ¢(2) = Card(a). Les autres fonctions d'agrégation classiques
sont la moyenne, le maximum et le minimum: elles sont appelées fonc-
tions ensemblistes.

SPECIFICATION D'UN SYSTEME DE GESTION
DE BASES DE DONNEES STATISTIQUES

Les sections précédentes décrivent, d’'un point de vue théorique, des
structures de données et des opérations élémentaires sur ces structures.
La question immédiate qui se pose est de savoir s'il est possible de tra-
duire efficacement cette construction logique sur une machine: est-ce
calculable et avec quelles ressources ? Ce point est abordé en introduisant
quelques notions empruntées a la théorie de la calculabilité, qui per-
mettent d’évaluer les ressources informatiques nécessaires en fonction de
la “taille” du probléme.

A Tissue de cette analyse de faisabilité se pose la question du com-
ment. Concrétement, il ne suffit pas de produire une description logique
pour une machine abstraite, mais il faut s'assurer que la solution peut
étre traduite sur une machine réelle. Ce constat conduit a évoquer aussi
succintement que possible des contraintes matérielles liées a 'organisa-
tion physique des données en mémoire secondaire, dans I'état actuel des
technologies commercialisées. Nous examinons enfin ce quapportent les
langages disponibles, et dans quelle mesure ils permettent de réaliser ef-
ficacement les calculs requis pour restituer simplement les structures nu-
mériques utilisées par le statisticien.

Calculabilité et complexité

Les consommations de ressources informatiques sont mesurées pour
l'essentiel a travers les temps d’exécution, les opérations d’entrées-sorties
et I'espace disque occupé. Les deux premiers facteurs sont limités par le
temps. La ressource disque est finie et mesurée en octets. Ces consom-
mations sont souvent connues a posteriori. Les fonctions de com-
plexité introduisent une méthode d'évaluation des ressources néces-
saires : ces méthodes sont décrites dans des manuels récents (Wolper,
1991; Beauquier ¢t 4/., 1992).
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Volumétrie

La complexité d’un probléme est pergue intuitivement comme liée a
la taille des objets manipulés. Avec la représentation proposée plus haut,
les cardinalités dénombrent indirectement les informations atomiques
effectivement collectées au cours des enquétes: elles sont bornées et n'ex-
cedent pas en pratique les quelques millions.

S'il fallait représenter simplement les tuples dans des structures de
données gérées par un langage de programmation classique/®, il fau-
drait prévoir un espace de cent mégaoctets pour stocker une relation de
dix millions de lignes, soit cent variables pour dix enquétes annuelles
sur un échantillon de dix mille ménages, ou encore dix millions d’achats
élémentaires. Dans I'état actuel des technologies disponibles, la ressource
disque requise apparait alors comme relativement modeste.

Classement

Les données sont physiquement représentées en mémoire sous forme
d’une séquence d’informations élémentaires contigués, qui traduit une
relation d’ordre implicite. Cette remarque suggere de faire en sorte que
cet ordre soit celui des numérotations canoniques usuelles dans les re-
présentations indiciaires, le colit de stockage d'un ensemble ordonné
étant identique a celui d'un ensemble sans structure.

Cette organisation simple permet 2 la fois de transmettre des données
sous forme d’un flot ordonné et d’extraire des valeurs élémentaires au
moyen d’une recherche dichotomique qui utilise la relation d’ordre exis-
tante. Le probléme de sa mise en ceuvre est abordé plus loin dans la dis-
cussion du choix du modele physique.

Evaluation théorique des temps d'exécution

Lestimation du temps d’exécution d'un programme est basée sur
'étude aux limites d’'une fonction F(z) qui exprime le nombre d’ins-
tructions élémentaires exécutées en fonction de la “taille” des données .
Soit deux relations de » éléments notées de fagon simplifiée A,(z 7 & x)
et A,(4, 7, & y). Le triplet (i, j, £) est clé primaire dans chacune des rela-
tions. On se propose de construire la relation B(, j, &, x, y), ce qui s’ex-
prime par une jointure naturelle sur la clé primaire en calcul relationnel.

Soit un premier algorithme P, qui ignore 'existence d'une relation
d’ordre et I'unicité de la clé primaire. Pour chaque élément de A, il exa-
mine tous les éléments de A,, et exécute #” comparaisons. Avec 7 = 10°,

() Les indices peuvent étre codés sur deux octets, les valeurs sur quatre octets.
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on aboutit 2 102 tests. Sur ume machine hypothétique qui exécuterait
une comparaison en 10°° seconde, le temps d’exécution serait de 278
heures. Avec # = 10, le délai de réponse serait néanmoins instantané.
On dit que l'algorithme P, est de complexité O(#?), la notation O() si-
gnifiant que le temps d'exécution est une fonction de #°. Ce formalisme
permet de s’abstraire des machines utilisées.

Soit un second algorithme P, qui exécute les tris sur les relations
opérandes puis opete la fusion. Il existe plusieurs algorithmes de tri clas-
siques de complex1te O(n log, »). La fusion étant de complexité O(n),
avec n = 10° (n = 2°9), I'algorithme P, s’exécuterait en 41 secondes sut
la rnachme hypothétique précédente.

Supposons m&mtenan[ que la cardinalité des ensembles soit 16 fois
plus élevée (n = 2°%). Pour une opération binaire, le temps d'exécution
de I'algorithme P, serait multiplié par 256 (ce qui ferait plus de huit an-
nées de calcul!), alors que le temps d’exécution de P, serait multiplié par
18 (soit un temps final de 'ordre de 13 minutes).

Evaluation expérimentale des temps d'exécution :
simulations d applications

Des lors que I'on manipule de grands ensembles de données, la puis-
sance de calcul relationnel est liée a 'efficacité des algorithmes de tri.
Les algorithmes de tri de complexité polynomiale (O(n”) avec p > 2) sont
inutilisables dans ce contexte. Parmi les algorithmes connus de com-
plexité Oz log, n), le choix de I'algorithme optimal passe par I'évalua-
tion du nombre d’instructions élémentaires exécutées pour réaliser le
traitement associé 4 une comparaison: une analyse tres ﬁne denombre les
cycles de calcul de la machine, mesurés en nanosecondes ”

Une évaluation théorique de type analytique nécessite la connaissance
des algorithmes utilisés, voire du code et des techniques de compilation.
Létude des fonctions de complexité peut aussi se faire expérimentale-
ment en réalisant des simulations, usuellement appelées benchmarks. Ces
simulations représentent I'activité d’un utilisateur qui fait du calcul re-
lationnel pour extraire un flot d’informations ordonnées, par exemple
une matrice pour le statisticien, sans devoir au préalable expliciter les
méthodes d’acces 2 travers des mécanismes complexes d’indexation et de
regroupement.

77 Un gain de temps important serait obtenu sur une machine qui disposerait
d’un ou plusieurs processeurs spécialisés de cri.
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Résultats expérimentaux

Ce test a été réalisé sur une station de travail Sun Sparc 1* avec le lo-
giciel INGRES (version 6.4). Il simule un utilisateur qui effectue la
somme de deux matrices carrées de type (p, p), représentées dans des re-
lations de la forme M(i: N, j: N, x : R). Les attributs 7 et 7 contiennent
les valeurs des indices, c'est-a-dire un élément de l'ensemble des p
premiers nombres®. Les valeurs de p sont les puissances successives de
2(p = 2%). Lartribut x contient une valeur réelle quelconque: nous avons
retenu sur cet exemple des combinaisons arithmétiques d’indices, 77 pour
le premier opérande et #/j pour le second. Les relations sont traitées dans
ce test comme des ensembles non ordonnés. Le tableau 1 présente
quelques résultats, ainsi que les valeurs estimées par extrapolation d’une
fonction de complexité O( log, 7).

Tableau 1.

Résultats d'une simulation destinée & mesurer les performances d’un systme de calcul relationnel

Dimension de la matrice (p) 256 512 1024 2048 4096

Nombre de termes (n)

65 536 262 144 1 048 576 4194 304 16 777 216

Temps d’exécution observé

(en secondes) 115 508 2088 8 654 35 282
Temps d'exécution estimé
(en secondes) = 473 2 088 8 561 35 595

Le choix du modele physique

D'un point de vue technique, les données sont stockées en mémoire
secondaire sous forme de blocs indivisibles rangés séquentiellement sur
les pistes physiques d'un disque. Relativement au temps d’exécution
d’'une instruction en mémoire principale, le temps moyen d’accés a un
bloc est infiniment grand: le premier s’exprime en nanosecondes et le se-
cond en millisecondes, soit un rapport de I'unité au million. Lorsque le
processus est initialisé, le débit du transfert de blocs contigus vers la mé-
moire principale est de I'ordre du mégaoctet par seconde. La perfor-
mance d'un systéme pour une application est trés liée 2 son aptitude 2
prendre en compte ces contraintes technologiques.

8 Le principe de génération automatique de ces ensembles Ey, E|, ..., E, est
basé sur un enchainement de produits cartésiens selon la régle E; ,=E;X 0,1},
le processus étant initialisé avec Egy = {o,1}.
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Relation dordre et clé primaire

Dans les bases de données statistiques, les relations d'ordre sont des
éléments structuraux fondamentaux. Les observations atomiques sont les
composantes de vecteurs, regroupés en matrices. Lintroduction d’indices
supplémentaires définit des suites de matrices, éventuellement des suites
de suites de matrices... Les indices sont hiérarchisés et un ordre cano-
nique d’exploration est imposé: la variable ; est observée a la période £
pour 'individu ;.

La notion de relation d’ordre est totalement éctrangere au modele re-
lationnel qui se limite & définir une relation comme un ensemble sans
structure. Elle est introduite ultérieurement 2 travers 'indexation, pour
optimiser les temps d’accés. La notion de clé primaire permet d’identi-
fier les tuples d'une relation mais n’introduit pas de relation d’ordre
(sauf implicitement lorsque la clé est composée d’un attribut numérique
unique).

Spécification du modéle physique

La relation d’ordre du statisticien doit impérativement étre conservée
par le modéle physique. L'accés & une matrice X nécessite alors un
simple positionnement en début de zone puis le transfert d'un flot de
blocs contigus qui ne contiennent que les tuples utiles. Si cette relation
d’ordre est perdue, les tuples sont éparpillés dans les blocs, ce qui mul-
tiplie les accés pour rapatrier des blocs isolés qui ne contiennent qu'une
partie des tuples recherchés. Si la ressource en mémoire principale est
restreinte, une telle situation détériore considérablement les perfor-
mances. La définition d’un index logique dans le langage d’interrogation
de la base régénére la relation d’ordre du point de vue de l'utilisateur,
mais pas nécessairement au niveau du modele physique.

On tiendra compte du fait que les données sont acquises en flots et
non modifiées. Vu la cardinalité des relations, il est utile de pouvoir
choisir une représentation physique qui minimise I'espace occupé par un
tuple et I'ajuste rigoureusement aux domaines de définition.

Les besoins linguistiques

Codd a énoncé des recommandations pour construire un langage uni-
versel de gestion des données (Codd, 1970). Ses propositions s’appuient
sur une axiomatique rigoureuse (la logique des prédicats du premier
ordre), et esquissent le profil d’'un langage dont la finalité est de forma-
liser les questions complexes indépendamment des aspects d’exécution.
Ce langage, noté R, permet de déclarer les relations et leurs domaines,
autorise les ajouts, suppressions et modifications d'éléments de relations,
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offre la possibilité de gérer les clés primaires et écrangéres... Spécifique-
ment orienté vers les données, le langage R est congu pour étre incorporé
(embedded) dans des environnements de programmation diversifiés, asso-
ciés 4 des langages hotes, notés H.

Le langage SQL

Parmi un ensemble de langages développés autour du modele rela-
tionnel, le langage SQL (Structured Query Language), d'origine IBM, s’est
imposé comme norme de fait. Son succés commercial est sans doute di
a la simplicité et a la puissance du langage d’interrogation de la base. La
requéte de restriction est en mesure de qualifier de fagon trés concise des
questions complexes, au moyen d’expressions booléennes avec les opéra-
teurs logiques et arithmétiques usuels et les quantificateurs “il existe”
(3) et “quel que soit” (V).

Lefficacité et la complétude sont maximales sur les domaines numé-
riques. Les dialectes SQL proposent des opérations de manipulation de
chaines de caracteres. Le langage permet de définir les relations et d’ex-
primer les opérations usuelles de 'algébre relationnelle. 1l gére les droits
d’acces des utilisateurs sur les relations. La notion de domaine est som-
maire et il n'est pas possible de définir des domaines spécifiques, par
exemple des intervalles ou des ensembles énumérés. Le lien avec les lan-
gages de programmation est assuré par deux structures de données pré-
définies (SQLCA, SQLDA), qui sont utilisées par le programmeur pour
génégﬁr des requétes SQL, contrdler leur exécution et récupérer les résul-
tats' .

Le paramétrage du modeéle physique et des méthodes d'accés

Dans les recommandations initiales de Codd, la déclaration des di-
rectives de représentation des données en mémoire releve du langage
héte H. Ces directives ont pour objectif de fournir les informations au
systeme pour qu’il mette en ceuvre une stratégie adaptée au contexte ap-
plicatif. Pour des mises a jour fréquentes et aléatoires effectuées simulta-
nément par des utilisateurs indépendants, une structuration arborescente
s'impose. Pour des acquisitions de flots de données factuelles ordonnées
et non modifiables, la structuration séquentielle classique suffit. Dans le
premier cas, les relations d’ordre sur les éléments des ensembles varient
sur des cycles dont la période est parfois mesurée en millisecondes. Dans
le second cas, l'ordre est invariant, avec accessoirement des mises a jour
dont la périodicité est annuelle ou pluriannuelle.

(9) Cette partie du langage est appelée embedded SQI..
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Des lors qu'un langage permettrait de décrire ces contextes, en
d'autres termes la dynamique des ensembles, le choix du modele phy-
sique optimal pourrait étre fait par un compilateur. Il appartiendrait au
compilateur d’évaluer les fonctions de complexité et d’adapter les stracé-
gies algorithmiques en fonction d'informations déclaratives ou d’indica-
tions statistiques acquises en cours d’exécution. Un tel langage n'existe
pas sur le marché. Les logiciels du commerce privilégient |'optimisation
des performances dans la situation dite “transactionnelle a haut débit”,
dans laquelle des utilisateurs effectuent en permanence des modifications
ponctuelles depuis leur poste de travail.

La fonction de “vectorisation”

Lapproche relationnelle est étrangére au monde des logiciels statis-
tiques, qui proposent leurs propres systemes de gestion des données. Si
des interfaces dites SQL existent, elles traitent des relations dont les at-
tributs sont les noms des colonnes du tableau statistique. Comme indi-
qué plus haut, cette solution devient rapidement inutilisable dés que le
nombre de variables augmente.

La restructuration des informations numériques, qui nécessite de pas-
ser de la représentation relationnelle des matrices proposée plus haut a la
représentation tabulaire classique, est une tiche procédurale qui reléve
du langage hote H. Le langage SQL ne permet pas de construire la fonc-
tion de vectorisation V(I, J, C), définie de la base de données dans un es-
pace vectoriel: elle doit donc étre développée au moyen d’autres lan-

gages.

Les fonctions d'agrégation

Les fonctions d’agrégation sont présentes dans le langage SQL. Le ré-
sultat du calcul, qui utilise les opérations relationnelles de projection,
restriction et éventuellement jointure, est affecté dans une nouvelle rela-
tion.

Le calcul matriciel

Le langage SQL permet également d’exprimer les opérations usuelles
de calcul matriciel: combinaisons linéaires, produit de matrices. La dé-
marche est illustrée dans la section suivante sur l'exemple de 'ajout de
la dimension “nutritionnelle” dans les bases de la consommation alimen-
taire. Cette facon de procéder peut s'avérer trés efficace dans un contexte
ou les matrices contiennent beaucoup de termes nuls. La notion de type
abstrait de données (Liskov et Zilles, 1974) définit un cadre théorique
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pour l'intégration de ces opérations dans le “moteur” de la base, afin que
I'utilisateur puisse calculer directement des expressions matricielles.

APPLICATION AU TRAITEMENT DES PANELS DE
CONSOMMATION ALIMENTAIRE

Ces méthodes de structuration de l'information statistique sont ac-
tuellement traduites sur des stations de travail UNIX de laboratoire
(Sun Sparc station 1*) avec le systeme INGRES!’?, pour les enquétes
INSEE et les panels SECODIP. Les traitements statistiques sont réalisés
apres “vectorisation” avec les logiciels S et SAS. La fonction de “vectori-
sation” est traduite en langage C.

Description des bases de données relationnelles

Une base de données relationnelle est définie plus haut comme un
ensemble de relations qui évolue dans le temps. Dans le contexte des tra-
vaux de recherche sur la consommation de 'INRA, les équipes scienti-
fiques manipulent en fait des bases logiques indépendantes. Dans la
phase d’exploration des données statistiques disponibles, les bases lo-
giques correspondent aux enquétes existantes. Lempilement des en-
quétes de consommation alimentaire de 'TINSEE en vue de générer des
séries temporelles longues est actuellement en cours de réalisation.

Les bases factuelles d’enquétes

Les bases logiques associées aux enquétes forment un ensemble de
trois relations: MENAGE (m, mv, x), INDIVIDU (m, rg nv, x) et
ACHAT (m, 1, p, tag, v, q). Des relations annexes établissent éventuelle-
ment les liens entre des codes numériques et les termes des dictionnaires
d’identification des produits et des variables. Un élément de la relation
MENAGE est I'observation élémentaire d’une grandeur x associée 2 la
variable »v pour un ménage désigné par son numéro logique m. Un élé-
ment de la relation INDIVIDU est également ['observation élémentaire
d’une grandeur x associée a la variable #nv pour I'individu repéré par son
rang rg pour le ménage m. Un élément de la relation ACHAT identifie

(19 1¢ prototype INGRES a été développé 4 I'Université de Californie a Ber-
keley, et congu au départ comme une couche externe du systéme UNIX. Les pre-
mieres versions ont été publiées en 1975 avec le langage QUEL, parallélement au
développement du prototype IBM SYSTEM R. Le langage SQL a été introduit
beaucoup plus tard dans les versions commercialisées du logiciel INGRES.
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tout achat effectif d’'un produit p sur la période ¢ pour un ménage m, tel
qu’il pourrait figurer sur les lignes d'un carnet de compte: les achats
identiques, par exemple quotidiens sur une période hebdomadaire, sont
distingués au moyen de l'attribut instrumental tzg. Un achat est mesuré
par la valeur monétaire v et la quantité 4. Lateribue p est clé étrangeére
dans les relations de définition des nomenclatures de produits. La figure
4 visualise les schémas des relations sous la forme tabulaire simple.

Figure 4.

Schéma des relations statiques MENAGE, INDIVIDU, ACHAT

MENAGE
Y

INDIVIDU }

Y
| m:N ny: N ~ x:R m: N rg:n | n: N ] x:R
. . i
ACHAT
\
m: N t:N p:N tag : N v: R g:R

La dynamique des bases

A partir des relations précédentes, et d’autres relations externes qui
représentent par exemple des nomenclatures ou des classes de ménages,
les bases évoluent par création et destruction de relations, en fonction
des besoins. Il s’agit principalement de calculs lourds, en vue par
exemple de produire une matrice. Les interrogations ponctuelles sont
peu fréquentes et restreintes a la phase exploratoire initiale. Les mises a
jour par modification d’un élément d’une relation sont normalement in-
terdites.

Il est envisagé de rassembler dans une méme base des données fac-
tuelles d’enquétes relatives a plusieurs années: les relations associées sont
modifiées avec une périodicité annuelle (SECODIP) ou pluri-annuelle
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Tableau 2.

Cardinalité des
relations associées aux
enquétes annuelles de
consommation

(INSEE). Cette base est bitie autour des trois relations principales ME-
NAGE (w, m, nv, x), INDIVIDU (w, m, rg, nv, x) et ACHAT (w, m, 1, p,
v, g). Lattribut w désigne la vague. Les achats identiques sont regroupés,
ce qui se traduit par une projection qui supprime l'attribut zg des bases
annuelles.

Le paramétrage du modele physique

Le tableau 2 fournit les cardinalités des relations associées aux en-
quétes INSEE 1987 (6 938 ménages) et au panel SECODIP P2 de
Kannée 1989 (5 840 ménages). A titre indicatif, le stockage des trois re-
lations principales du panel SECODIP P2, totalement ordonnées sur la
clé primaire, requiert moins de 40 mégaoctets.

MENAGE INDIVIDU ACHAT
INSEE 1987 622 900 401 004 267 794
SECODIP P2 276 879 89 340 2138186

La requéte de modification du modele physique (Modify)(’?’, com-
mune aux langages QUEL et SQL de INGRES, permet de choisir une
structure de stockage adaptée 2 la gestion d’'un ensemble statique muni
d'une relation d’ordre, c’est-a-dire un treillis. Si I"équipe de recherche
choisit d'analyser la consommation des produits, l'ateribut p constitue le
premier critere d’ordonnancement: les autres critéres sont successive-
ment le ménage m, la période ¢ et la marque rag. Le quadruplet (p, m, 1,
tag) est explicitement déclaré comme clé d’identification unique et
comme expression canonique d’une relation d’ordre totale.

Si le projet de recherche d’une autre équipe privilégie le comporte-
ment individuel des ménages, il est recommandé de créer une autre re-
lation, qui représente le méme ensemble et la méme clé primaire, mais
avec un modele physique qui gére la relation d’ordre exprimée par le
quadruplet (m, ¢, p, tag).

71) Cette requéte est étrangére au standard SQL et propre a INGRES.
D’autres systémes proposent un mécanisme de regroupement des données sur le
disque en fonction des valeurs d’'un ou plusieurs actriburs (c/uster), et gérent ainsi
une relation d'ordre entre classes.
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Les bases SECODIP

Dans la relation ACHAT des schémas précédents, l'ateribut p, instru-
mental, assure la correspondance avec les nomenclatures externes. Le lien
avec la nomenclature INSEE est géré dans la relation INSEE (¢, A).

Les correspondances entre nomenclatures

La jointure des relations ACHAT et INSEE sur l'attribut p, clé étran-
gere de ACHAT et clé primaire de INSEE, rend une relation A (m, L p,
tag, A, v, ¢q), de méme cardinalité que ACHAT. La projection qui sup-
prime les attributs p et tag permet de construire la relation A,(m 1, A,
g, 1), qui décrit les achats des produits INSEE par ménage m et période
t: les attributs v et ¢ représentent respectivement les valeurs et quantités
totales achetées; l'attribut supplémentaire » dénombre les actes d’achats
élémentaires.

Le choix de U'échantillon

L'analyse statistique s'appuie sur un échantillon de ménages dont il
faut évaluer la qualité des réponses: un moyen simple est de déterminer
pour chaque ménage le nombre de périodes K pour lesquelles k achats au
moins ont été déclarés. On peut alors choisir de restreindre I'échantillon
aux ménages qui ont répondu sur au moins 7' périodes, ce qui s'exprime
par le prédicat [K > T1. Cette restriction, appliquée 2 la relation A, précé-
dente, rend une relation de méme schéma A(m, £, A v, g, n) qui contient
les achats des ménages qui répondent aux criteres de choix retenus.

Ce processus est paramétrable: il est ainsi possible d'examiner plu-
sieurs criteres et de produire les jeux de données associés, repris par les
logiciels d’analyse statistique. Cela revient a paramétrer le choix de l'es-
pace vectoriel de 1'échantillon en fonction de régles simples exprimées
par des formules classiques.

La restitution des matrices

Pour le panel P,, l'analyse détaillée des achats par période a conduit
a retenir un échantillon final de 3136 ménages, pour lesquels sont dis-
ponibles des données hebdomadaires. Ces achats sont décrits avec la no-
menclature INSEE: on dénombre 170 produits dans la relation A(m, £,
A v, g, n), qui correspondent a 19135 produits SECODIP initiaux. Dans
un premier temps, l'objectif est de réaliser la description statistique sur
I'espace de I'échantillon final, afin de comparer les distributions avec
celles de I'TNSEE. La méthode va consister 2 produire, au moyen de la
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fonction de vectorisation, des matrices avec en ligne les ménages et en
colonne les achats des produits et les variables descriptives des ménages.

Une premiére opération de calcul relationnel supprime lattribut 7 de
la relation A (par projection), tout en effectuant la somme des achats: le
résultat est la relation A (m, A, g, n). Si les relations I(m) et J(A) re-
présentent les listes des ménages et des produits, la fonction V(I, J, A,)
rend trois matrices qui regroupent les observations relatives aux va-
riables mesurant les achats en valeur (), en volume (¢) et en nombre
d'opérations (n). La traduction a provisoirement été effectuée par 'utili-
sation conjointe d'une requéte de restructuration du modele physique et
d'une fonction externe écrite en langage C.

La matrice décrivant les caractéristiques des ménages est produite de
la méme fagon, a partir des relations I{m), J(nv) et MENAGE (m, nv, x).
Les fonctions de regroupement permettent d'ajouter  la demande des
variables agrégées: nombre d’individus du ménage, nombre d’enfants,
indicateurs d'activité professionnelle, etc.

Lanalyse des fluctuations hebdomadaires nécessite la prise en compte
de la dimension temporelle. Le tableau statistique soumis au logiciel
SAS est produit comme précédemment 2 partir des relations I(m, 1), J(A)
et As(m. 1, A v ¢, n). Il contient 163072 lignes (52 périodes pour 3136
ménages).

Les bases INSEE: le passage du modéle hiérarchique
au modele relationnel

Relativement aux bases annuelles SECODIP, les bases INSEE sont de
taille plus modeste: avec 6938 ménages, 1'enquéte alimentaire 1987 dé-
crit 267 794 achats élémentaires. Lempilement des enquétes annuelles
disponibles depuis 1973 générerait une relation ACHAT (w, m. 1, p, v, g)
de moins de cing millions d’éléments.

Le traitement des enquétes INSEE pose le probleme de la transfor-
mation du modéle hiérarchique géré par le logiciel LEDA sur systéme
central, en modele relationnel sur station de travail UNIX. Dans la me-
sure ou 1l s'agit de représenter une méme information dans deux modéles
logiques différents, nous avons choisi de définir une méchode de traduc-
tion aussi indépendante que possible des données et des logiciels. Lalgo-
rithme est actuellement traduit dans un prototype écrit en langage C,
utilisable pour convertir tout fichier au standard LEDA en un ensemble
de relations définies sur des domaines simples. Il parcourt le graphe as-
socié 2 I'arborescence dans un ordre canonique et attribue une clé d’iden-
tification unique a chaque sommet du graphe, qui représente un article.
Il extrait ensuite les valeurs atomiques des variables codées dans cet ar-
ticle et génere les tuples des relations. Les clés d’identification des som-

92



STAI:ISTIQUE ET CALCUL RELATIONNEL

mets du graphe sont utilisées pour construire les clés primaires des rela-
tions. A ce stade, les valeurs des attributs des clés primaires expriment
uniquement la structuration syntaxique initiale de I'arborescence LEDA.

La prise en compte de la sémantique des données s’effectue dans une
seconde étape, sous la responsabilité de I’équipe scientifique et en fonc-
tion des besoins, par une séquence d’opérations relationnelles. Pour les
enquétes alimentaires, ce processus aboutit a la production des relations

MENAGE, INDIVIDU et ACHAT décrites plus haut.

Les opérations relationnelles les plus cofiteuses sont des jointures na-
turelles, qui font correspondre aux codes instrumentaux (£ variable
du 77 fils du 7™ pere) les valeurs de champs qui identifient le contenu
d'un article (7™ achat d’un produit p pour le ménage m). Les cardinali-
tés des ensembles opérandes se mesurent en millions: les algorithmes de
jointure doivent en conséquence étre efficaces dans ce contexte.

Lajout de la dimension “nutritionnelle”

Quelle que soit la source des données, les quantités g achetées an-
nuellement pour des produits A par des ménages 7 d’un échantillon sont
représentables dans une relation de schéma B(m, A, ¢). La composition
des aliments est usuellement décrite dans un espace vectoriel sous forme
d’'une matrice M, le terme m,; désignant la teneur d’une unité de l'ali-
ment / en nutriment 7. Une telle matrice est représentable dans une re-
lation C(A 4, k), lattribut £ mesurant la quantité¢ du nutriment U
contenu dans une unité de I'aliment A. Le couple (A4, y) est clé primaire
de la relation C, ce qui exprime le fait qu’il existe une valeur et une
seule pour qualifier une teneur dans une table. La jointure naturelle des
relations B et C rend une relation D(m, A i &, ¢), de laquelle on déduit
la relation E(m, A U x): la valeur de lattribut x mesure la quantité
consommée du nutriment i, A travers I'aliment A pour le ménage .

En s'appuyant sur 'exemple de répertoire général des aliments du
Centre informatique sur la qualité des aliments (CIQUAL), qui décrit la
teneur des aliments en 34 nutriments, on peut estimer i environ cing
millions d’éléments la cardinalité de la relation E résultante pour le
panel P2 de SECODIP. Les teneurs manquantes sont codées dans une re-
lation annexe G(A, ). Le traitement des données SECODIP ou INSEE
travers la nomenclature du CIQUAL s’effectue au moyen de la relation
CIQUAL (p, A) dans laquelle Iattribut p est la clé étrangere des relations
ACHAT. Les calculs ne soulévent pas de difficultés et 'analyse des fonc-
tions de complexité démontre leur faisabilité. La “vectorisation” de la re-
lation E permet d’effectuer des analyses socio-économiques sur des vec-
teurs de nutriments.

La projection de la relation E qui supprime l'attribut A, et calcule la
quantité totale de nutriments {4 consommée par un ménage 7, rend une
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relation H(m, W x). Cette relation H représente la matrice de consom-
mation potentielle des nutriments sur I'échantillon des ménages. Clest le
produit des matrices représentées par les relations B (consommation des
aliments) et C (composition des aliments).

CONCLUSION

Lalgebre relationnelle offre une alternative aux représentations tabu-
Jaires multidimensionnelles usuelles pour coder simplement des struc-
tures numériques complexes: vecteurs, matrices, tenseurs... Le calcul re-
lationnel permet d’exprimer les opérations de base du calcul matriciel:
transformations linéaires, produit de matrices. La compilation d'un lan-
gage qui gere ces relations et traduit les opérations relationnelles ne sou-
leve pas de difficultés théoriques: les domaines utilisés sont restreints
aux entiers et aux réels et les algorithmes existent. L'analyse de calcula-
bilité montre qu'une simple station de travail est en mesure d’exécuter
ces algorithmes avec des délais de réponse acceptables, pour des opé-
randes de plusieurs millions de tuples. Ce résultat théorique se vérifie
expérimentalement sans difficulté: le modele logique est donc potentiel-
lement efficace pour structurer les grandes bases de données statistiques.

Or, il apparait que l'utilisation du modele relationnel reste au-
jourd’hui limitée dans les institutions de production de statistiques.
Cette réserve apparente des statisticiens pourrait étre justifiée par une re-
lative inadéquation de l'offre logicielle du marché. En effet, les systémes
commercialisés sont évalués au moyen de critéres qui mesurent principa-
lement la “performance transactionnelle”, ou de “commutation”, c’est-a-
dire l'aptitude d’un systéme a gérer efficacement des acces simultanés a
des objets partagés, consultés en lecture ou mis a jour. La gestion des
grandes bases de données statistiques, des lors qu'elles sont constituées,
ne requiert pas ce type de puissance; les extractions sont faites épisodi-
quement et massivement par les seules équipes scientifiques autorisées.

La réalisation décrite dans cet article, faite au sein d'un département
de recherche en sciences sociales pour lequel I'informatique est un ins-
trument et non un objet de recherche, démontre qu'il est possible de
mettre en ceuvre des solutions efficaces et performantes dans le contexte
d’un laboratoire. Nous pouvons aujourd’hui transformer au moyen d'un
automate de traduction un fichier hiérarchique LEDA, exploité sur site
central IBM, en un ensemble de relations gérées dans un systeme de ges-
tion de bases de données. Cette interface s’appuie sur le langage SQL et
utilise la spécification IBM pour communiquer avec les langages de pro-
grammation classique. La fonction de vectorisation, dont le principe est
décrit dans cet article, a également été traduite avec ces mémes outils, et
admet comme parametres des noms de relations.
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STATISTIQUE ET CALCUL RELATIONNEL

Nous soulignons ici le fait que la solution adoptée ignore les lan-
gages dits “de quatrieme génération” promus par les fournisseurs de lo-
giciels. En conséquence, elle n’est pas liée a un produit spécifique et est
facilement transposable dans d’autres contextes, dés lors que les stan-
dards sont respectés. Ce transfert parait pouvoir se faire en particulier sur
les grands serveurs centraux des institutions statistiques, et notamment
avec le systéme de gestion de bases de données DB2 d'IBM.

Il ne faudrait pas pour autant en déduire que cette application est
portable sur tout systéme qui se prétend relationnel et déclare offrir le
langage SQL. Parmi les critéres d’évaluation 2 retenir, il parait indispen-
sable de mesurer la puissance absolue d’exécution des opérations de cal-
cul relationnel sur de grands ensembles, de la méme facon que I'on me-
sure la puissance de calcul numérique en virgule flottante. Le test
proposé au chapitre 4 est suffisant et facilement réalisable: il peur four-
nir des résultats significatifs avant de franchir le cap du million de
tuples, tant pour évaluer 'efficacité de la stratégie algorithmique que la
gestion de la ressource disque.

Les problemes illustrés dans cet article sur 'exemple de la représen-
tation de structures numériques usuelles ne sont pas propres aux sciences
sociales. Ils font actuellement l'objet de recherches actives dans les labo-
racoires informatiques (Silberschatz e al., 1991): optimisation, parallé-
lisme, regles, objets, systémes de stockage, gestion de mémoire, événe-
ments, distribution des données, transactions longues ... Le laboratoire
IBM de San José poursuit ses travaux sur le prototype Starburst (Lohman
¢ al., 1991). L'Université de Berkeley travaille sur le prototype Postgres
(Stonebraker et Kemnitz, 1991). Cette premiére approche se traduit par
un €largissement du champ d'application du modele relationnel. Une se-
conde approche reprend les acquis de la théorie des langages et propose
des systémes a objets qui se substituent aux systémes de gestion de bases
de données relationnelles (Delobel ¢r /., 1991 : Gardarin, Valduriez,
1991) . On ne peut donc qu'espérer 'arrivée sur la marché de produits
commerciaux qui integreront les fonctionnalités présentées dans cet ar-
ticle pour mieux répondre aux besoins du statisticien. En attendant, le
modele relationnel simple, tel qu'il a été défini et traduit dans les années
70 dans le laboratoire IBM de San José et 2 I'Université de Berkeley, est
aujourd’hui suffisant pour s'abstraire de technologies matérielles et logi-
cielles propriétaires, et définir des solutions ouvertes sur les configura-
tions informatiques actuelles et futures, dans l'environnement des labo-
ratoires de recherche.

95



J.-C. POUPA

BIBLIOGRAPHIE

BeauqQuikr (D.), BErsTEL (J.), CHRETIENNE (P.), 1992 — Eléments d'al-
gorithmique, Paris, Masson.

Copp (E. E), 1970 — A Relational Model of Data for Large Shared Data
Banks, Communications of the ACM, Vol. 13, n° 6.

Davip (M.), 1989 — Managing Panel Data for Scientific Analysis: The
Role of relational Data Base Management Systems, in: Kasprzyk (D.)
et al. (ed.), Panel Surveys, Wiley, pp. 226-241.

DrroseL (C.), Lecruse (C.), RicHARD (P.), 1991 — Bases de données: des
systemes relationnels aux systémes a objets, Paris, Interéditions.

GARDARIN (G.), VaLpuriez (P), 1991 — SGBD avancés. Bases de don-
nées objets, déductives, réparties, Paris, Eyrolles.

Liskov (B.), Zies (S.), 1974 — Programming with Abstract Data Types,
SIGPLAN Notices, Vol. 9, n° 10.

Louman (G. M.), Linpsay (B.), Prranesu (H.), Schierer (K. B.), 1991
Extensions to Starburst: Objects, Types, Functions, and Rules, Commu-
nications of the ACM, Vol. 34, n° 10.

SHOSHANI (A.), 1982 — Statistical Databases: characteristics, problems and
some solutions, Computer Science Division Publications, Berkeley,
University of California, California 94720.

SILBERSCHATZ (A.), STONEBRAKER (M.), Uriman (J.), 1991 — Database
Systems:  Achievements and Opportunities, Communications of the
ACM, Vol. 34, n° 10.

StoNEBRAKER (M.), Kemnrrz (G.), 1991 — The Postgres Next-Genera-
tion Database Management System, Communications of the ACM,
Vol. 34, n° 10.

Worper (P.), 1991 — Introduction a la calculabilité, Paris, Interéditions.

96



