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IN'rRODUC'l'ION 

Deterministic models of the theory of the firm are not 
'; 

adequate in describing investment behavior or factor demand und<-:=r 

conditions of uncertainty and risk aversion. Recent attempts to 

construct models that take into consideration uncertainties and 

decision maker's.attitudes toward risk have identified output price 

as a random variable and then sought to show how £actor demand 

and output:. are affected by the ra.ndorn nature of the variable under 

the assumption of risk aversion. The level of output and factor 

demand for the risk averse case is then comp~red to the risk 

neutral case. In the risk neutral case random variables are replaced 

by their expected value. Thus, neutrality to risk is equivalent 

to certainty.if one views the certain value of the variable as 

:being its expected value. Nevertheless, it should kept in mind 

that whenever a variable quantity is introduced a.s random then 

the decision maker is in the realm-of uncertainty about the 

exact value of that variable irrespective of whether he is risk 

neutral or risk·averse. The purpose of this paper is to extend 

the recent work by introducing a random component into the pro

duction relationship simultaneously with output price as random 

variables. This model is altered in the last section to an 

h period model with both input and output prides random while 

assuming the production· relationship to be non-random. 

The approach taken in this paper is similar to that 

taken by Baron (1970) and to a lesser extent that taken by 

San<l!no (197l) and Batra and Ullah (1974). Baron, utilizing a cost 

function approach, showed that in the case where output price is 

defined as a random variable and under the assumption that the 

firm is risk averse, then the optimal level of output occurs such 

that the marginal cost is less-than the expected price. Under 

similar ass~mptions', Sandmo showed the same result. Using a 
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where w is the price of the input L and both.are known with 

certainty. There are no fixed costs in this model. The production 

function q{L) for a single output is an increasing concave 

function with continuou·s first and second derivatives, Le., 

q' (L) > 0 and q"(L) .::_ O, that is deterministic in nature for 

the single input. The variable a, independent of the variable p 

and taking values O < a < 1 with density function g(a), is 

introduced to represent the random nature of production. No 

.. storage or inventory will be permitted so as to not deter from 
,~,. ~.\ ,. . .., 

the generality of the model. 

Let the firm be controlled by a single decision maker 

whose utility for profits is identified by an increasing concave 

utility function, U, i.e. U' (n) > 0 and U" (TI) ~ O, where U 

is a utitlity function in the von Neumann-Morgenstern sense. 

Letting E('IT) be the expected value of 'IT, then 

00 

E ('If) = J 0 f 0 . (po:q(L) -wL) g (a) f (p) dadp. 

Differentiating with respect to L, we have 

where a,p are the expected values of a and p respectively. 

'Let L0 be the value of L that maximizes E(1T). Then 

(1) 



The above equation is the well known equilibrium 

relationship of profit maximization under certainty. In this 

context certainty refers to replacing every random quantity by 

its expected value in the profit function. Taking the expected 

value bf the utility of profit and computing its derivative with 

respect to L we get 

dE(U(1T)) = E((pa;q' (L)-w)U' (1T)) 
dL 

= q ' ( L) E ( pa ( U ; ( 7f) ) - wE ( u 1 hr) ) • 

If L1 is the value of L that maximizes E(U(1T)), then 

(2) = wE (U' {7r}) 
ifepo:U' ( TIIT • 

Rewrite E(pa,U' {7f)) in the following equivalent form 

E(pa.U' (1r)) = paE{U' (1T)) + E(p(a.-a)U' {'IT)) + <iE(p-p)U' (1T))e 

Substituting the above expression in (2) we get after factoring 
w 

(3) 

where 

W(U') = E cp c a-a> u • c 1T)} 

i)CiE cu • < 1T) > . 



and 

M(U') = E((p-p)U' ('!T)) 

pE(U' (Tr)) 

Combining (3) and (1) we have 

The above equation can be rewritten in the following form 

(4) q' (La/ - q 9 (LO) = -q' (Ll) [W(U')+M(U·')]. 

Using the mean value theorem we can assert 

{5} 

and 

A 

(6) qCL1 > - q CL0 > = q' CL> CL1-L0 ) , 

A 

where L* and L are numbers between L0 and L1 ~ Eliminating 

L1-L0 from (4) and {5) -we get 

"' 
(7) = g'(L) [q'(Ll)-q'(LO)]. 

q"(L*) 
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Combining .(1) and (4) we obtain 

(8) 
. : ' q ' . ( tl) q I ' ( L) 

q(Ll) - q(L0)= - q" (L*-) -· [W(U' }+M(U')] o 

$ince U. is concave, M(U') and W(U') are negative numbers 

" [see appendix]. Moreover q' (L1 ) and q' (L) are positive 

while q''CL*) is a negative number because of our assumptions 

on q(L). l!ence (8} implies that q(L1 l - q(L0 ) is ~.nega;tive 

number. In other words, output under uncertainty for a risk

averse firm is less than output under uncertainty for a risk 

neutral firm. Note that a deterministic price p implies M(U') 

is zero, and similarly a determ~nistic output implies W(U') is 

zero, thus q(L1) - q(L0) = O. If either M(U') or W(U') is 

zero and the othE;!r is negative, ~hen q(L1 ) - q(L0) is a negative 

nu,mber·, but will be larger_ in the case . when both M(U') and W(U') 

are simultaneously negative.· This extends Baron's result wh~ch 

he proved under the assumption that only the price is random. 

II. INCREASING RISK AVERSION AND INCREASING RISK 

The level of out:i;:ut of a purely competitive firm can 

be related to the degree of .risk ave_rsion as mea::;ur~d by the 

1 . d f . k . Pratt-Arrow in ex o ris aversion r{x) given by 

= U11 (x) = d 
r (x) -u, (x) - dx lnU' (x) ~ 

···tsee Arrow (1971) and Pratt (1964). 
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Assume U(x) is a given concave utility function and S 

a small positive number. Let ra(x) be 

Then the firm whose index of risk aversion is ra(x) is 

more risk averse than the firm whose risk aversion index is r{x). 

Let Ua(x) be the utitlity function whose risk aversion index 

is denoted by ra(x). Then 

where 

k = 
u' ( 0) 

a 

u' (0) 

Let L1 = L1 C$) be the value of L which maximizes 

E (U a ( 1T) ) • · Then 

where 

(9) 

Let 



z = z(S,L) = E(U~(TI) (paq' (L)-w)) 

= kE (U' ( 7r) e81T (pa,q' (L) -w)) • , 

Thus 

,z<s,L1 (S)) = 0. 

Using the implicit function theorem 

But 

and 

dL1 = 
dS 

az/as 
az/aL1 · 

az _Snl ag = -kE(U'(7fl)Tile (pa.q 1 (Ll)-w)), 

az 
()Ll 

2-STil = kE ( (paq' (L1 )-w) e (U" (71" 1 )-SU' ('!Tl))) 
_srr 

+ kE(U' (rr1 )e 1 ·paq" (L1 )}. 

Taking j3 = 0 

(10) 
dLl 
dS S=O 

E(U' (7r 1 }rr 1 (paq' (L1 }-w)) 

= 2 
E ( (pa.q' (L1 ) -vJ) t]'' (1r 1 ) ) +E (U 1 (TI 1 ) paq" (L1 ) ) 

Recalling (9) we have 

-8-

'-
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E (U' hr 1 ) 'IT 1 (pac;t 1 CL1 ) -w) ) = E (U' ('IT 1 ) (po:q (L1 ) ""'WL1 ) (paq' CL1 ) -w) ) 

. . 2 2 
= q(L1)q' (L1 JE(b~ ('!Tl)p a ) 

I •' 
- (wL(q' {L1 )+wq(L1 )},f;,(p U' (rr1 )) 

. + w2LE(U' (1ri)) 
. 2 2 = q (L1 ) q' (L1 ) E (U' (l) p a ) 

+ [w2Ll w (wL q' (L q 1 (Ll) l 1)+wq(L1 ))]• 

From (2) the 

·E{U' (ir )) . l 
. . 2 2 = q(L1 )q' (L1 )E(U' (~ 1 }p a ) 

2 q (Ll) 
- w E(U~ (;rl)). 

q' (L,} 
..... 

expression above reduces to· 

(11) E (U' (71"1} '!Tl (paq' (Ll)-w}) 

2 2 
E(U 1 hr1 ))E(U' (1Tl)p a } 

= q (Ll) [w - wE (po:U' ('ITl))] 
E ( po:U' ( 1f l} ) 

= 2 2 2 
[E{U 1 (7T1 })E(U(1Tl)p a }-E (pcdUe (71' 1 )}]. 

E (pa U 1 ( 1T 1 ) ) 

wq (Ll) 

By Schwarz inequality we know that 

E 2 {FG) < E(F2 )E(G2), 

where F and G are functions of p and a~ Applying Schwarz 

inequality to F = pa/tf' and G = Iii"'" implies that the quantity 

in the square brackets in (11) is positive. Thus .the numerator in 

(10) is positive, while the denominator is negative. Then 



' ' 

.... ···.·' ! 
! •. ·i,: .d~ . . ~ •. 

dLl 
~;: 

d{3 
~ ~ · .. { .< 0 ,·· 

13=0 
;.< .. ~. ·:'; 

' 

which impliee that . · .' 

. . 'f • 

·'1:_'· 

for small {3, and hence· 

' I , • .· :~.:. . : ·_-, ., ' 

The above inequality, shows that the firm with the 
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larger index of risk aversion produces a lower level of .output than 
~ . : r .. :· ,. . ·.• .. . '.:,. . .· -. . 

' , .. 

the firm with a smaller 'index of risk aversion. Baron obtained 
.. 

a similar result under the mor~ general assu~ption that ra(x) =.. rCx: 
' However, his proof relies heavily on the fact that the integral 

inthe e~pec.tation operator is a single integral while in our 

case it is a double integral since we are considering two random 

variables·~· . 

We will now apply the above result to the case where 

r (x) · is identically zero, that is, to the firm which ·is rl.sk 

neutral. Then r 1 (x) has the constant value a corresponding 

to a firm with a small, but constant index of risk aversion. If 

r (x) is identically zero, then u' (x) is co.nstant and U" (x) 

, is identically:. zero. .Thus· (10) ·reduces to· 

' -~ '• . 

. dLl· 
-~ 

\fq,Clio> . 
~ . x 

d$ . ;, 

_;',_ 

2 2 -2-2 
E ,(p a ) -p: OL . 

q" (LO),~; , . 

•• >," 

, 
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where L1 (O) = L0 •. 

Letting and 
<J 

c = ..:.:.£ 
p be thecoefficients of 

variation of a 

Thus for-small 8 

(12) 

-p 

and p respectively, then 

dLI df3. f3=0 
q" (L ) 0 

q" (L ) . 0 

Hence the firm with a constant risk aversion index whose value is 

8 produces less out-put than the risk neutral firm by an amount 

.6q given approximately by 

Combining the above equation with (12} we obtain the formula 

(13) 

Recall that q' {L0) can be· computed. from (1). 

Baron showed that under the assumption of a normally dis

. tribute~ price p thatan increase in risk (i.e. an increase in the 

variance of p) results in a decrease in the· optimal level of 

output. D. v. Coes (1977) and Y. Ishii (1977) arrived at the same 
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conclusion for the case of a "mean preserving spread11 ·without any 

pJ:'iOr assurnption on th~. distribution~ 2 ·· ~. more generalized result 

can be interpreted from (12}. _ '11hat .is,wit}).out making any :prior 

assumptions.on the distribution of the two random variables p 

and o., the. level of optimal '9t1tpu-t;, will decrease if both or either 
. ' 

of the variances implicit in the coefficients of ·variation c 
p 

and Ca. increase. An increase in either va:i:iance While holding 

the other constant will result in a smaller decrease in the level 

of optimal output than the case when both variances incre~s.e 

simultaneously. 

III. OTPIMAL OUTPUT WITH INPUT AND OUTPUT PRICE RANDOM 

In the following section a model of a compe_titive firm 

with n. production periods · is considered. The assumption 

on output price p from the previous section is retained, 

while the level of output y is , assumed to be deterministic. 

Let C (y) be that port;:ion of the variable costs ,known with .. ··. 

certainty throughout the n production periods and ¢i(y) be 

the amount of input needed·during the ith period of production. 

The p+ice of the input at the beginning of the ith period of 

production, denoted by u., 
1 

is assumed to be random from the 

point of view of the entrepreneur.at the initial stage -of production 

planning. The total. variable cost of pr9duction wi,11 :Pe 

2see Rothschild and Stiglitz (1970} for a d.isc:ussion of the concept 
"mean preserving spread" and other definitions of an increase in ris: 
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n 

C(y) + r u. <I>. <y> • 3 
1 J. 

Under the .above. ae::sumptions t:P.e p:r;ofit 
i=2 

function 1T(y) is given by 

·n 

1T(y) =PY -·C(y) l u .·<f>. (y) • 
. 1 l. -

i=2 

Assume the random variables p, u., 
l. 

i = 2 , ••• ,n · are independent. 

f (p) be the density· of p and g. (u.) 
1 1 

be the density 

function of u., 
J. 

i = 2, ••• ,n. Taking the expected value of the 

profit function we get 

n 

E{1T) = PY - C(y) - l U •<I>• (y) I 
l. l. 

i=2 

where, as before, the bar above the symbol of a random variable 

denotes its expected value. T~us the first order condition for 

a risk neutral firm is 

n 

{13) p - c• <y>·- l ui1TiCY> = o. 
u=2 

Let U(x) be a concave ut~lity function of a risk 

averse firm. The optimal level of output Ya for such a firm must 

satisfy the equation 

3 

cfy- E(U(1T)) = 0. 

The index in the sum starts at i = 2 since the input price is 
known with certainty at the beginning of production. 



The .. a.b~ve equation can be rew~itten a:·s·'.'fchlows .·. 
. . . . : ' . .. . ~ . : ; ,•:\ ~ 

n 

(14} E(U' ('ll"a} (p-C' (ya) - l ui<l>i<Ya))) = 0, 
i=2 

where 1Ta = ir(ya). Equation _(14) is equivalent to 

,:j -·· 

'E ( Cp-p) u' <'IT )) -a 

n 

l 
;i:.=2 
n 

<I>! { y ) E (( u . -u . ) U' pr )) 
1 a . 1 1. · . a 

· + [p:..c'<Ya> ... l <l>i<Ya>"ui]E(U' (1Ta)) = o. 
i=2 

Now the above equation for t:Q.e expression 

-p - C' (ya) 
.i.f·' 

; .. ~;. .. 
n 

= 

n 

- l 
~- i=2 

4>! (y ) ii. 
1 a i 

E {U' hr ) ) . a 

-· ..:·,;·,· 

• ... 
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~ ·,· .. 

in the brackets 

.. .. 

. .-._..,;';' ' .. 

·-_, 

d'll" d'll" Since rp = y > o and dU":'" = -<l>i(y) <a.then using the lemma·contai 
1 ·; .... 

in the appendix, the first term in the numerator on the left hand 

; .side' o_f the., above equation is positive whil~ the second term is 

negative, and certainly E(U' (1T )) > 0 because U(x) is an . . a 

increasing function. Thus we can assert that 

n 

(15) "' - . > '+'!Cy )u. O. 
1 a 1 

i=2 

Le.t .: K(y) be· the fu:g~tion 
" 

.. 

.. 



.. 

n 
-K(y) = p - C' (y) - l U..<1>!<y>, 

l. l. 

i=2 

and let Yn be the optimal output of the ris~ neutral firm. 

Then from (13) we know that 

(16) 

while from (15), 

(17) K(y ) > 0 a . 

Taking the derivative of K(y}, we have 

n 

K, <Y> = - c" <Y> - I ui <Pi <Y> • 
i=2 

-15-

It is obvious that -K' (y) is the second derivative of the 

expected total variable cost-function, which we know to be 

always positive. Then -K'(y} > 0 implying K'(y) < 0, ~nd thus 

l<{y) is a decreasing function. From (16) and (17) we have 

v < y -a n because, 

as shown abov·e, K (y) is a. decreasing function. Thus, the 

optimal level of production under risk aversion is less than that 

under a neutral attitude towards risk. 
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APPENDIX 

The following Lemma is essential for the :mathematical 

de;i:i.ivations. 

Lelrima. Let 0, 0 < S < oo be a :random Variable with a density 

function f(.0), and let U(x) be a twice continuously differen

tiable function of x suoh that U' (x) > 0 while U"(x) < O. 

Assume that 7f = _'ff (0) is continuously differentiable function 

of e, with a derivative n 1 (~) which is positive (negative) 

for 0 < 6 < oo~ Then the integral 

00 

I = f (e- a)U 1 (rr)f(6)d6 
0 

is negative (positive), where -e denotes the mean of 

· Proof. Let G (.8) be the function defined by 

e 
GCe> = f 0 ct--e>£<.t>at. 

@. 

Clear;1.y, we have G(O) = o, G(<») = O and G' (6) = (8-S}f(e). 

Thus G(e) is decreasing fo~ e < e and increasing for e > a. 
Therefore,_:::; · G(e) < o for o < e < oo. The integral I can be 

rewritten in terms of G(e) as follows 

<)O 

I = J 0 U' (n)G' (e)ae. 

Int~grating by parts, we get 



'' 

00 

I = - f G c e > u" c n > 1T' < e >de. 
0 
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.. , 

The boundary term in the integration by parts drops out since · 

G(O)·~ G(oo) = O. Using the assumptions of the lemm~ and the 

above equation we deduce the conclusion of the lemma. 
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