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INTRODUCTION

Deterministic models of the ﬁﬁéory of the firm are not
adequate in describing investment behavior or factor demand ﬁnﬁer
‘conditions of uncertainty and risk avéision; Recentnattempﬁs to
construct models that"téke into consideration uncertainties aﬂ@
deéiéioﬁ'mak@r‘s‘aftitudéé toward risk have identifiédxcutput price
as a random variable and then sought to show héw factor demand
- and Qntpmtcﬂmaaffected by the random natu:e of the variable under
the assumption of risk aversxcnq The level of output and actor
demand for the risk averse caéé is then campare& to the l%k
neutral case. In the risk neutral‘case random Vaiiables are réplaceﬂ
by their expected value. Thusg, neutraliﬁy to risk is equivaléht
"to certainty if one views the certain valne of the variable as
being its expected value. Nevertheleﬁs,lt Shou? K pt in mlnd
that whenever a variable quantlty is 1ntroéuced as an&om then'
the decisioh maker is in the realm of uncertainty about the
exact value of that variable ifrespective of whether he iélrisk
neutral or risk averse. The purpose of this paper is to extend
the recent work by introducing a random pﬁmpcnent into the pr0~
duction lelatlonshlp 51muxtaneously with outpuﬁ pr¢ce as random
variables. Thls model :is altered 1n the last_sectlan to an
n  period model with both input and output prices iandom[wﬁilét
assuming the production relationship tco be non-random.

The approach takenlim this paper is similar to that
taken by Baron (1970) and'ﬁé a lesser extent that taken by
Sanamo (1971) ah& Batra and Ullah (1974) . Eav‘*enF utlllzlng a cost
function approach, showed that in the case where output prlce is
defined as a random variab;e and undexr the assumption that the
firm is risk averse, then the optimal level of output accurs such
that the marginal cost is less-than the expec;ed prlceu \ﬁnaer

similar assumptlons, Sandmo showed the same result. U31ng'é



o
where w ig the price’of the input L and both are known wiﬁh
certainty. There are no fixed costs in this model. The production
function g(L) for a single output is an increasing concave |
function with continuous first and second derivatives, i.e.,

q'(L) > 0 and g"(L) < 0, that is detérministic in nature for
the single input; The variable o, independent of the variable p
and taking values 0 i o < 1 with density function g(a), is
introduced tdvrepresent‘thesfahddm nature of produéticn. No
- storage or inventory will be permitted so as to not deter from
vﬁéhe generality of the modeigl |

Let the firm be controlled by a single decision maker
whose utility for profits is identifiedvby an incréaéing‘concave
utility fﬁnction, U, i.e. U'(w} > 0 and U"(w) < 0, where U
is a utitlity function in £he von Neumanﬁ~Morgénstern sense.

Letting E(w) be the expected value of 1w, then

s 1

E(w) = | . fo_(paq(L)-wL)g(a)f(p)dudp,

Differentiating with respect to L, we have

égéll = pog' (L) - w
where o,p are the expected values of o and p respectively.

“Let L, be the value of L that maximizes E(7). Then

(1) Q' Ly = A,
pa



The above eqguation is the well known equilibrium
rélationship of profit maximizaﬁion under certainty. In this
context certainty refefs to replacing every random quantity by
its expected value in the profit function. Taking the expecteé'
value of the utility of'profit and ccm@uting i£s derivative with
respect to L we get

GBI - B ((pag" (L)-m U (M)

= @' (L)E(Pa(U (1) - WE(U' ().

1 is the value of I that maximizes E(U(ﬁ)); then

' ey o WEUY(m)
(2) | L) = Fpa (ay

Rewrite E(pqU'(m) ‘inﬁthe following équivalent form
E(paU' (1)) = PaE(U' (M) + E(p(a=0)T' (M) + JE(p-pIU'(T)).

Substituting the above expression in (2) we get after féctoring
w

——

Pa
(3) @'y = gy
where

_ E(p(o~a)U'(m)

W(u') £
’ CpoEA(UT{m) )



and

M(U') e E(fp'f))u' (“))
PE(U* (n)}

Combining (3) and (1) we have .

L ]
EGAER

@' (Ly) = a' L) Iyrree

The above equation can be rewritten in the following fb;m

(4) q‘(ﬁg - q“(LO) = -q‘(Ll)[W(U‘)+M(U’)].

Using the mean value theorem we can assert

(5) (L) - gt (D) = g (L) (Ly-Lg)
and
(6) aLy) = ally) = q' (L) (By~Ly)

A : .
where L* and I are numbers between LO and L16

L.~L from (4) and (5) we get

170

(7 a(@y) - atny = L (g w)-qt @1,

qu (L* )

Eliminating



e Th

Combining (7) and (4) we obtain

(8) B jq(Ll) -‘q(L0)=~ ST (W(U')y+M(U") 1.

Since"U _is COﬂéave, M(U') and W(U'} are negative nﬁmbers
.{sée appendix]; Moreover _g‘(Ll)_ and qf(i) are positive
’Whilé g" (L*) is a nééati#e number because of our assumptions

on q(L). Hence (8) implies that q(Ly) - g(L,) is a negative
number. In other words , cnngut under uncertainty for a risk-
a&erse firm is less th;n output under uncertainty for a risk
neutral fiim; Note.that a déterminis;ié price p ‘implies M(U")
‘is zero, and similarly a determiniStiéroutput implies W(U') is
.“;;ro, thus q(Ll) - q(Lo) = 0. If either M(ﬁ') or W(U?)' is
zero and thelpther is negative, then q(Ll) - q(LO) is a’negative
number, but will be larger in the case .when both M(U') and W(U')
are simultaneously negative. This extends Baron's resﬁlt which

he proved under the assumption that only the price is random.

II. INCREASING RISK AVERSION AND INCREASING RISK
The level of output of a purely competitive firm can
be related to thé degree of risk aversion as meagured_by the
Pratt-Arrowl index of risk aversion r(x) given by
U" (%) d

r(x) = "'--;'—(—}ET = - 3% InU® (x).

lSée Arrow (1971) and Pratt (1964).



Assume U(x) is a given concave utility Ffunction and g

a small positive number. Let ra(x)r be
ra(x) = r{x) + g.

Then the firm whose index of risk aversion is ra(x) is
more risk averse than the firm whose risk aversion index is r(x).
Let Ua(x) be the utitlity function whose risk aversion index

_is denoted by ra(x). Then

Ul(x) = keP¥ut (x),
where
X = Ué(O) .
u'(0)

Let Ll = Ll(B) be the value of L which maximizes

E(U_(m)). - Then

E(Ué(ﬂi)(paq'(pi)~w)) = 0,
where
(9) wl‘= Pog(Ly) ~ wL,.

Let



z = z(8,L)

|

E(] () (pag' (L) ~w))

it

kE (U ()87 (pag" (1) -w)) .
Thus

Using the implicit function theorem

dLl

1 . . 32/38
8 3z/aLl *
Bui
B ’
* oy 1 1
3 = “KB(U'(r)mE Hpag’ (Ly)-w)),
and

Z

2z

28Ty
3Ly = kE((paq'(Ll)-w) e

(U" (1) =BU" (1))
_Bm

+ KE(U' () T pag” (L)) .
Taking B =20

4aL E(U' (m ), (pag' (L,)~-w))
(10)  —= = 1 1 L

B 180 B((pag’ (1)) -w) 2u” (1)) +E (V' (1) pag” (L))

Recalling (9) we have



E(U'(nl)wl(paq'(Ll)—w)) E(U‘(nl)(paq(Ll);le)(paq’(Ll)-w))
= q@pat (L EW (1))p%?)
= (WL(q' (L)) +wg (L)) E(p U' (ny))
o+ WPLE(U' (1)) |
= q(L)q" (L) B (U (7)) p%0®)
w

+ [WZL ~
q* (L]

1

(leq'(Ll)qu(Ll))]‘

*E(U'(wl))

= q(L)a’ (L)EW (1)p%?)

q(L,}
-w? =L B@ ).
qt(Ly)
From (2} the expression above reduces to’

(11)  E(U' (wy)my (pog' (Ly)=w)]) -
E(U" (r))E(U" (1) p )

q(Ll){w - wE(an‘(wl))}

E(pal' (1))

vally) 2 2, 2
= [EéU‘(nl))E(inllp a”)~E (pa(Ugiwj))].
E(me‘(wl)) -

By Schwarz inequality we know that
22 (FG) < E(FHE(GD),

where F and G are functions of p and o. Applying Schwarz
inequality to F = pavU' and G = /U' implies that the quantity
in the square brackets in (11) is positive. Thus the numerator in

(10) is positive, while the denominator is negative. Then
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which implies that .

Ly (B) < Ly(0)y
for small B, and hence -

qa(Ly(8)) < q(Ly(0)).

The above iﬁequality:shdﬁs that the firm with the
larger index of risk aversion produ¢gs:aAlower level of output than
the firm with a ‘sﬁéllér.ihdéx of riskﬂééérsidn, Baron obtained
a similar result under the mdre géneral agsumpti@n that ra(X) > r(x:
Howevér, his proof relies heavilyéqn the féc£>that the integral
in the.egpeétation opefatorvis é Single'integral while in our
case it'is a double integrai since}&e are considering two random
vatiablesﬁ.l | o

We will now apply the above result to‘thé case where
r(x) is identically zeroc, that is, to. the firm which is risk
neutrél. Then rl(x) has the constant value B corresponding
to a firm with a small, but cohstantfindex of risk aversion. If
r(x) is identically zero, then U'(x) is constant and U" (x)
:is,identicallyuze:c.-,Thus‘(IO)»reduces to’

au, | walLy) E(p%H-p%2

. X

dg |8=0  pa . gq"(Lylpo .
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where Ll(O) = I

0. -
g g
Letting C = - and CP = f?- ~be the coefficients of
A 5 5

variation of o and p respectively, then

sl walny)
| %%'Béo =0 (cgcg + 24 c ).
q‘“ (LO) ‘

?hus for small B

wq (L)
(12) Ly (8) = Ly = —2 (c2c? 4 c2 +c2 )
qu (LQ) P
Hence the firm with a constant risk aversion index whose value is

B produces less out~-put than the risk»neutral firm by an amount

Ag given approximately by
Aq = q(Ly (B))=q(Ly)) = q' (L4} (L (B)~Ly) .

Combining the above equation with (12) we obtain the formula

wBq' (L) g (L)
(13) Aq = o0 (cic2 + cz + c ).
ql! (LQ) v p

Recall that 'q'(LQ) can be computed from (1}.

| Baron showed that under the aésumption of a normally dis-
- tributed price p thaan increase.in risk (i.e. an increase in the
variance of p) vresults in a decreése in the optimal level of

output. D. V. Coes (1977) and Y. Ishii (1977) arrived at the same
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conclusion for the case of a "mean preservinévspreéd“-withbut any
pxior;assumption»on thg;disttibutioan“ A more generalized result
can bé'interpreted from (12) . . That is,without making any prior
assumptions on the distribution of theltwc random variables p

and a; the level of optimai”gﬁéﬁﬁt;willudearease if both or either
of the variances impliéit in the caeffiéieﬁts of variation e

and C, incréase. An increase in either variance while holding

the other constant will result in a smaller’deéreése in the level

of optimal output than the case ﬁhen’bbth>yariances increase

simultaneously.

III. OTPIMAL OUTPUT WITH INPUT AND OUTPUT PRICE RANDOM

In the following section a model éf:a competitive firm

with n. production periods - - is considered. The assumption
" on output price p from the préVieus section is retained,
while the level of output vy is . assumed to be deterministic.

Let q(y) be that portion of the variable costs known with -
certainty throughout the n production periods and ¢i(Y) be

th

the amount of input needed during %he> i:x Peind of production.

The price of the input at the beginning of the ith period of
production, denoted by Uy is assumed to be random from the
point of view of the entrepreneur,atAthe:ipitial stage -of production

“ planning. The total variable cost of production will be

2See Rothschild and Stiglitz (1970) for a:discussion of the concept
"mean preserving spread" and other definitions of an increase in ris
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n
Cly) + 1} ui¢i(y).3 Under the above agsumptions the profit
i=2
function w(y) is given by
“n

m(y) =py --C(y) - ] uge,(y).

o ‘ i=2
Assume the random variables p, u; i= 2,.,.,n are independent.
Let f(p) be the density of .p and gi(ui) be the deﬁsity
function of u; i=2,...,n. Taking the expected value of the

profit function we get
no '
E('H) =§Y - C(Y) - Z ai(bi(y)’

where, as_before, the bar above the symbol of a random variable
denotes its expected value. Thus the first orderxr condition for

a risk neutral firm is

(13) p~Ciy) ~ [ umi(y) =0.
u=2
Let U(x) be a concave utility function Qf a risk
averse firm. The optimal level of ocutput Y for such a firm must

satisfy the equation

g D
ay E{U(m)) = 0.

3
The index in the sum starts at i = 2 since the input prlce lS
known with certainty at the beginning of production.
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The above equation can be rewritten as follows

. n R .
(14) BT ) (p=C'(y,) = I u%l(y))) =0,
i=2
where T, = W(yé). Equation (14) is equivalent to
. n _ .
ol 1 - ‘ s T
E((p-P)U' (7)) = L O (y JE((u;~8)u" (7))
n Lo : ‘
HIBRCT(yy) - 1 ¥y )y lE(T(T)) = 0.
‘ i=2
Now - = the above equation for the expression in the brackets

n _
P-Cilyy) - I #(v)u

oo~ 3

T3y )E (a8, U (T FE ((p-D) U (7))

i=2

)
E(U' (7))
Since 3T _ vy ; 0 and om - (y} % 0 then using the lemma contai
P 3ui i . (
in the appendix, the first term in the numerator on the left hand
. side of the.above equation is positive while the second term is
negative, and certainly E(U‘(Wa)) > 0 because U(x) is an

increasing function. Thus we can assert that
(15) | P -Clly) - 1 ¢y %, >o.

Let. g(y) be the function



o]

K(y) =p - C'(y) - ] Uiy,
' i=2

and let Yp be the optimal output of the risk neutral firm.

Then frgm (13) we know thgt

(16) ) | K(yn) = 0,
while from (15),

(17) o K(y,) > 0.
Taking the derivative of K(y), we have

K'(y) =~ C"(y) - a6 (v) .

h t~ 3

i=2
It is obvious that =K' (y) is the second derivative of the
éxpected total variable cosf-function, which we know to be

always positive. Then -K'(y) > 0 implying K'(y) < 0, and thus

K{y) is a decreasing function. From (16) and (17) we have
RK{y,) > Kly,)-

The above cguation itwplies that Yy <Y, because,
as shown above, K(y) is a decreasing function. Thus, the
optimal level of production under risk aversion is less than that

under a neutral attitude towards risk.
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APPENDIX
The following Lemma is essential for the mathematical

derivations.

nggg.' Let 6, 0 <8 < = be a Eéndém variable with a density
fuhction £(6), and let U(x) be a twice continuously différen~
tiable function of x sguch that U'(x}) > 0 while U"(x) < 0.
Assume that = 71(8) is continucusly differentiable function
of 6, with a derivative w'(g) which is positiVe (negative)
for O £ 8 < o, Then the infegral

o

I= fo (6= 8)U' (w)£(p)dp
is negative (positive),_whére ) denotes the mean of §.

Proof. Let G(8) -be the function defined by
e ——
G(e) = [ (t-8)f(t)at.
Clearly, we have G(0) =0, G(x) =0 and G'(8) = (6-6)£(8).
Thus G(8) is decreasing for s < 6 and increasing for 6 > .
Thereforss G(6) < 0 for 0 < 6 < o, The integral I can be
rewritten in terms of G(6) as follows

=]

O'U'(w)G'(e)de.

. f

Integrating by parts, we get
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0

I =~ G(8)U"(m)w'(8)ds.
0

The boundary term in the integration.by parts érops out since
G(0) = G(w) = 0. Using the assumptions of the lemma and the

above equatibn we deduce the conclusion of the lemma.
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