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1 Introduction

Explaining variations in the behaviors of individuals is of central importance in choice
analysis. For the last decade, the most popular explanation has been preference or taste
heterogeneity; that is, some individuals care more about particular product attributes
than do others. This assumption is most naturally represented via random parameter
models, among which the mixed logit (MIXL) model has become the standard to use
(McFadden and Train 2000).

Recently, however, a group of researchers (for example, Louviere et al. [1999], Lou-
viere et al. [2002], Louviere and Eagle [2006], and Louviere et al. [2007]) has argued that
in most choice contexts, much of the preference heterogeneity may be better described
as “scale” heterogeneity; that is, with attribute coefficients fixed, the scale of the id-
iosyncratic error term is greater for some consumers than it is for others. Because the
scale of the error term is inversely related to the error variance, this argument implies
that choice behavior is more random for some consumers than it is for others. Although
the scale of the error term in discrete choice models cannot be separately identified from
the attribute coefficients, it is possible to identify relative scale terms across consumers.
Thus the statement that all heterogeneity is in the scale of the error term “is observa-
tionally equivalent to the statement that heterogeneity takes the form of the vector of
utility weights being scaled up or down proportionately as one ‘looks’ across consumers”
(Fiebig et al. 2010). These arguments have led to the scale heterogeneity multinomial
logit (S-MNL) model, a much more parsimonious model specification than MIXL.

c© 2013 StataCorp LP st0301
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To accommodate both preference and scale heterogeneity, Fiebig et al. (2010) devel-
oped a generalized multinomial logit (G-MNL) model that nests MIXL and S-MNL. Their
research also shows that the two sources of heterogeneity often coexist but that their
importance varies in different choice contexts.

In this article, we will describe the gmnl Stata command, which can be used to fit the
G-MNL model and its special cases. The command is a generalization of the mixlogit

command developed by Hole (2007). We will also present an empirical example that
demonstrates how to use gmnl, and we will discuss related computational issues.

2 The G-MNL model and its special cases

We assume a sample of N respondents with the choice of J alternatives in T choice
situations.1 Following Fiebig et al. (2010), the G-MNL model gives the probability of
respondent i choosing alternative j in choice situation t as

Pr(choiceit = j|βi) =
exp(β

′

ixitj)∑J
k=1 exp(β

′

ixitk)
(1)

i = 1, . . . , N ; t = 1, . . . , T ; j = 1, . . . , J

where xitj is a vector of observed attributes of alternative j and βi is a vector of
individual-specific parameters defined as

βi = σiβ + {γ + σi(1 − γ)}ηi (2)

The specification of βi in (2) is central to G-MNL and differentiates it from previous
heterogeneity models. It depends on a constant vector β, a scalar parameter γ, a
random vector ηi distributed MVN(0,Σ), and σi, the individual-specific scale of the
idiosyncratic error.

In Fiebig et al. (2010), γ is constrained to be between 0 and 1. In extreme cases,
γ = 1 leads to G-MNL-I: βi = σiβ + ηi and γ = 0 leads to G-MNL-II:2 βi = σi(β + ηi). To
understand the difference between these two models, Fiebig et al. (2010) describe them
with a single equation: βi = σiβ + η∗

i , where σi captures scale heterogeneity and η∗
i

captures residual preference heterogeneity. Through this, we can see that in G-MNL-I,
the standard deviation of η∗

i is independent of the scaling of β, whereas in G-MNL-II, it
is proportional to σi.

However, an article by Keane and Wasi (forthcoming) points out that γ < 0 or γ > 1
still permits sensible behavioral interpretations, and thus there is no reason to impose
the constraint. We follow their advice and allow γ to take any value.

1. We could also consider a different number of alternatives and choice situations for each respondent;
for example, see Greene and Hensher (2010). The gmnl command can handle both of these cases.

2. Greene and Hensher (2010) call this the “scaled mixed logit model”.
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Three useful special cases of G-MNL are the following:

• MIXL: βi = β + ηi (when σi = 1)

• S-MNL: βi = σiβ (when var(ηi) = 0)

• Standard multinomial logit: βi = β (when σi = 1 and var(ηi) = 0)

The gmnl command includes an option for fitting MIXL models, but we recommend that
mixlogit be used for this purpose because it is usually faster.

To complete the model specification, we need to choose a distribution for σi. Al-
though any distribution defined on the positive real line is a theoretical possibility,
Fiebig et al. (2010) assume that σi is distributed lognormal with standard deviation τ
and mean σ +θzi, where σ is a normalizing constant and zi is a vector of characteristics
of individual i that can be used to explain why σi differs across people.

3 Maximum simulated likelihood

The log likelihood for G-MNL is given by

LL(β, γ, τ, θ,Σ) =

N∑

i=1

ln





∫ T∏

t=1

J∏

j=1

Pr(choiceit = j|βi)
yitj p(βi|β, γ, τ, θ,Σ)dβi



 (3)

where yitj is the observed choice variable, Pr(choiceit = j|βi) is given by (1), and
p(βi|β, γ, τ, θ,Σ) is implied by (2).

Maximizing the log likelihood in (3) directly is rather difficult because the integral
does not have a closed-form representation and so must be evaluated numerically. We
choose to approximate it with simulation (see Train [2009], for example). The simulated
likelihood is

SLL(β, γ, τ, θ,Σ) =

N∑

i=1

ln





1

R

R∑

r=1

T∏

t=1

J∏

j=1

Pr(choiceit = j|β[r]
i )yitj





β
[r]
i = σ

[r]
i β +

{
γ + σ

[r]
i (1 − γ)

}
η
[r]
i

σ
[r]
i = exp(σ + θzi + τν[r])

where η
[r]
i is a vector generated from MVN(0,Σ) and ν[r] is a N(0, 1) scalar. η

[r]
i and ν[r]

are generated using Halton draws (Halton 1964) and pseudorandom draws, respectively.
When testing the code, we found that this combination works better than using Halton
draws to generate all the random terms.

Following Fiebig et al. (2010), we set the normalizing constant σ as − ln{ 1
N

∑N
i=1

exp(τν
[r]
i )}, where ν

[r]
i is the rth draw for the ith person. We also draw ν from a

truncated normal with truncation at ±2.
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4 The gmnl command

4.1 Syntax

gmnl is implemented as a gf0 ml evaluator. The Halton draws used in the estimation
process are generated using the Mata function halton() (Drukker and Gates 2006).
The generic syntax for the command is as follows:

gmnl depvar
[
varlist

] [
if
] [

in
]
, group(varname)

[
rand(varlist) id(varname)

corr nrep(#) burn(#) gamma(#) scale(matrix) het(varlist) mixl seed(#)

level(#) constraints(numlist) vce(vcetype) maximize options
]

The command gmnlpred can be used following gmnl to obtain predicted probabili-
ties. The predictions are available both in and out of sample; type gmnlpred . . . if

e(sample) . . . if predictions are wanted for the estimation sample only.

gmnlpred newvar
[
if
] [

in
] [

, nrep(#) burn(#) ll
]

The command gmnlcov can be used following gmnl to obtain the elements in the coeffi-
cient covariance matrix along with their standard errors. This command is only relevant
when the coefficients are specified to be correlated; see the corr option below. gmnlcov
is a wrapper for nlcom (see [R] nlcom).

gmnlcov
[
, sd

]

The command gmnlbeta can be used following gmnl to obtain the individual-level pa-
rameters corresponding to the variables in the specified varlist by using the method
proposed by Revelt and Train (2000) (see also Train [2009, chap. 11]). The individual-
level parameters are stored in a data file specified by the user. As with gmnlpred, the
predictions are available both in and out of sample; type gmnlbeta . . . if e(sample)

. . . if predictions are wanted for the estimation sample only.

gmnlbeta varlist
[
if
] [

in
]
, saving(filename)

[
replace nrep(#) burn(#)

]

4.2 gmnl options

group(varname) specifies a numeric identifier variable for the choice occasions. group()
is required.

rand(varlist) specifies the independent variables whose coefficients are random (nor-
mally distributed). The variables immediately following the dependent variable in
the syntax are specified to have fixed coefficients.
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id(varname) specifies a numeric identifier variable for the decision makers. This option
should be specified only when each individual performs several choices, that is, when
the dataset is a panel.

corr specifies that the random coefficients be correlated. The default is that they
are independent. When the corr option is specified, the estimated parameters are
the means of the (fixed and random) coefficients plus the elements of the lower-
triangular matrix L, where the covariance matrix for the random coefficients is given
by Σ = LL′. The estimated parameters are reported in the following order: the
means of the fixed coefficients, the means of the random coefficients, and the elements
of the L matrix. The gmnlcov command can be used postestimation to obtain the
elements in the Σ matrix along with their standard errors.

If the corr option is not specified, the estimated parameters are the means of the
fixed coefficients and the means and standard deviations of the random coefficients,
reported in that order. The sign of the estimated standard deviations is irrelevant.
Although in practice the estimates may be negative, interpret them as being positive.

The sequence of the parameters is important to bear in mind when specifying starting
values.

nrep(#) specifies the number of draws used for the simulation. The default is nrep(50).

burn(#) specifies the number of initial sequence elements to drop when creating the
Halton sequences. The default is burn(15). Specifying this option helps reduce the
correlation between the sequences in each dimension. Train (2009, 227) recommends
that # should be at least as large as the largest prime number used to generate the
sequences. If there are K random coefficients, gmnl uses the first K primes to
generate the Halton draws.

gamma(#) constrains the gamma parameter to the specified value in the estimations.

scale(matrix) specifies a matrix whose elements indicate whether their corresponding
variable will be scaled (1 = scaled and 0 = not scaled). The matrix should have
one row, and the number of columns should be equal to the number of explanatory
variables in the model.

het(varlist) specifies the variables in the zi vector (if any).

mixl specifies that a mixed logit model should be estimated instead of a G-MNL model.

seed(#) specifies the seed. The default is seed(12345).

level(#); see [R] estimation options.

constraints(numlist); see [R] estimation options.

vce(vcetype); vcetype may be oim, robust, cluster clustvar, or opg; see [R] vce option.

maximize options: difficult, technique(algorithm spec), iterate(#), trace,
gradient, showstep, hessian, tolerance(#), ltolerance(#), gtolerance(#),
nrtolerance(#), and from(init specs); see [R] maximize.
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4.3 gmnlpred options

nrep(#) specifies the number of draws used for the simulation. The default is nrep(50).

burn(#) specifies the number of initial sequence elements to drop when creating the
Halton sequences. The default is burn(15). Specifying this option helps reduce the
correlation between the sequences in each dimension. Train (2009, 227) recommends
that # should be at least as large as the largest prime number used to generate the
sequences. If there are K random coefficients, gmnl uses the first K primes to
generate the Halton draws.

ll estimates individual log likelihoods.

4.4 gmnlcov option

sd reports the standard deviations of the correlated coefficients instead of the covariance
matrix.

4.5 gmnlbeta options

saving(filename) saves individual-level parameters to filename. saving() is required.

replace overwrites filename.

nrep(#) specifies the number of draws used for the simulation. The default is nrep(50).

burn(#) specifies the number of initial sequence elements to drop when creating the
Halton sequences. The default is burn(15). Specifying this option helps reduce the
correlation between the sequences in each dimension. Train (2009, 227) recommends
that # should be at least as large as the largest prime number used to generate the
sequences. If there are K random coefficients, gmnl uses the first K primes to
generate the Halton draws.

5 Computational issues

As in any model estimated using maximum simulated likelihood, parameter estimates of
G-MNL would depend on four factors: the random-number seed, number of draws, start-
ing values, and optimization method. If the four factors are fixed, the same maximum
likelihood estimates would be obtained at each simulation.
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To have a good approximation of the likelihood, we must use a reasonable number
of draws: the more draws used, the better the accuracy. However, a larger number of
draws almost surely leads to a longer computation time. To determine the minimum
number of draws for a desirable level of accuracy remains a theoretical challenge, but
empirically, we may run the gmnl command several times with an increasing number of
draws in each run (with the other three factors fixed) until the estimates stabilize. We
should mention that too few draws may lead to serious convergence problems: a good
starting point is 500 draws.

Starting values are crucial to achieve convergence, especially for the full model, that
is, G-MNL with correlated random parameters (G-MNL correlated). If we see optimization
as climbing a hill, then where we start climbing is one of the major factors that decide
how long it will take to reach the top or if we can ever get there in the end. If we start
from the bottom where the territory is often flat, the direction guidance (that is, the
first-order derivatives of the likelihood) may not function well and lead us farther away
from the top. For this reason, the default starting values based on the multinomial logit
estimates may not be the best, and we often need to choose our own set of starting
values.

To estimate “G-MNL correlated”, we have tried four different sets of starting values:
G-MNL uncorrelated, MIXL uncorrelated, MIXL correlated, and G-MNL correlated with γ
fixed as 0. In most cases, these four sets of starting values would all lead to convergence,
but the speed might be very different. In any case, we should not be content with only
one set of starting values because even if the model converges, it is not guaranteed
that we have reached the global maximum. We suggest running the routine multiple
times, each with different starting values, and reporting the estimates from the run that
obtains the largest likelihood.

The choice of optimization method is another important factor that affects model
convergence. Stata allows four options: Newton–Raphson (default), Berndt–Hall–Hall–
Hausman, Davidon–Fletcher–Powell, and Broyden–Fletcher–Goldfarb–Shanno. Chap-
ter 8 in Train (2009) describes these methods in detail and concludes that Broyden–
Fletcher–Goldfarb–Shanno usually performs better than the others. With mixlogit

and gmnl, however, we have found that Newton–Raphson often works best in the sense
that it is more likely to converge than the alternative algorithms. The only problem
with Newton–Raphson is that it can be very slow when there are a lot of parameters to
estimate.

Finally, we have found that in some cases, different computers can give different
results if there are several random parameters in the model and γ is freely estimated.
This can happen when the model is numerically unstable and different numbers of
processors are used during estimation.
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6 Empirical example

We will now present some examples that demonstrate how the gmnl command can
be used to fit the different models described in section 2. We will start by fitting
some relatively simple models, and then we will build up the complexity gradually.
The data used in the examples come from a stated preference study on Australian
women who were asked to choose whether to have a pap smear test; see Fiebig and Hall
(2004). There were 79 women in the sample, and each respondent was presented with
32 scenarios. Thus in terms of the model structure described in section 2, N = 79,
T = 32, and J = 2. The dataset also contains five attributes, which are described
in table 1. Besides these five attributes, an alternative specific constant (ASC) will be
used to measure intangible aspects of the pap smear test not captured by the design
attributes (some women would choose or not choose the test just because of these
intangible aspects no matter what attributes they are presented with).

Table 1. Pap smear test data. Definition of variables.

Variable Definition

knowgp 1 if the general practitioner is known to the patient; 0 otherwise
malegp 1 if the general practitioner is male; 0 if the general practitioner

is female
testdue 1 if the patient is due or overdue for a pap smear test; 0 otherwise
drrec 1 if the general practitioner recommends that the patient have a pap

smear test; 0 otherwise
cost cost of test (unit: 10 Australian dollar)

To give an impression of how the data are structured, we have listed the first six
observations below. Each observation corresponds to an alternative, and the dependent
variable y is 1 for the chosen alternative in each choice situation and 0 otherwise.
gid identifies the alternatives in a choice situation; rid identifies the choice situations
faced by a given individual; and the remaining variables are the alternative attributes
described in table 1 and the ASC (dummy test). In the listed data, the same individual
faces three choice situations.
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. use paptest.dta

. generate cost = papcost/10

. list y dummy_test knowgp malegp testdue drrec cost gid rid in 1/6, sep(2)
> abb(10)

y dummy_test knowgp malegp testdue drrec cost gid rid

1. 0 1 1 0 0 0 2 1 1
2. 1 0 0 0 0 0 0 1 1

3. 0 1 1 0 0 1 2 2 1
4. 1 0 0 0 0 0 0 2 1

5. 0 1 0 1 0 1 2 3 1
6. 1 0 0 0 0 0 0 3 1

We start by fitting a relatively simple S-MNL model with a fixed (nonrandom) ASC.
Fiebig et al. (2010) have pointed out that ASCs should not be scaled, because they are
fundamentally different from observed attributes. We can fit the model with a fixed
ASC by using the scale() option of gmnl as described below.

. /*S-MNL with fixed ASC*/

. matrix scale = 0,1,1,1,1,1

. gmnl y dummy_test knowgp malegp testdue drrec cost, group(gid) id(rid)
> nrep(500) scale(scale)

Iteration 0: log likelihood = -1452.649 (not concave)

(output omitted )

Iteration 7: log likelihood = -1123.7542

Generalized multinomial logit model Number of obs = 5056
Wald chi2(6) = 238.93

Log likelihood = -1123.7542 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on rid)

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

dummy_test -1.938211 .13976 -13.87 0.000 -2.212136 -1.664286
knowgp 1.811842 .4322376 4.19 0.000 .9646719 2.659012
malegp -.9527219 .319577 -2.98 0.003 -1.579081 -.3263625
testdue 5.305355 1.229367 4.32 0.000 2.895841 7.714869

drrec 2.656325 .6021513 4.41 0.000 1.47613 3.83652
cost .0043925 .0932526 0.05 0.962 -.1783792 .1871643

/tau 1.458027 .1726576 8.44 0.000 1.119624 1.79643

The sign of the estimated standard deviations is irrelevant: interpret them as
being positive

To avoid scaling the ASC, we create a matrix whose elements indicate whether their
corresponding variable will be scaled (1 = scaled and 0 = not scaled). Here the “scale”
matrix defined as (0, 1, 1, 1, 1, 1) corresponds to the variables in the order in which they
are specified in the model (dummy test, knowgp, etc.). Therefore, among these six
variables, only dummy test (that is, the ASC) is not scaled.
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We should mention that the number of observations reported in the table, 5,056, is
N × T × J , that is, the total number of choices times the number of alternatives. For
most purposes, such as computing information criteria, it is more appropriate to use
the total number of choices (N × T ); therefore, we do not recommend that you use the
estat ic command after gmnl.

We then let dummy test be random, which leads to our second model: S-MNL with
random ASC.3

. /*S-MNL with random ASC*/

. matrix scale = 1,1,1,1,1,0

. gmnl y knowgp malegp testdue drrec cost, group(gid) id(rid) rand(dummy_test)
> nrep(500) scale(scale) gamma(0)

Iteration 0: log likelihood = -1431.8448 (not concave)

(output omitted )

Iteration 8: log likelihood = -1061.7787

Generalized multinomial logit model Number of obs = 5056
Wald chi2(6) = 111.46

Log likelihood = -1061.7787 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on rid)

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean
knowgp .6263819 .1431434 4.38 0.000 .3458261 .9069378
malegp -1.350731 .2024933 -6.67 0.000 -1.74761 -.9538514
testdue 2.954924 .2950128 10.02 0.000 2.37671 3.533139

drrec .7730114 .1608242 4.81 0.000 .4578018 1.088221
cost -.1701498 .0585679 -2.91 0.004 -.2849408 -.0553588

dummy_test -.7052151 .3578936 -1.97 0.049 -1.406674 -.0037565

SD
dummy_test 2.660664 .2798579 9.51 0.000 2.112152 3.209175

/tau .9255689 .1032721 8.96 0.000 .7231593 1.127978

The sign of the estimated standard deviations is irrelevant: interpret them as
being positive

3. Strictly speaking, this is not an S-MNL but a parsimonious form of G-MNL; that is, we model
ASCs using preference heterogeneity but model other attributes using scale heterogeneity. This
specification of G-MNL has been used by Fiebig et al. (2011) and Knox et al. (2013).
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Comparing “S-MNL with fixed ASC” with “S-MNL with random ASC”, we can see that
the latter model improved the model fit by adding one more parameter, the standard
deviation of dummy test, which is statistically significant.4 The improvement in fit is
not surprising because the random ASC captures preference heterogeneity and allows
for correlation across choice situations because of the panel nature of the data. The
parameter estimates between the two models are somewhat different, but they cannot
be compared directly because of differences in scale across models, as indicated by the
estimate of τ . Instead, we should run the gmnlpred command to compare the predicted
probabilities. We shall demonstrate how to do predictions after fitting the full G-MNL

model.

The third example is a G-MNL model in which dummy test, testdue, and drrec

are given random coefficients. For the moment, the coefficients are specified to be
uncorrelated; that is, the off-diagonal elements of Σ are all 0. To speed up the estimation,
we constrain γ to 0 by using the gamma(0) option, which implies that the fitted model
is a G-MNL-II (or “scaled mixed logit”).

. /*G-MNL with uncorrelated random coefficients*/

. matrix scale = 1,1,1,0,1,1

. gmnl y knowgp malegp cost, group(gid) id(rid) rand(dummy_test testdue drrec)
> nrep(500) scale(scale) gamma(0)

Iteration 0: log likelihood = -1414.4896 (not concave)

(output omitted )

Iteration 19: log likelihood = -991.41088

Generalized multinomial logit model Number of obs = 5056
Wald chi2(6) = 67.25

Log likelihood = -991.41088 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on rid)

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean
knowgp .9123367 .1748867 5.22 0.000 .5695651 1.255108
malegp -2.742707 .3543753 -7.74 0.000 -3.43727 -2.048144

cost -.1419785 .0637313 -2.23 0.026 -.2668895 -.0170675
dummy_test -.4904328 .2685654 -1.83 0.068 -1.016811 .0359457

testdue 5.79628 .8667601 6.69 0.000 4.097462 7.495099
drrec 1.492487 .2652157 5.63 0.000 .9726734 2.0123

SD
dummy_test 2.988542 .3213189 9.30 0.000 2.358769 3.618316

testdue 3.166774 .4859329 6.52 0.000 2.214363 4.119185
drrec 1.356382 .194595 6.97 0.000 .974983 1.737781

/tau 1.177626 .115934 10.16 0.000 .9503993 1.404852

The sign of the estimated standard deviations is irrelevant: interpret them as
being positive

. *Save coefficients for later use

. matrix b = e(b)

4. Note that we constrain γ to 0 by using the gamma(0) option. This is to prevent gmnl from attempting
to estimate the gamma parameter, because it is not identified in this model.
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The square root of the diagonal elements of Σ is estimated and shown in the block
under SD. All the standard deviations are significantly different from 0, which suggests
the presence of substantial preference heterogeneity in the data.

In the last example, we allow the random coefficients of dummy test, testdue, and
drrec to be correlated, which implies that the off-diagonal elements of Σ will not be
fixed as zeros. Instead of using the default starting values, we use the parameters from
the previous model, setting the starting values for the off-diagonal elements of Σ to 0.

. *Starting values

. matrix start = b[1,1..7],0,0,b[1,8],0,b[1,9..10]

. /*G-MNL with correlated random coefficients*/

. gmnl y knowgp malegp cost, group(gid) id(rid) rand(dummy_test testdue drrec)
> nrep(500) from(start,copy) scale(scale) corr gamma(0)

Iteration 0: log likelihood = -991.41088 (not concave)

(output omitted )

Iteration 8: log likelihood = -987.7783

Generalized multinomial logit model Number of obs = 5056
Wald chi2(6) = 57.86

Log likelihood = -987.7783 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on rid)

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

knowgp 1.016481 .1871831 5.43 0.000 .6496085 1.383353
malegp -3.082839 .4511159 -6.83 0.000 -3.96701 -2.198668

cost -.1506127 .0695989 -2.16 0.030 -.2870241 -.0142012
dummy_test -.5499832 .2755279 -2.00 0.046 -1.090008 -.0099584

testdue 6.372514 .9780339 6.52 0.000 4.455603 8.289425
drrec 2.488203 .5429958 4.58 0.000 1.423951 3.552455

/l11 2.749374 .3800353 7.23 0.000 2.004518 3.494229
/l21 -.155092 .2641671 -0.59 0.557 -.67285 .3626659
/l31 1.116604 .3198175 3.49 0.000 .4897736 1.743435
/l22 3.423451 .5413485 6.32 0.000 2.362427 4.484474
/l32 .719799 .3048254 2.36 0.018 .1223522 1.317246
/l33 1.448777 .2470165 5.87 0.000 .9646339 1.932921
/tau 1.250552 .1531374 8.17 0.000 .9504077 1.550695
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The six parameters from l11 to l33 are the elements of the lower-triangular matrix
L, the Cholesky factorization of Σ (Σ = LL′). Given the estimate of L, we may recover
Σ and the standard deviations of the random coefficients by using gmnlcov:

. gmnlcov

v11: [l11]_b[_cons]*[l11]_b[_cons]
v21: [l21]_b[_cons]*[l11]_b[_cons]
v31: [l31]_b[_cons]*[l11]_b[_cons]
v22: [l21]_b[_cons]*[l21]_b[_cons] + [l22]_b[_cons]*[l22]_b[_cons]
v32: [l31]_b[_cons]*[l21]_b[_cons] + [l32]_b[_cons]*[l22]_b[_cons]
v33: [l31]_b[_cons]*[l31]_b[_cons] + [l32]_b[_cons]*[l32]_b[_cons] +

> [l33]_b[_cons]*[l33]_b[_cons]

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

v11 7.559055 2.089718 3.62 0.000 3.463284 11.65483
v21 -.4264059 .7303392 -0.58 0.559 -1.857844 1.005033
v31 3.069963 1.026024 2.99 0.003 1.058993 5.080933
v22 11.74407 3.674788 3.20 0.001 4.541615 18.94652
v32 2.29102 1.166262 1.96 0.049 .0051882 4.576851
v33 3.863872 1.571455 2.46 0.014 .7838763 6.943867

. gmnlcov, sd

dummy_test: sqrt([l11]_b[_cons]*[l11]_b[_cons])
testdue: sqrt([l21]_b[_cons]*[l21]_b[_cons] + [l22]_b[_cons]*[l22]_b[_cons])

drrec: sqrt([l31]_b[_cons]*[l31]_b[_cons] +
> [l32]_b[_cons]*[l32]_b[_cons] + [l33]_b[_cons]*[l33]_b[_cons])

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

dummy_test 2.749374 .3800353 7.23 0.000 2.004518 3.494229
testdue 3.426962 .5361583 6.39 0.000 2.376111 4.477813

drrec 1.965673 .3997244 4.92 0.000 1.182228 2.749119

There are other useful postestimation commands besides gmnlcov. For example, to
generate predicted probabilities, we may use the gmnlpred command:

. gmnlpred p_hat, nrep(500)

. list rid gid y p_hat in 1/4

rid gid y p_hat

1. 1 1 0 .51986608
2. 1 1 1 .48013392
3. 1 2 0 .63789177
4. 1 2 1 .36210823
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Moreover, if we are also interested in estimating individual log likelihoods, we may
use the ll option of gmnlpred:

. gmnlpred loglik, nrep(500) ll

. list rid loglik in 1

rid loglik

1. 1 -22.560377

Finally, we may use the gmnlbeta command to calculate individual-level parameters
(Revelt and Train 2000):

. gmnlbeta dummy_test testdue drrec, nrep(500) saving(beta) replace
file beta.dta saved

. use beta.dta, clear

. list rid dummy_test testdue drrec in 1/4

rid dummy_test testdue drrec

1. 1 -1.5343953 1.1355702 .36138015
2. 2 -3.1375251 .93454325 .06251802
3. 3 -3.7519709 6.2841202 1.3722745
4. 4 .83317825 1.5324372 .88101046

A file is now created and saved as the beta.dta dataset, which contains all the estimated
individual β’s.

7 Conclusion

In this article, we described the gmnl Stata command, which can be used to fit the
G-MNL model and its variants. As pointed out in Fiebig et al. (2010), G-MNL is very
flexible and nests a rich family of model specifications. In the previous sections, we
demonstrated several important models, which are summarized (along with some other
useful specifications) below in table 2. This list does not exhaust all the possible models
that the gmnl routine can estimate. One example is the type of model considered in
Fiebig et al. (2011) and Knox et al. (2013), which includes interaction terms between
sociodemographic variables and ASCs.

Finally, a word of warning: While we have found that the gmnl command can
be used successfully to implement a range of model specifications, analysts need to
bear in mind that estimation times can be substantial when fitting complex models
with large datasets. As discussed in section 5, it may also be necessary to experiment
with alternative starting values, number of draws, and estimation algorithms to achieve
convergence.



396 Fitting the generalized multinomial logit model

Table 2. Special cases of G-MNL and their Stata commands

Model Command

MIXL gmnl y, group(csid) id(id) rand(x) mixl

S-MNL gmnl y x, group(csid) id(id)

S-MNL+fixed ASC gmnl y asc x, group(csid) id(id) scale(scale)

S-MNL+random ASC gmnl y x, group(csid) id(id) rand(asc) scale(scale) gamma(0)

G-MNL(uncorrelated) gmnl y, group(csid) id(id) rand(x)

G-MNL(correlated) gmnl y, group(csid) id(id) rand(x) corr

G-MNL(uncorrelated)+fixed ASC gmnl y asc, group(csid) id(id) rand(x) scale(scale)

G-MNL(correlated)+fixed ASC gmnl y asc, group(csid) id(id) rand(x) scale(scale) corr

G-MNL(uncorrelated)+random ASC gmnl y, group(csid) id(id) rand(asc x) scale(scale)

G-MNL(correlated)+random ASC gmnl y, group(csid) id(id) rand(asc x) scale(scale) corr
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