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Abstract. We present the new laplace command for estimating Laplace re-
gression, which models quantiles of a possibly censored outcome variable given
covariates. We illustrate laplace with an example from a clinical trial on survival
in patients with metastatic renal carcinoma. We also report the results of a small
simulation study.

Keywords: st0294, laplace, quantile regression, censored outcome, survival analy-
sis, Kaplan–Meier

1 Introduction

Estimating percentiles for a time-to-event variable of interest conditionally on covariates
may offer a useful complement to current approaches to survival analysis. For exam-
ple, comparing survival across treatments or exposure levels in observational studies
at various percentiles (for example, at the 50th or 10th percentiles) provides impor-
tant insights. At the univariate level, this can be accomplished with the Kaplan–Meier
estimator.

Laplace regression can be used to estimate the effect of risk factors and impor-
tant predictors on survival percentiles while adjusting for other covariates. The user-
written clad command (Jolliffe, Krushelnytskyy, and Semykina 2000) estimates condi-
tional quantiles only when censoring times are fixed and known for all observations
(Powell 1986), and its applicability is limited.

In this article, we present the laplace command for estimating Laplace regression
(Bottai and Zhang 2010). In section 3, we describe the syntax and options. In section 3,
we illustrate laplace with data from a randomized clinical trial. In section 4, we sketch
the methods and formulas. In section 5, we present the results of a small simulation
study.

c© 2013 StataCorp LP st0294
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2 The laplace command

2.1 Syntax

laplace depvar
[
indepvars

] [
if
] [

in
] [

, quantiles(numlist) failure(varname)

sigma(varlist) reps(#) seed(#) tolerance(#) maxiter(#) level(#)
]

by, statsby, and xi are allowed with laplace; see [U] 11.1.10 Prefix commands.

See [R] qreg postestimation for features available after estimation.

2.2 Options

quantiles(numlist) specifies the quantiles as numbers between 0 and 1; numbers larger
than 1 are interpreted as percentages. The default is quantiles(0.5), which cor-
responds to the median.

failure(varname) specifies the failure event; the value 0 indicates censored observa-
tions. If failure() is not specified, all observations are assumed to be uncensored.

sigma(varlist) specifies the variables to be included in the scale parameter model. The
default is constant only.

reps(#) specifies the number of bootstrap replications to be performed for estimating
the variance–covariance matrix and standard errors of the regression coefficients.

seed(#) sets the initial value of the random-number seed used by the bootstrap. If
seed() is specified, the bootstrapped estimates are reproducible (see [R] set seed).

tolerance(#) specifies the tolerance for the optimization algorithm. When the abso-
lute change in the log likelihood from one iteration to the next is less than or equal to
#, the tolerance() convergence criterion is met. The default is tolerance(1e-10).

maxiter(#) specifies the maximum number of iterations. When the number of itera-
tions equals maxiter(), the optimizer stops, displays an x, and presents the current
results. The default is maxiter(2000).

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.
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2.3 Saved results

laplace saves the following in e():

Scalars
e(N) number of observations e(n q) number of estimated quantiles
e(N fail) number of failures e(reps) number of bootstrap replications

Macros
e(cmd) laplace e(qlist) requested quantiles
e(cmdline) command as typed e(vcetype) title used to label Std. Err.
e(depvar) name of dependent variable e(properties) b V
e(eqnames) names of equations e(predict) program used to implement

predict

Matrices
e(b) coefficient vector e(V) variance–covariance matrix of

the estimators

Functions
e(sample) marks estimation sample

3 Example: Survival in metastatic renal carcinoma

We illustrate the use of laplace with data from a clinical trial on 347 patients with
metastatic renal carcinoma. The patients were randomly assigned to either interferon-
α (IFN) or oral medroxyprogesterone (MPA) (Medical Research Council Renal Cancer
Collaborators 1999). A total of 322 patients died during follow-up. The outcome of
primary research interest is overall survival.

. use kidney_ca_l
(kidney cancer data)

. quietly stset months, failure(cens)

The numeric variable months represents the time to event or censoring, and the binary
variable cens indicates the failure status (0 = censored, 1 = death).

3.1 Median survival

We estimate a Laplace regression model where the response variable is time to death or
censoring (months) and the binary indicator for treatment (trt) is the only covariate.
We specify the event status with the option failure(). The default percentile is the
median (q50).
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. laplace months trt, failure(cens)

Laplace regression No. of subjects = 347
No. of failures = 322

Robust
months Coef. Std. Err. z P>|z| [95% Conf. Interval]

q50
trt 3.130258 1.195938 2.62 0.009 .7862628 5.474254

_cons 6.80548 .7188408 9.47 0.000 5.396578 8.214382

The estimated median survival in the MPA group is 6.8 months (95% confidence
interval: [5.4, 8.2]). The difference (trt) in median survival between the treatment
groups is 3.1 months (95% confidence interval: [0.8, 5.5]). Median survival among
patients on IFN can be obtained with the postestimation command lincom.

. lincom _cons + trt

( 1) [q50]trt + [q50]_cons = 0

months Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) 9.935738 .9557906 10.40 0.000 8.062423 11.80905

Percentiles of survival time by treatment group can also be obtained from the Kaplan–
Meier estimate of the survivor function by using the command stci.

. stci, by(trt)

failure _d: cens
analysis time _t: months

no. of
trt subjects 50% Std. Err. [95% Conf. Interval]

MPA 175 6.80548 .8902896 4.86575 8.15342
IFN 172 9.830137 .8982793 7.7589 11.7041

total 347 7.956164 .5699226 6.90411 9.1726

The estimated median in the IFN group (9.8 months) differs slightly from the laplace
estimate (9.9 months) shown above. The Kaplan–Meier curve in the IFN group is flat
at the 50th percentile between 9.83 and 9.96 months of follow-up. The command stci

shows the lower limit of this interval while laplace shows a middle value.
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3.2 Multiple survival percentiles

When it is relevant to estimate multiple percentiles of the distribution of survival time,
these can be specified with the option quantiles().

. laplace months trt, failure(cens) quantiles(25 50 75) rep(100) seed(123)

Laplace regression No. of subjects = 347
No. of failures = 322

Bootstrap
months Coef. Std. Err. z P>|z| [95% Conf. Interval]

q25
trt 1.509151 .8289345 1.82 0.069 -.1155312 3.133832

_cons 2.49863 .399623 6.25 0.000 1.715384 3.281877

q50
trt 3.130258 1.209658 2.59 0.010 .7593719 5.501145

_cons 6.80548 .9100921 7.48 0.000 5.021732 8.589227

q75
trt 3.663238 3.482536 1.05 0.293 -3.162407 10.48888

_cons 15.87945 1.714295 9.26 0.000 12.5195 19.23941

The treatment effect is larger at higher percentiles of survival time. The difference
between the two treatment groups at the 25th, 50th, and 75th percentiles is 1.5, 3.1,
and 3.7 months, respectively. When bootstrap is requested, one can test for differences
in treatment effects across survival percentiles with the postestimation command test.

. test [q25]trt = [q50]trt

( 1) [q25]trt - [q50]trt = 0

chi2( 1) = 2.59
Prob > chi2 = 0.1076

We fail to reject the hypothesis that the treatment effects at the 25th and 50th survival
percentiles are equal (p-value > 0.05).

Figure 1 shows the predicted percentiles from the 1st to the 99th in each treatment
group. The difference of 3 months in median survival between groups is represented by
the horizontal distance between the points A and B. Approximately 30% and 40% of the
patients on MPA and IFN, respectively, are estimated to live longer than 12 months. The
absolute difference of about 10% in the probability of surviving 12 months is represented
by the vertical distance between the points C and D.
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Figure 1. Survival percentiles in the MPA (solid line) and IFN (dashed line) groups
estimated with Laplace regression. The horizontal distance between the points A and B
(3.1 months) indicates the difference in median survival between groups. The vertical
distance between C and D (about 10%) indicates the difference in the proportion of
patients estimated to survive 12 months.

3.3 Interactions between covariates

Royston, Sauerbrei, and Ritchie (2004) analyzed the same data and described how a
continuous prognostic factor, white cell count (wcc), affects the treatment effect as
measured by a relative hazard. We now perform a similar analysis by using Laplace
regression for the median survival. We include as covariates the treatment indicator
(trt), three equally sized classes of white cell counts (cwcc) by means of two indicator
variables, and their interactions.
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. xi: laplace months i.trt*i.cwcc, failure(cens)
i.trt _Itrt_0-1 (naturally coded; _Itrt_0 omitted)
i.cwcc _Icwcc_0-2 (naturally coded; _Icwcc_0 omitted)
i.trt*i.cwcc _ItrtXcwc_#_# (coded as above)

Laplace regression No. of subjects = 347
No. of failures = 322

Robust
months Coef. Std. Err. z P>|z| [95% Conf. Interval]

q50
_Itrt_1 8.01462 2.270786 3.53 0.000 3.563962 12.46528
_Icwcc_1 2.262442 2.068403 1.09 0.274 -1.791554 6.316438
_Icwcc_2 -2.496523 1.645959 -1.52 0.129 -5.722544 .7294982

_ItrtXcwc_1_1 -5.737988 3.241483 -1.77 0.077 -12.09118 .6152021
_ItrtXcwc_1_2 -7.751629 2.645534 -2.93 0.003 -12.93678 -2.566478

_cons 6.90203 1.658547 4.16 0.000 3.651337 10.15272

The predicted median survival can be obtained with standard postestimation commands
such as predict or adjust.

. adjust, by(trt cwcc) format(%2.0f) noheader

White Cell Counts
treatment Low Medium High

MPA 7 9 4
IFN 15 11 5

Key: Linear Prediction

The between-treatment-group difference in median survival varies from 8 months in
the low white cell count category to 1 month in the high white cell count category. We
test for interaction between treatment and white cell counts with the postestimation
command testparm.

. testparm _ItrtX*

( 1) [q50]_ItrtXcwc_1_1 = 0
( 2) [q50]_ItrtXcwc_1_2 = 0

chi2( 2) = 8.59
Prob > chi2 = 0.0137

We reject the null hypothesis of equal treatment effect across categories of white cell
counts (p = 0.0137). The treatment effect seems to be largest in patients with low white
cell counts.

3.4 Laplace regression with uncensored data

Suppose all the values for the variable months were uncensored times at death. The
laplace command can be used with uncensored observation by omitting the failure()
option. In this case, laplace is simply an alternative to the standard quantile regression
commands qreg and sqreg.
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. qui laplace months trt

. adjust, by(trt) format(%3.2f) noheader

treatment xb

MPA 6.77
IFN 9.89

Key: xb = Linear Prediction

. qui qreg months trt

. adjust, by(trt) format(%3.2f) noheader

treatment xb

MPA 6.77
IFN 9.96

Key: xb = Linear Prediction

The number of observations in the MPA group is odd (175 patients), and the sample
median survival is 6.77 months. The number of observations in the IFN group is even
(172 patients), and the median is not uniquely defined. The two nearest values are 9.83
and 9.96 months. The command qreg picks the larger of the two, while laplace picks
a value in between.

4 Methods and formulas

In this section, we follow the description provided by Bottai and Zhang (2010). Suppose
we have a sample of size n. Let ti, i = 1, . . . , n, be a continuous outcome variable, ci be
a continuous censoring variable, and xi = {x1,i, . . . , xr,i}′ and zi = {z1,i, . . . , zs,i}′ be
two vectors of covariates. The sets of covariates contained in xi and zi may partially or
entirely overlap. We assume that ci is independent of ti conditionally on the covariates.
Suppose we observe (yi, di, x

′
i, z

′
i), with yi = min(ti, ci) and di = I(ti ≤ ci), where I(A)

denotes the indicator function of the event A. We assume that

ti = x′
iβp + exp(z′iσp)εi (1)

where βp = {βp,1, . . . , βp,r}′ and σp = {σp,1, . . . , σp,s}′ indicate the unknown parameter
vectors, and εi are independent and identically distributed error terms that follow a
standard Laplace distribution, f(εi) = p(1 − p) exp{[I(εi ≤ 0) − p]εi}. For any given
p ∈ (0, 1), the p-quantile of the conditional distribution of ti given xi and zi is x′

iβp

because P (ti ≤ x′
iβp|xi, zi) = p.

The command laplace estimates the (r + s)-dimensional parameter vector {β′
p, σ

′
p}

by maximizing the Laplace likelihood function described by Bottai and Zhang (2010).
It uses an iterative maximization algorithm based on the gradient of the log likelihood
that generates a finite sequence of parameter values along which the likelihood increases.
Briefly, from a current parameter value, the algorithm searches the positive semiline in
the direction of the gradient for a new parameter value where the likelihood is larger.
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The algorithm stops when the change in the likelihood is less than the specified tolerance.
Convergence is guaranteed by the continuity and concavity of the likelihood.

The asymptotic variance of the estimator β̂p for the parameter βp is derived by con-

sidering the estimating condition reported by Bottai and Zhang (2010, eq. 4), S(β̂p) = 0,
where

S
(
β̂p

)
=

1

exp (z′iσ̂)

n∑

i=1

xi

{
p − I (yi ≤ x′

iβp) − I (yi ≤ x′
iβp) (1 − di)

p − 1

1 − F̂ (yi|xi)

}

with F̂ (yi|xi) = p exp{(1 − p)(yi − x′
iβ̂p)/ exp(z′iσ̂p)}. Following the standard asymp-

totic theory for method of moments estimators, β̂p approximately follows a normal

distribution with mean β∗
p and variance V̂ , where β∗

p indicates the expected value of βp,

V̂ = H(β̂p)
−1S(β̂p)

′S(β̂p)H(β̂p)
−1, and H(β̂p) = ∂S(βp)/∂β′

p|βp=bβp
. The derivative in

H(β̂p) is evaluated numerically. Alternatively, the standard errors can be obtained with
bootstrap by specifying the reps() option.

5 Simulation

In this section, we present the setup and results of a small simulation study to as-
sess the finite sample performance of the Laplace regression estimator under different
data-generating mechanisms. We contrast the performance of Laplace with that of the
Kaplan–Meier estimator, a standard, nonparametric, uniformly consistent, and asymp-
totically normal estimator of the survival function. To generate the survival estimates,
we used the sts command.

We generated 500 samples from (1) in each of the six different simulation scenarios
that arose from the combination of two sample sizes and three data-generating mech-
anisms. In each scenario, we estimated five percentiles (p = 0.10, 0.30, 0.50, 0.70, 0.90)
with Laplace regression and the Kaplan–Meier estimator. The two sample sizes were
n = 100 and n = 1,000. The three different data-generating mechanisms were obtained
by changing the values of zi, σp, and the censoring variable ci. In all simulation sce-
narios, xi = (1, x1,i)

′, with x1,i ∼ Bernoulli(0.5), βp = (5, 3)′, and εi was a standard
normal centered at the quantile being estimated.

In scenario number 1, zi = 1, σp = 1, and the censoring variable was set equal
to a constant ci = 1,000 for all individuals. In this scenario, no observations were
censored, and Laplace regression was equivalent to ordinary quantile regression. In
scenario number 2, zi = 1, σp = 1, and the censoring variable was generated from the
same distribution as the outcome variable ti. This ensured an expected censoring rate
of 50% in both covariate patterns (x1,i = 0, 1). In scenario number 3, zi = (1, x1,i)

′ and
σp = (0.5, 0.5)′. The censoring variable ci was generated from the same distribution as
the outcome variable ti. In this scenario, the standard deviation of ti was equal to 0.5
when x1,i = 0 and equal to 1 when x1,i = 1.
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The following table shows the observed relative mean squared error multiplied by
1,000 for the predicted quantile in the group x1,i = 1 in each combination of sample size
(obs), data-generating scenario (scenario), and percentile (percentile) for Laplace
(top entry) and Kaplan–Meier (bottom entry).

. table percentile scenario obs, contents(mean msel mean msekm) format(%4.3f)
> stubwidth(12)

obs and scenario
100 1000

percentile 1 2 3 1 2 3

10 1.187 1.395 1.268 0.129 0.136 0.126
1.233 1.496 1.320 0.132 0.140 0.132

30 0.597 0.685 0.680 0.064 0.073 0.067
0.606 0.792 0.831 0.064 0.078 0.075

50 0.496 0.570 0.653 0.053 0.065 0.073
0.505 0.860 0.941 0.053 0.074 0.075

70 0.513 0.639 0.711 0.050 0.131 0.144
0.518 1.329 1.050 0.050 0.113 0.094

90 0.728 1.661 1.930 0.063 0.876 0.955
0.731 1.835 1.701 0.063 0.478 0.450

The relative mean squared error was smaller for Laplace than for Kaplan–Meier at lower
quantiles and with the smaller sample size.

Figure 2 shows the relative mean squared error of Laplace (x axis) and Kaplan–Meier
(y axis) estimators of the quantile in group x1,i = 1 over all simulation scenarios.

The Laplace estimator had fewer extreme values than Kaplan–Meier. The overall
concordance correlation coefficient (command concord) was 72.2%. After the 10%
largest differences were excluded, the coefficient was 99.1%.
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Figure 2. Relative mean squared error of Laplace (x axis) and Kaplan–Meier (y axis)
estimators of the percentiles in group x1,i = 1 over all simulation scenarios. The solid
45-degree line indicates the equal relative mean squared error of the two estimators.

The following two tables show the performance of the estimator of the asymptotic
standard error for the regression coefficients β̂p,0 (first table) and β̂p,1 (second table).
In each cell of each table, the top entry is the average estimated asymptotic standard
error, and the bottom entry is the corresponding observed standard deviation across
the simulated samples.

. table percentile scenario obs, contents(mean s0 mean ms0) format(%4.3f)
> stubwidth(12)

obs and scenario
100 1000

percentile 1 2 3 1 2 3

10 0.237 0.228 0.131 0.076 0.077 0.039
0.235 0.251 0.123 0.073 0.082 0.039

30 0.185 0.200 0.098 0.059 0.062 0.031
0.182 0.193 0.097 0.058 0.067 0.032

50 0.176 0.194 0.097 0.056 0.060 0.030
0.169 0.185 0.093 0.053 0.064 0.032

70 0.188 0.198 0.098 0.059 0.064 0.032
0.185 0.207 0.103 0.057 0.071 0.035

90 0.225 0.227 0.114 0.077 0.076 0.038
0.231 0.255 0.141 0.072 0.087 0.046
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. table percentile scenario obs, contents(mean s1 mean ms1) format(%4.3f)
> stubwidth(12)

obs and scenario
100 1000

percentile 1 2 3 1 2 3

10 0.349 0.353 0.276 0.109 0.110 0.087
0.330 0.351 0.263 0.104 0.113 0.088

30 0.277 0.292 0.232 0.084 0.089 0.070
0.265 0.269 0.216 0.079 0.092 0.066

50 0.255 0.279 0.219 0.080 0.086 0.068
0.250 0.257 0.226 0.077 0.086 0.073

70 0.272 0.293 0.227 0.084 0.090 0.070
0.265 0.277 0.236 0.081 0.094 0.076

90 0.337 0.339 0.246 0.109 0.108 0.085
0.325 0.320 0.284 0.104 0.109 0.098

The estimated standard errors were similar to the observed standard deviation across
all cells for both regression coefficients.
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