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Abstract. We describe the spivreg command, which estimates the parameters
of linear cross-sectional spatial-autoregressive models with spatial-autoregressive
disturbances, where the model may also contain additional endogenous variables
as well as exogenous variables. spivreg uses results and the literature cited in
Kelejian and Prucha (1998, Journal of Real Estate Finance and Economics 17:
99–121; 1999, International Economic Review 40: 509–533; 2004, Journal of Econo-

metrics 118: 27–50; 2010, Journal of Econometrics 157: 53–67); Arraiz et al. (2010,
Journal of Regional Science 50: 592–614); and Drukker, Egger, and Prucha (2013,
Econometric Reviews 32: 686–733).

Keywords: st0293, spivreg, spatial-autoregressive models, Cliff–Ord models, gener-
alized spatial two-stage least squares, instrumental-variable estimation, generalized
method of moments estimation, spatial econometrics, spatial statistics

1 Introduction

Building on the work of Whittle (1954), Cliff and Ord (1973, 1981) developed statistical
models that accommodate forms of cross-unit interactions. The latter is a feature of
interest in many social science, biostatistical, and geographic science models. A simple
version of these models, typically referred to as spatial-autoregressive (SAR) models,
augments the linear regression model by including an additional right-hand-side (RHS)
variable known as a spatial lag. Each observation of the spatial-lag variable is a weighted
average of the values of the dependent variable observed for the other cross-sectional
units. Generalized versions of the SAR model also allow for the disturbances to be
generated by a SAR process and for the exogenous RHS variables to be spatial lags of
exogenous variables. The combined SAR model with SAR disturbances is often referred
to as a SARAR model; see Anselin and Florax (1995).1

1. These models are also known as Cliff–Ord models because of the impact that Cliff and Ord (1973,
1981) had on the subsequent literature. To avoid confusion, we simply refer to these models as
SARAR models while still acknowledging the importance of the work of Cliff and Ord.

c© 2013 StataCorp LP st0293



288 Spatial models with additional endogenous variables

In modeling the outcome for each unit as dependent on a weighted average of the
outcomes of other units, SARAR models determine outcomes simultaneously. This si-
multaneity implies that the ordinary least-squares estimator will not be consistent; see
Anselin (1988) for an early discussion of this point. Drukker, Prucha, and Raciborski
(2013) discuss the spreg command, which implements estimators for the model when
the RHS variables are a spatial lag of the dependent variable, exogenous variables, and
spatial lags of the exogenous variables.

The model we consider allows for additional endogenous RHS variables. Thus the
model of interest is a linear cross-sectional SAR model with additional endogenous vari-
ables, exogenous variables, and SAR disturbances. We discuss an estimator for the
parameters of this model and the command that implements this estimator, spivreg.
Kelejian and Prucha (1998, 1999, 2004, 2010) and the references cited therein derive
the main results used by the estimator implemented in spivreg, with Drukker, Egger,
and Prucha (2013) and Arraiz et al. (2010) producing some important extensions that
are used in the code.

While SARAR models have a wide range of possible applications, following Cliff
and Ord (1973, 1981), much of the original literature was developed to handle spatial
interactions; see, for example, Anselin (1988, 2010), Cressie (1993), and Haining (2003).
However, space is not restricted to geographic space, and many recent applications
employ these techniques in other situations of cross-unit dependence, such as social-
interaction models and network models; see, for example, Kelejian and Prucha (2010)
and Drukker, Egger, and Prucha (2013) for references. Much of the nomenclature still
includes the adjective “spatial”, and we continue this tradition to avoid confusion while
noting the wider applicability of these models.

Section 2 defines the generalized SARAR model. Section 3 describes the spivreg

command. Section 4 illustrates the estimation of a SARAR model on example data
for U.S. counties. Section 5 describes postestimation commands. Section 6 presents
methods and formulas. The conclusion follows.

2 The model

The model of interest is given by

y = Yπ + Xβ + λWy + u (1)

u = ρMu + ǫ (2)

where

• y is an n × 1 vector of observations on the dependent variable;

• Y is an n× p matrix of observations on p RHS endogenous variables, and π is the
corresponding p × 1 parameter vector;
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• X is an n × k matrix of observations on k RHS exogenous variables (where some
of the variables may be spatial lags of exogenous variables), and β is the corre-
sponding p × 1 parameter vector;

• W and M are n × n spatial-weighting matrices (with 0 diagonal elements);

• Wy and Mu are n × 1 vectors typically referred to as spatial lags, and λ and ρ
are the corresponding scalar parameters typically referred to as SAR parameters;

• ǫ is an n × 1 vector of innovations.2

The model in equations (1) and (2) is a SARAR model with exogenous regressors and
additional endogenous regressors. Spatial interactions are modeled through spatial lags,
and the model allows for spatial interactions in the dependent variable, the exogenous
variables, and the disturbances.

Because the model in equations (1) and (2) is a first-order SAR process with first-
order SAR disturbances, it is also referred to as a SARAR(1,1) model, which is a special
case of the more general SARAR(p, q) model. We refer to a SARAR(1,1) model as a
SARAR model. Setting ρ = 0 yields the SAR model y = Yπ + Xβ + λWy+ǫ. Setting
λ = 0 yields the model y = Yπ + Xβ + u with u = ρMu + ǫ, which is sometimes
referred to as the SAR error model. Setting ρ = 0 and λ = 0 causes the model to reduce
to a linear regression model with endogenous variables.

The spatial-weighting matrices W and M are taken to be known and nonstochastic.
These matrices are part of the model definition, and in many applications, W = M;
see Drukker et al. (2013) for more about creating spatial-weighting matrices in Stata.
Let y= Wy, let yi and yi denote the ith element of y and y, respectively, and let wij

denote the (i, j)th element of W. Then

yi =

n∑

j=1

wijyj

which clearly shows the dependence of yi on neighboring outcomes via the spatial lag
yi. The weights wij will typically be modeled as inversely related to some measure
of distance between the units. The SAR parameter λ measures the extent of these
interactions.

The innovations ǫ are assumed to be independent and identically distributed or in-
dependent but heteroskedastically distributed. The option heteroskedastic, discussed
below, should be specified under the latter assumption.

The spivreg command implements the generalized method of moments (GMM)
and instrumental-variable (IV) estimation strategy discussed in Arraiz et al. (2010) and

2. The variables and parameters in this model are allowed to depend on the sample size; see
Kelejian and Prucha (2010) for further discussions. We suppress this dependence for notational
simplicity. In allowing, in particular, the elements of X to depend on the sample size, we find
that the specification is consistent with some of the variables in X being spatial lags of exogenous
variables.
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Drukker, Egger, and Prucha (2013) for the above class of SARAR models. This estima-
tion strategy builds on Kelejian and Prucha (1998, 1999, 2004, 2010) and the references
cited therein. More in-depth discussions regarding issues of model specifications and
estimation approaches can be found in these articles and the literature cited therein.

spivreg requires that the spatial-weighting matrices M and W be provided in the
form of an spmat object as described in Drukker et al. (2013). Both general and banded
spatial-weighting matrices are supported.

3 The spivreg command

3.1 Syntax

spivreg depvar
[
varlist1

]
(varlist2 =

[
varlist iv

]
)
[
if
] [

in
]
, id(varname)

[
dlmat(objname) elmat(objname) noconstant heteroskedastic impower(q)

level(#) maximize options
]

3.2 Options

id(varname) specifies a numeric variable that contains a unique identifier for each
observation. id() is required.

dlmat(objname) specifies an spmat object that contains the spatial-weighting matrix
W to be used in the SAR term.

elmat(objname) specifies an spmat object that contains the spatial-weighting matrix
M to be used in the spatial-error term.

noconstant suppresses the constant term in the model.

heteroskedastic specifies that spivreg use an estimator that allows e to be het-
eroskedastically distributed over the observations. By default, spivreg uses an
estimator that assumes homoskedasticity.

impower(q) specifies how many powers of the matrix W to include in calculating the
instrument matrix H. The default is impower(2). The allowed values of q are
integers in the set {2, 3, . . . , ⌊√n⌋}.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.

maximize options: iterate(#),
[
no
]
log, trace, gradient, showstep,

showtolerance, tolerance(#), ltolerance(#), and from(init specs);
see [R] maximize for details. These options are seldom used.
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3.3 Saved results

spivreg saves the following information in e():

Scalars
e(N) number of observations e(converged) 1 if GMM stage
e(k) number of parameters converged, 0
e(rho 2sls) initial estimate of ρ otherwise
e(iterations) number of GMM iterations e(converged 2sls)1 if 2SLS stage
e(iterations 2sls) number of 2SLS iterations converged, 0

otherwise

Macros
e(cmd) spivreg e(exogr) exogenous regressors
e(cmdline) command as typed e(insts) instruments
e(depvar) name of dependent variable e(instd) instrumented variables
e(title) title in estimation output e(constant) noconstant or
e(properties) b V hasconstant
e(estat cmd) program used to implement e(H omitted) names of omitted

estat instruments in H
e(predict) program used to implement matrix

predict e(idvar) name of ID variable
e(model) sarar, sar, sare, or lr e(dlmat) name of spmat object
e(het) heteroskedastic or used in dlmat()

homoskedastic e(elmat) name of spmat object
e(indeps) names of independent used in elmat()

variables

Matrices
e(b) coefficient vector e(delta 2sls) initial estimate of β
e(V) variance–covariance matrix and λ

of the estimators

Functions
e(sample) marks estimation sample

4 Examples

To provide a simple illustration, we use the artificial dataset spivreg.dta for the con-
tinental U.S. counties.3 The contiguity matrix for the U.S. counties is taken from
Drukker et al. (2013). In Stata, we issue the following commands:

. use dui

. spmat use ccounty using ccounty.spmat

The spatial-weighting matrix is now contained in the spmat object ccounty. This
minmax-normalized spatial-weighting matrix was created in section 2.4 of Drukker et al.
(2013) and was saved to disk in section 11.4.

In the output above, we are just reading in the spatial-weighting-matrix object that
was created and saved in Drukker et al. (2013).

3. The geographical county location data came from the U.S. Census Bureau and can be found
at ftp://ftp2.census.gov/geo/tiger/TIGER2008/. The variables are simulated but inspired by
Powers and Wilson (2004) and Levitt (1997).
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Our dependent variable, dui, is defined as the alcohol-related arrest rate per 100,000
daily vehicle miles traveled (DVMT). Figure 1 shows the distribution of dui across
counties, with darker colors representing higher values of the dependent variable. Spatial
patterns in dui are clearly visible.

Figure 1. Hypothetical alcohol-related arrests for continental U.S. counties

Our explanatory variables include police (number of sworn officers per 100,000
DVMT); nondui (nonalcohol-related arrests per 100,000 DVMT); vehicles (number of
registered vehicles per 1,000 residents); and dry (a dummy for counties that prohibit
alcohol sale within their borders). Because the size of the police force may be a function
of dui arrest rates, we treat police as endogenous; that is, in this example, Y =
(police). All other included explanatory variables, apart from the spatial lag, are taken
to be exogenous; that is, X = (nondui, vehicles, dry, intercept). Furthermore, we
assume the variable elect is a valid instrument, where elect is 1 if a county government
faces an election and is 0 otherwise. Thus the instrument matrix H is based on Xf =
(nondui, vehicles, dry, elect, intercept) as described above.



D. M. Drukker, I. R. Prucha, and R. Raciborski 293

In Stata, we can estimate the SARAR model with endogenous variables by typing

. spivreg dui nondui vehicles dry (police = elect), id(id)
> dlmat(ccounty) elmat(ccounty) nolog

Spatial autoregressive model Number of obs = 3109
(GS2SLS estimates)

dui Coef. Std. Err. z P>|z| [95% Conf. Interval]

dui
police -1.467068 .0434956 -33.73 0.000 -1.552318 -1.381818
nondui -.0004088 .0008344 -0.49 0.624 -.0020442 .0012267

vehicles .0989662 .0017653 56.06 0.000 .0955063 .1024261
dry .4553992 .0278049 16.38 0.000 .4009026 .5098958

_cons 9.671655 .3682685 26.26 0.000 8.949862 10.39345

lambda
_cons .7340818 .013378 54.87 0.000 .7078614 .7603023

rho
_cons .2829313 .071908 3.93 0.000 .1419941 .4238685

Instrumented: police
Instruments: elect

Given the normalization of the spatial-weighting matrix, the parameter space for
λ and ρ is taken to be the interval (−1, 1); see Kelejian and Prucha (2010) for further
discussions of the parameter space. The estimate of λ is positive, large, and significant,
indicating strong SAR dependence in dui. In other words, the alcohol-related arrest
rate for a given county is strongly affected by the alcohol-related arrest rates in the
neighboring counties. One possible explanation for this may be coordination among
police departments. Another may be that strong enforcement in one county may lead
some people to drink in neighboring counties.

The estimated ρ is positive, moderate, and significant, indicating moderate spatial
autocorrelation in the innovations.

The estimated β vector does not have the same interpretation as in a simple lin-
ear model, because including a spatial lag of the dependent variable implies that the
outcomes are determined simultaneously.
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5 Postestimation commands

5.1 Syntax

The syntax for predict after spivreg is

predict
[
type

]
newvar

[
if
] [

in
] [

, statistic
]

where statistic is one of the following:

naive, the default, computes Yπ̂ + Xβ̂ + λ̂Wy, which should not be viewed as a
predictor for yi but simply as an intermediate calculation.

xb calculates Yπ̂ + Xβ̂.

The predictor computed by the option naive will generally be biased; see Kelejian
and Prucha (2007) for an explanation. Optimal predictors for the SARAR model with
additional endogenous RHS variables corresponding to different information sets will
be made available in the future. Optimal predictors for the SARAR model without
additional endogenous RHS variables are discussed in Kelejian and Prucha (2007).

6 Methods and formulas

In this section, we give a detailed description of the calculations performed by spivreg.
We first discuss the estimation of the general model as specified in (1) and (2), both
under the assumption that the innovations ǫ are homoskedastic and under the assump-
tion that the innovations ǫ are heteroskedastic of unknown form. We then discuss the
two special cases ρ = 0 and λ = 0, respectively.

6.1 SARAR model

It is helpful to rewrite the model in (1) and (2) as

y = Zδ + u

u = ρMu + ǫ

where Z = (Y,X,Wy) and δ = (π′,β′, λ)′. In the following, we review the two-step
GMM and IV estimation approach as discussed in Drukker, Egger, and Prucha (2013) for
the homoskedastic case and in Arraiz et al. (2010) for the heteroskedastic case. Those
articles build on and specialize the estimation theory developed in Kelejian and Prucha
(1998, 1999, 2004, 2010). A full set of assumptions, formal consistency and asymptotic
normality theorems, and further details and discussions are given in that literature.

The IV estimators δ depend on the choice of a set of instruments, say, H. Suppose
that in addition to the included exogenous variables X, we also have excluded exogenous
variables Xe, allowing us to define Xf = (X,Xe). If we do not have excluded exogenous
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variables, then Xf = X. Following the above literature, the instruments H may then
be taken as the linearly independent columns of

(Xf ,WXf , . . . ,WqXf ,MXf ,MWXf , . . . ,MWqXf )

The motivation for the above instruments is that they are computationally simple
while facilitating an approximation of the ideal instruments under reasonable assump-
tions. Taking q = 2 has worked well in Monte Carlo simulations over a wide range of
specifications. At a minimum, the instruments should include the linearly independent
columns of Xf and MXf , and the rank of H should be at least the number of variables
in Z.4 For the following discussion, it proves convenient to define the instrument pro-
jection matrix PH = H(H′H)−1H′. When there is a constant in the model, it is only
included once in H.

The GMM estimators for ρ are motivated by quadratic moment conditions of the
form

E (ǫ′Asǫ) = 0, s = 1, . . . , S

where the matrices As satisfy tr(As) = 0. Specific choices for those matrices will be
given below. We note that under heteroskedasticity, it is furthermore assumed that the
diagonal elements of the matrices As are 0. This assumption simplifies the formula for
the asymptotic variance–covariance (VC) matrix; in particular, it avoids the fact that
the VC matrix must depend on third and fourth moments of the innovations in addition
to second moments.

We next describe the steps involved in computing the GMM and IV estimators and
an estimate of their asymptotic VC matrix. The second step operates on a spatial
Cochrane–Orcutt transformation of the above model given by

y(ρ) = Z(ρ)δ+ǫ

with y(ρ) = (In − ρM)y and Z(ρ) = (In − ρM)Z.

Step 1a: Two-stage least-squares estimator

In the first step, we apply two-stage least squares (2SLS) to the untransformed model
by using the instruments H. The 2SLS estimator of δ is then given by

δ̃ =
(
Z̃′Z

)−1

Z̃′y

where Z̃ = PHZ.

4. Note that if Xf contains spatially lagged variables, H will contain collinear columns and will not
be full rank. In those cases, we drop collinear columns from H and return the names of omitted
instruments in e(H omitted).



296 Spatial models with additional endogenous variables

Step 1b: Initial GMM estimator of ρ

The initial GMM estimator of ρ is given by

ρ̃ = arg min

[{
Γ̃

(
ρ
ρ2

)
− γ̃

}′{
Γ̃

(
ρ
ρ2

)
− γ̃

}]

where ũ = y − Zδ̃ are the 2SLS residuals, ũ = Mũ,

Γ̃ = n−1




ũ′(A1 + A′
1)ũ −ũ

′
A1ũ

...
...

ũ′(AS + A′
S)ũ −ũ

′
Asũ


 and γ̃ = n−1



ũ′A1ũ

...
ũ′ASũ




Writing the GMM estimator in this form shows that we can calculate it by solving
a simple nonlinear least-squares problem. By default, S = 2 and homoskedastic is
specified. In this case,

A1 =
[
1 +

{
n−1tr(M′M)

}2
]−1 {

M′M − n−1tr(M′M)In

}

and
A2 = M

If heteroskedastic is specified, then by default,

A1 = M′M − diag(M′M)

and
A2 = M

Step 2a: Generalized spatial two-stage least-squares estimator of δ

In the second step, we first estimate δ by 2SLS from the transformed model by using
the instruments H and from where the spatial Cochrane–Orcutt transformation uses ρ̃.
The resulting generalized spatial two-stage least-squares (GS2SLS) estimator of δ is now
given by

δ̂ (ρ̃) =
{
Ẑ(ρ̃)′Z (ρ̃)

}−1

Ẑ(ρ̃)′y(ρ̃)

where y(ρ̃) = (In − ρ̃M)y, Z(ρ̃) = (In − ρ̃M)Z, and Ẑ(ρ̃) = PHZ(ρ̃).

Step 2b: Efficient GMM estimator of ρ

The efficient GMM estimator of ρ corresponding to GS2SLS residuals is given by

ρ̂ = arg min

[{
Γ̂

(
ρ
ρ2

)
− γ̂

}′ {
Ψ̂

ρρ
(ρ̃)
}−1

{
Γ̂

(
ρ
ρ2

)
− γ̃

}]
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where û = y − Zδ̂ denotes the GS2SLS residuals, û = Mû,

Γ̂ = n−1




û′(A1 + A′
1)û −û

′
A1û

...
...

û′(AS + A′
S)û −û

′
Asû


 and γ̂ = n−1



û′A1û

...
û′ASû




and where Ψ̂
ρρ

(ρ̃) is an estimator for the VC matrix of the (normalized) sample moment

vector based on GS2SLS residuals, say, Ψρρ. The estimator Ψ̂
ρρ

(ρ̃) and Ψρρ differ for the
cases of homoskedastic and heteroskedastic errors. When homoskedastic is specified,

the r, s element of Ψ̂
ρρ

(ρ̃) is given by (r, s = 1, 2),

Ψ̂
ρρ

r,s (ρ̃) =
{
σ̃2 (ρ̃)

}2
(2n)−1tr {(Ar + A′

r)(As + A′
s)}

+ σ̃2 (ρ̃) n−1ãr (ρ̃)
′
ãs (ρ̃)

+ n−1
[
µ̃(4) (ρ̃) − 3

{
σ̃2 (ρ̃)

}2
]
vecD (Ar)

′
vecD(As)

+ n−1µ̃(3)(ρ̃)
{
ãr (ρ̃)

′
vecD(As) + ãs(ρ̃)′vecD(Ar)

}

(3)

where

âr(ρ̃) = T̂(ρ̃)α̂r(ρ̃)

T̂(ρ̃) = HP̂(ρ̃)

P̂(ρ̃) = Q̂−1
HHQ̂HZ(ρ̃)

{
Q̂HZ(ρ̃)′Q̂−1

HHQ̂HZ(ρ̃)′
}−1

Q̂HH =
(
n−1H′H

)

Q̂HZ(ρ̃) =
{
n−1H′Z(ρ̃)

}

Z(ρ̃) = (I − ρ̃M)Z

α̃r(ρ̃) = −n−1 {Z(ρ̃)′(Ar + A′
r)ǫ̂(ρ̃)}

ǫ̂(ρ̃) = (I − ρ̃M)û

σ̂2(ρ̃) = n−1ǫ̂(ρ̃)′ǫ̂(ρ̃)

µ̂(3)(ρ̃) = n−1
n∑

i=1

ǫ̂i(ρ̃)3

µ̂(4)(ρ̃) = n−1
n∑

i=1

ǫ̂i(ρ̃)4

When heteroskedastic is specified, the r, s element of Ψρρ is estimated by

Ψ̂
ρρ

r,s(ρ̃) = (2n)−1tr
{

(Ar + A′
r)Σ̂(ρ̃)(As + A′

s)Σ̂(ρ̃)
}

+ n−1âr(ρ̃)′Σ̂(ρ̃)âs(ρ̃) (4)

where Σ̂(ρ̃) is a diagonal matrix whose ith diagonal element is ǫ̂
2
i (ρ̃), and ǫ̂(ρ̃) and âr(ρ̃)

are as defined above. The last two terms in (3) do not appear in (4) because the As

matrices used in the heteroskedastic case have diagonal elements equal to 0.
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Having computed the estimator θ̂ = (δ̂
′
, ρ̂) in steps 1a, 1b, 2a, and 2b, we next

compute a consistent estimator for its asymptotic VC matrix, say, Ω. The estimator is
given by nΩ̂ where

Ω̂ =

(
Ω̂

δδ
Ω̂

δρ

Ω̂
δρ′

Ω̂
ρρ

)

Ω̂
δδ

= P̂(ρ̂)′Ψ̂
δδ

(ρ̂)P̂(ρ̂)

Ω̂
δρ

= P̂(ρ̂)′Ψ̂
δρ

(ρ̂)
{
Ψ̂

ρρ
(ρ̂)
}−1

Ĵ

[
Ĵ′
{
Ψ̂

ρρ
(ρ̂)
}−1

Ĵ

]−1

Ω̂
ρρ

=

[
Ĵ′
{
Ψ̂

ρρ
(ρ̂)
}−1

Ĵ

]−1

Ĵ = Γ̂

(
1
2ρ̂

)

In the above, Ψ̂
ρρ

(ρ̂) and P̂(ρ̂) are as defined in (3) and (4) with ρ̃ replaced by ρ̂. The

estimators Ψ̂
δδ

(ρ̂) and Ψ̂
δρ

(ρ̂) are defined as follows:

When homoskedastic is specified,

Ψ̂
δδ

(ρ̂) = σ̂2(ρ̂)Q̂HH

Ψ̂
δρ

(ρ̂) = σ̂2(ρ̂)n−1H′ {a1(ρ̂),a2(ρ̂)} + µ(3)(ρ̂)n−1H′ {vecD(A1), vecD(A2)}

When heteroskedastic is specified,

Ψ̂
δδ

(ρ̂) = n−1H′Σ̂(ρ̂)H

Ψ̂
δρ

(ρ̂) = n−1H′Σ̂(ρ̂) {a1(ρ̂),a2(ρ̂)}

We note that the expression for Ω̂
ρρ

has the simple form given above because the
estimator in step 2b is the efficient GMM estimator.

6.2 SAR model without spatially correlated errors

Consider the case ρ = 0, that is, the case where the disturbances are not spatially
correlated. In this case, only step 1a is necessary, and spivreg estimates δ by 2SLS using
as instruments H the linearly independent columns of {Xf ,WXf , . . . ,WqXf}. The
2SLS estimator is given by

δ̃ =
(
Z̃′Z

)−1

Z̃′y

where Z̃ = PHZ.
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When homoskedastic is specified, the asymptotic VC matrix of δ̃ can be estimated
consistently by

σ̃2
(
Z̃′Z̃

)−1

where σ̃2 = n−1
∑n

i=1 ũ2
i and ũ = y − Zδ̃ denotes the 2SLS residuals.

When heteroskedastic is specified, the asymptotic VC matrix of δ̃ can be estimated
consistently by the sandwich form

(
Z̃′Z̃

)−1

Z̃′Σ̃Z̃
(
Z̃′Z̃

)−1

where Σ̃ is the diagonal matrix whose ith element is ũ2
i .

6.3 Spatially correlated errors without a SAR term

Consider the case λ = 0, that is, the case where there is no spatially lagged dependent
variable in the model. In this case, we use the same formulas as in section 6.1 after re-
defining Z = Y,X, δ = (π′,β′)′, and we take H to be composed of linearly independent
columns of (Xf ,MXf ).

6.4 No SAR term or spatially correlated errors

When the model does not contain a SAR term or spatially correlated errors, the 2SLS

estimator provides consistent estimates, and we obtain our results by using ivregress

(see [R] ivregress). When homoskedastic is specified, the conventional estimator of
the asymptotic VC is used. When heteroskedastic is specified, the vce(robust)

estimator of the asymptotic VC is used. When no endogenous variables are specified,
we obtain our results by using regress (see [R] regress).

7 Conclusion

We have described the spivreg command for estimating the parameters of a SARAR

model with additional endogenous RHS variables. In the future, we plan to add options
for optimal predictors corresponding to different information sets.
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