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Abstract. We present the spmat command for creating, managing, and storing
spatial-weighting matrices, which are used to model interactions between spatial
or more generally cross-sectional units. spmat can store spatial-weighting matrices
in a general and banded form. We illustrate the use of the spmat command and
discuss some of the underlying issues by using United States county and postal-
code-level data.

Keywords: st0292, spmat, spatial-autoregressive models, Cliff-Ord models, spa-
tial lag, spatial-weighting matrix, spatial econometrics, spatial statistics, cross-
sectional interaction models, social-interaction models

1 Introduction

Building on (Whittle (1954), Cliff and Ord (1973, 11981) developed statistical models
that not only accommodate forms of cross-unit correlation but also allow for explicit
forms of cross-unit interactions. The latter is a feature of interest in many social sci-
ence, biostatistical, and geographic science models. Following Cliff and Ord (1973,
1981), much of the original literature was developed to handle spatial interactions.
However, space is not restricted to geographic space, and many recent applications
use spatial techniques in other situations of cross-unit interactions, such as social-
interaction models and network models; see, for example, Kelejian and Prucha (2010)
and Drukker, Egger, and Prucha (2013) for references. Much of the nomenclature still
includes the adjective “spatial”, and we continue this tradition to avoid confusion while
noting the wider applicability of these models. For texts and reviews, see, for example,
Anselin (1988, 2010), Arbia (2006), Cressie (1993), Haining (2003), and LeSage and Pace
(2009).

The models derived and discussed in the literature cited above model cross-unit
interactions and correlation in terms of spatial lags, which may involve the dependent
variable, the exogenous variables, and the disturbances. A spatial lag of a variable is

© 2013 StataCorp LP st0292
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defined as a weighted average of observations on the variable over neighboring units. To
illustrate, we after the rudimentary spatial-autoregressive (SAR) model

n
yi:)\Zwijyj—&—si, i1=1,....n
j=1

where y; denotes the dependent variable corresponding to unit ¢, the w;; (with w;; = 0)
are nonstochastic weights, ¢; is a disturbance term, and X is a parameter. In the above
model, the y; are determined simultaneously. The weighted average Z?:1 w;;1;, on the
right-hand side, is called a spatial lag, and the w;; are called the spatial weights. It

often proves convenient to write the model in matrix notation as

y =AWy +e¢
where
0 Wizt Wip—1 Win
Y1 Wa1 0 co. W2 p-1 Wop €1
y = , W = : , €=
Yn Wn—-1,1 Wp-12 =" 0 Wp—1,n En
Wn1 Wn2 o Win-—1 0

Again the n x 1 vector Wy is typically referred to as the spatial lag in y and the n x n
matrix W as the spatial-weighting matrix. More generally, as indicated above, the
concept of a spatial lag can be applied to any variable, including exogenous variables
and disturbances, which—as can be seen in the literature cited above—provides for a
fairly general class of Cliff-Ord types of models.

Spatial-weighting matrices allow us to conveniently implement Tobler’s first law of
geography— “everything is related to everything else, but near things are more related
than distant things” (Tobler 1970, 236)—which applies whether the space is geographic,
biological, or social. The spmat command creates, imports, manipulates, and saves W
matrices. The matrices are stored in a spatial-weighting matrix object (spmat object).
The spmat object contains additional information about a spatial-weighting matrix,
such as the identification codes of the cross-section units, and other items discussed
below !

The generic syntax of spmat is
spmat subcommand . ..

where each subcommand performs a specific task. Some subcommands create spmat ob-
jects from a Stata dataset (contiguity, idistance, dta), a Mata matrix (putmatrix),
or a text file (import). Other subcommands save objects to a disk (save, export) or
read them back in (use, import). Still other subcommands summarize spatial-weighting

1. We use the term “units” instead of “places” because spatial-econometric methods have been applied
to many cases in which the units of analysis are individuals or firms instead of geographical places;
for example, see Leenders (2002).
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matrices (summarize); graph spatial-weighting matrices (graph); manage them (note,
drop, getmatrix); and perform computations on them (lag, eigenvalues). The re-
maining subcommands are used to change the storage format of the spatial-weighting
matrices inside the spmat objects. As discussed below, matrices stored inside spmat
objects can be general or banded, with general matrices occupying much more space
than banded ones. The subcommand permute rearranges the matrix elements, and the
subcommand tobanded is used to store a matrix in banded form.

spmat contiguity and spmat idistance create the frequently used inverse-distance
and contiguity spatial-weighting matrices; Haining (2003, 83) and Cliff and Ord (1981,
17) discuss typical formulations of weights matrices. The import and management ca-
pabilities allow users to create spatial-weighting matrices beyond contiguity and inverse-
distance matrices. Section[17.4 provides some discussion and examples.

Drukker, Prucha, and Raciborski (2013a, 2013b) discuss Stata commands that im-
plement estimators for SAR models. These commands use spatial-weighting matrices
previously created by the spmat command discussed in this article.

Before we describe individual subcommands in detail, we illustrate how to obtain
and transform geospatial data into the format required by spmat, and we address com-
putational problems pertinent to spatial-weighting matrices.

1.1 From shapefiles into Stata format

Many applications use geospatial data frequently made available in the form of shape-
files. Each shapefile is a pair of files: the database file and the coordinates file. The
database file contains data on the attributes of the spatial units, while the coordinates
file contains the geographical coordinates describing the boundaries of the spatial units.
In the common case where the units correspond to nonzero areas instead of points, the
boundary data in the coordinates file are stored as a series of irregular polygons.

The vast majority of geospatial data comes in the form of ESRI or MIF Shapeﬁles
There are user-written tools for translating shapefiles to Stata’s .dta format and for
mapping spatial data. shp2dta (Crow 2006) and mif2dta (Pisati|2005) translate ESRI
and MIF shapefiles to Stata datasets. shp2dta and mif2dta translate the two files
that make up a shapefile to two Stata .dta files. The database file is translated to
the “attribute” .dta file, and the coordinates file is translated to the coordinates .dta

file Jﬂg

2. Refer to http://www.esri.com for details about the ESRI format and to http://www.pbinsight.com
for details about the MIF format. The ESRI format is much more common.

3. shp2dta and mif2dta save the coordinates data in the format required by spmap (Pisati 2007),
which graphs data onto maps.

4. We use the term “attribute” instead of “database” because “database” does not adequately distin-
guish between attribute data and coordinates data.
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The code below illustrates the use of shp2dta and spmap (Pisati 2007) on the county
boundaries data for the continental United States; Crow and Gould (2007) provide a
broader introduction to shapefiles, shp2dta, and spmap.

shp2dta, mif2dta, and spmap use a common set of conventions for defining the
polygons in the coordinates data translated from the coordinates file. Crow and Gould
(2007) discuss these conventions.

We downloaded ts_-2008_us_county00.db and ts_2008_us_county00. shp, which are
the attribute file and the coordinates file, respectively, and which make up the shapefile
for U.S. counties from the U.S. Census Bureauls We begin by using shp2dta to translate
these files to the files county.dta and countyxy.dta.

. shp2dta using t1_2008_us_county00, database(county)
> coordinates(countyxy) genid(id) gencentroids(c)

county.dta contains the attribute information from the attribute file in the shape-
file, and countyxy.dta contains the coordinates data from the shapefile. The attribute
dataset county.dta has one observation per county on variables such as county name
and state code. Because we specified the option gencentroids(c), county.dta also
contains the variables x_c and y_c, which contain the coordinates of the county cen-
troids, measured in degrees. (See the help file for shp2dta for details and the z—y
naming convention.) countyxy.dta contains the coordinates of the county boundaries
in the long-form panel format used by spmap@

Below we use use to read county.dta into memory and use destring (see [D] de-
string) to create a new, numeric state-code variable st from the original string state-
identifying variable STATEFP. Next we use drop to drop the observations defining the
coordinates of county boundaries in Alaska, Hawaii, and U.S. territories. Finally, we
use rename to rename the variables containing coordinates of the county centroids and
use save to save our changes into the county.dta dataset file.

. use county
. quietly destring STATEFP, generate(st)

. xkeep continental US counties
. drop if st==2 | st==15 | st>56
(123 observations deleted)

. rename x_c longitude
. rename y_c latitude

. save county, replace
file county.dta saved

Having completed the translation and selected our subsample, we use spmap to draw
the map, given in figure/I, of the boundaries in the coordinates dataset.

5. Actually, we downloaded ts_2008_us_county00.zip from
ftp://ftp2.census.gov/geo/tiger/TIGER2008/, and this .zip file contained the two files named in
the text.

6. Crow and Gould (2007), the shp2dta help file, and the spmap help file provide more information
about the input and output datasets.
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. spmap using countyxy, id(id)

R b
SR
ln--"llﬂ%

Nt

o]

. &7

Figure 1. County boundaries for the continental United States, 2000

1.2 Memory considerations

The spatial-weighting matrix for the n units is an n X n matrix, which implies that
memory requirements increase quadratically with data size. For example, a contiguity
matrix for the 31,713 U.S. postal codes (five-digit zip codes) is a 31,713 x 31,713 matrix,
which requires 31,713 x 31,713 x 8/23° ~ 7.5 gigabytes of storage space.

Many users do not have this much memory on their machines. However, it is usually
possible to store spatial-weighting matrices more efficiently. Drukker et al. 42011‘) dis-
cuss how to judiciously reorder the observations so that many spatial-weighting matrices
can be stored as banded matrices, thereby using less space than general matrices.

This subsection describes banded matrices and the potential benefits of using banded
matrices for storing spatial-weighting matrices. If you do not have large datasets, you
may skip this section and all future references to banded matrices.
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A banded matrix is a matrix whose nonzero elements are confined to a diagonal band
that comprises the main diagonal, zero or more diagonals above the main diagonal, and
zero or more diagonals below the main diagonal. The number of diagonals above the
main diagonal that contain nonzero elements is the upper bandwidth, say, by. The
number of diagonals below the main diagonal that contain nonzero elements is the
lower bandwidth, say, by,. An example of a banded matrix having an upper bandwidth
of 1 and a lower bandwidth of 2 is

e

OO OO OO O

SO OO OO MMEOM
SO oo OO HMHEORO
SO OO OREMEOMKROO
O OO HEMEOMEO OO
SO FEFOFHOOOO
OFMFEOMEOO O OO
HHEHOKFEOOOOOO
HOMEOOOOO OO
O=H O OO O OO oo

We can save a lot of space by storing only the elements in the diagonal band because
the elements outside the band are 0 by construction. Using this information, we can
efficiently store this matrix without any loss of information as

0111111111
00 00 00 0 0 0O
1111111110
1111111100

The above matrix only contains the elements of the diagonals with nonzero elements.
To store the elements in a rectangular array, we added zeros as necessary. The row
dimension of the banded matrix is the upper bandwidth plus the lower bandwidth plus
1, or b = by + by + 1. We will use the b x n shorthand to refer to the dimensions of
banded matrices.

Banded matrices require less storage space than general matrices. The spmat suite
provides tools for creating, storing, and manipulating banded matrices. In addition,
computing an operation on a banded matrix is much faster than on a general matrix.

Drukker et al. (2011) show that many spatial-weighting matrices have a banded
structure after an appropriate reordering. In particular, a banded structure is often
attained by sorting the data in an ascending order of the distance from a well-chosen
place. In section[5, we will illustrate this method with data on U.S. counties and U.S.
five-digit zip codes. In the case of U.S. five-digit zip codes, we show how to create a
contiguity matrix with upper and lower bandwidths of 913. This allows us to store
the data in a 1,827 x 31,713 matrix, which requires only 1,827 x 31,713 x 8/23° ~ 0.43
gigabytes instead of the 7.5 gigabytes required for the general matrix.

We are now ready to describe the spmat subcommands.
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2 Creating a contiguity matrix from geospatial data

2.1 Syntax

spmat contiguity objname [zf] [m] using coordinates_file, id(varname)

[options]
options Description
normalize (norm) control the normalization method
rook require that two units share a common border
instead of just a common point to
be neighbors
banded store the matrix in the banded format
replace replace existing spmat object
saving (ﬁlename[ , replace}) save the neighbor list to a file
nomatrix suppress creations of spmat object
tolerance (#) use when determining whether

units share a common border

2.2 Description

spmat contiguity computes a contiguity or normalized-contiguity matrix from a coor-
dinates dataset containing a polygon representation of geospatial data. More precisely,
spmat contiguity constructs a contiguity matrix or normalized-contiguity matrix from
the boundary information in a coordinates dataset and puts it into the new spmat object
objname.

In a contiguity matrix, contiguous units are assigned weights of 1, and noncontiguous
units are assigned weights of 0. Contiguous units are known as neighbors.

spmat contiguity uses the polygon data in coordinates_file to determine the neigh-
bors of each unit. The coordinates_file must be a Stata dataset containing the polygon
information in the format produced by shp2dta and mif2dta. Crow and Gould (2007)
discuss the conventions used to represent polygons in the Stata datasets created by
these commands.

2.3 Options

id(varname) specifies a numeric variable that contains a unique identifier for each
observation. (shp2dta and mif2dta name this ID variable _ID.) id() is required.

normalize(norm) specifies one of the three available normalization techniques: row,
minmax, and spectral. In a row-normalized matrix, each element in row ¢ is divided
by the sum of row ¢’s elements. In a minmax-normalized matrix, each element is
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divided by the minimum of the largest row sum and column sum of the matrix. In
a spectral-normalized matrix, each element is divided by the modulus of the largest
eigenvalue of the matrix. See section for details.

rook specifies that only units that share a common border be considered neighbors (edge
or rook contiguity). The default is queen contiguity, which treats units that share a
common border or a single common point as neighbors. Computing rook-contiguity
matrices is more computationally intensive than the default queen-contiguity com-
putation

banded requests that the new matrix be stored in a banded form. The banded matrix
is constructed without creating the underlying n x n representation.

replace permits spmat contiguity to overwrite an existing spmat object.

saving(ﬁlename[ , replace]) saves the neighbor list to a space-delimited text file.
The first line of the file contains the number of units and, if applicable, bands; each
remaining line lists a unit identification code followed by the identification codes of
units that share a common border, if any. You can read the file back into an spmat
object with spmat import ..., nlist. replace allows filename to be overwritten
if it already exists.

nomatrix specifies that the spmat object objname and spatial-weighting matrix W not
be created. In conjunction with saving(), this option allows for creating a text
file containing a neighbor list without allocating space for the underlying contiguity
matrix.

tolerance (#) specifies the numerical tolerance used in deciding whether two units are
edge neighbors. The default is tolerance(1e-7).

2.4 Examples

As discussed above, spatial-weighting matrices are used to compute weighted averages
in which more weight is placed on nearby observations than on distant observations.
While Haining (2003, 83) and Cliff and Ord (1981, 17) discuss formulations of weights
matrices, contiguity and inverse-distance matrices are the two most common spatial-
weighting matrices.

7. These definitions for rook neighbor and queen neighbor are commonly used; see, for example,
Lai, So, and Chan (2009). (As many readers will recognize, the “rook” and “queen” terminology
arises by analogy with chess, in which a rook may only move across sides of squares, whereas a
queen may also move diagonally.)
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In geospatial-type applications, researchers who want a contiguity matrix need to
perform a series of complicated calculations on the boundary information in a coordi-
nates dataset to identify the neighbors of each unit. spmat contiguity performs these
calculations and stores the resulting weights matrix in an spmat object.

In contrast, some social-network datasets begin with a list of neighbors instead of
the boundary information found in geospatial data. Section[15] discusses how to create
a social-network matrix from a list of neighbors.

b Example

We continue the example from section [1.1 and assume both of the Stata datasets
created in section[I.1 are in the current working directory. After loading the attribute
dataset into memory, we create the spmat object ccounty containing a normalized-
contiguity matrix for U.S. counties by typing

. use county, clear

. spmat contiguity ccounty using countyxy, id(id) normalize(minmax)

We use spmat summarize, discussed in section[4, to summarize the contents of the
spatial-weighting matrix in the ccounty object we created above:

. spmat summarize ccounty, links

Summary of spatial-weighting object ccounty

Matrix Description

Dimensions 3109 x 3109

Stored as 3109 x 3109
Links

total 18474

min 1

mean 5.942104

max 14

The table shows basic information about the normalized contiguity matrix, including
the dimensions of the matrix and its storage. The number of neighbors found is reported
as 18,474, with each county having 6 neighbors on average.

d

2.5 Normalization details

In this section, we present details about the normalization methods/® In each case,
the normalized matrix W = (w;;) is computed from the underlying matrix W = (w;;),
where the elements are assumed to be nonnegative; see, for example, Kelejian and
Prucha (2010) for an introduction to the use and interpretation of these normalization
methods.

8. The normalization methods are not restricted to contiguity matrices.
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In a row-normalized matrix, the (7, j)th element of W becomes W;j = w;;/1;, where
r; is the sum of the ith row of W. After row normalization, each row of W will sum
to 1. Row normalizing a symmetric W produces an asymmetric A except in very
special cases. Kelejian and Prucha (2010) point out that normalizing by a vector of row
sums needs to be guided by theory.

In a minmax-normalized matrix, the (¢, j)th element of W becomes W; = wi;/m,
where m = min{max;(r;), max;(c;)}, with max;(r;) being the largest row sum of W
and max;(c;) being the largest column sum of W. Normalizing by a scalar preserves
symmetry and the basic model specification.

In a spectral-normalized matrix, the (¢, j)th element of W becomes Wij = wij /v,
where v is the largest of the moduli of the eigenvalues of W. As for the minmax norm,
normalizing by a scalar preserves symmetry and the basic model specification.

3 Creating an inverse-distance matrix from data

3.1 Syntax

spmat idistance objname cvarlist [zf] [zn], id (varname) [options]

where cvarlist is the list of coordinate variables.

options Description

gunction(function[ , miles ]) specify the distance function

normalize (norm) specify the normalization method
truncmethod specify the truncation method
banded store the matrix in the banded format
replace replace an existing spmat object

where function is one of euclidean, rhaversine, dhaversine, or p;
miles may only be specified with rhaversine or dhaversine; and
truncmethod is one of btruncate(b B), dtruncate(dy dy), or
vtruncate (v).

3.2 Description

An inverse-distance spatial-weighting matrix is composed of weights that are inversely
related to the distances between the units. spmat idistance uses the coordinate vari-
ables from the attribute data in memory and the specified distance measure to compute
the distances between units, to create an inverse-distance spatial-weighting matrix, and
to store the result in an spmat object.
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3.3 Options

id(varname) specifies a numeric variable that contains a unique identifier for each
observation. 1d() is required.

dfunction (function[ , miles ] ) specifies the distance function. function may be one of
euclidean (default), dhaversine, rhaversine, or the Minkowski distance of order
p, where p is an integer greater than or equal to 1.

When the default dfunction(euclidean) is specified, a Euclidean distance measure
is applied to the coordinate variable list cvarlist.

When dfunction(rhaversine) or dfunction(dhaversine) is specified, the haver-
sine distance measure is applied to the two coordinate variables cvarlist. (The
first coordinate variable must specify longitude, and the second coordinate vari-
able must specify latitude.) The coordinates must be in radians when rhaversine
is specified. The coordinates must be in degrees when dhaversine is specified.
The haversine distance measure is calculated in kilometers by default. Specify
dfunction(rhaversine, miles) or dfunction(dhaversine, miles) if you want
the distance returned in miles.

When dfunction(p) (p is an integer) is specified, a Minkowski distance measure of
order p is applied to the coordinate variable list cvarlist.

The formulas for the distance measure are discussed in section

normalize(norm) specifies one of the three available normalization techniques: row,
minmax, and spectral. In a row-normalized matrix, each element in row ¢ is divided
by the sum of row i’s elements. In a minmax-normalized matrix, each element is
divided by the minimum of the largest row sum and column sum of the matrix. In
a spectral-normalized matrix, each element is divided by the modulus of the largest
eigenvalue of the matrix. See section 2.5/ for details.

truncmethod options specify one of the three truncation criteria. The values of the
spatial-weighting matrix W that meet the truncation criterion will be changed to 0.
Only apply truncation methods when supported by theory.

btruncate(b B) partitions the values of W into B equal-length bins and truncates
to 0 entries that fall into bin b or below, b < B.

dtruncate(d; dy) truncates to 0 the values of W that fall more than dj diagonals
below and di; diagonals above the main diagonal. Neither value can be greater than

| (cols (W) —1) /4]
vtruncate (v) truncates to 0 the values of W that are less than or equal to v.

See section [3.6] for more details about the truncation options.

9. This limit ensures that a cross product of the spatial-weighting matrix is stored more efficiently in
banded form than in general form. The limit is based on the cross product instead of the matrix
itself because the generalized spatial two-stage least-squares estimators use cross products of the
spatial-weighting matrices.
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banded requests that the new matrix be stored in a banded form. The banded matrix is
constructed without creating the underlying n x n representation. Note that without
banded, a matrix with truncated values will still be stored in an n x n form.

replace permits spmat idistance to overwrite an existing spmat object.

3.4 Examples

As discussed above, spatial-weighting matrices are used to compute weighted averages
in which more weight is placed on nearby observations than on distant observations.
Haining (2003, 83) and Cliff and Ord (1981, 17) discuss formulations of weights matri-
ces, contiguity matrices, inverse-distance matrices, and combinations thereof.

In inverse-distance spatial-weighting matrices, the weights are inversely related to the
distances between the units. spmat idistance provides several measures for calculating
the distances between the units.

The coordinates may or may not be geospatial. Distances between geospatial units
are commonly computed from the latitudes and longitudes of unit centroids/1® Social
distances are frequently computed from individual-person attributes.

In much of the literature, the attributes are known as coordinates because the nomen-
clature has developed around the common geospatial case in which the attributes are
map coordinates. For ease of use, spmat idistance follows this convention and refers
to coordinates, even though coordinate variables specified in cvarlist need not be spatial
coordinates.

The (i, 7)th element of an inverse-distance spatial-weighting matrix is 1/d;;, where
d;; is the distance between unit ¢ and j computed from the specified coordinates and dis-
tance measure. Creating spatial-weighting matrices with elements of the form 1/ f(d;;),
where f(-) is some function, is described in section[17.4!

b Example

county.dta from section/I.1]contains the coordinates of the centroids of each county,
measured in degrees, in the variables longitude and latitude. To get a feel for the
data, we create an unnormalized inverse-distance spatial-weighting matrix, store it in
the spmat object dcounty, and summarize it by typing

10. The word “centroid” in the literature on geographic information systems differs from the standard
term in geometry. In the geographic information systems literature, a centroid is a weighted average
of the vertices of a polygon that approximates the center of the polygon; see Waller and Gotway
(2004, 44-45) for the formula and some discussion.
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. spmat idistance dcounty longitude latitude, id(id) dfunction(dhaversine)
. spmat summarize dcounty

Summary of spatial-weighting object dcounty

Matrix Description

Dimensions 3109 x 3109

Stored as 3109 x 3109
Values

min 0

min>0 .0002185

mean .0012296

max 1.081453

From the summary table, we can see that the centroids of the two closest counties
lie within less than one kilometer of each other (1/1.081453), while the two most distant
counties are 4,577 kilometers apart (1/0.0002185).

Below we compute a minmax-normalized inverse-distance matrix, store it in the
spmat object dcounty2, and summarize it by typing

. spmat idistance dcounty2 longitude latitude, id(id) dfunction(dhaversine)
> normalize(minmax)

. spmat summarize dcounty2

Summary of spatial-weighting object dcounty2

Matrix Description

Dimensions 3109 x 3109

Stored as 3109 x 3109
Values

min 0

min>0 .0000382

mean .0002151

max .1892189

3.5 Distance calculation details

Specifying q variables in the list of coordinate variables cvarlist implies that the units
are located in a g-dimensional space. This space may or may not be geospatial. Let the
g variables in the list of coordinate variables cvarlist be x1, x2, ..., x4, and denote the
coordinates of observation i by (x1 [i1, x2[i1, ..., x4 [i]).

The default behavior of spmat idistance is to calculate the Euclidean distance
between units s and ¢, which is given by

do = é(xj [s] ij[ﬂ)2

for observations s and t.
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The Minkowski distance of order p is given by

P
det = P x;[s] —x;[t]

Jj=1

for observations s and t. When p = 2, the Minkowski distance is equivalent to the
Euclidean distance.

The haversine distance measure is useful when the units are located on the surface
of the earth and the coordinate variables represent the geographical coordinates of
the spatial units. In such cases, we usually wish to calculate a spherical (great-circle)
distance between the spatial units. This is accomplished by the haversine formula given
by

deg =1 XcC

where

r is the mean radius of the Earth (6,371.009 km or 3,958.761 miles)
¢ = 2arcsin{min(1, /a)}
a = sin? ¢ + cos(¢p1) cos(pz) sin? A

¢ = 5(¢2 — d1) = 3(x2[1] —x2[5])

A=3(A2— A1) = 3(x1 [ —x1[s])

x1 [s] and %1 [#] are the longitudes of point s and point ¢, respectively

xo[s] and x5 [#] are the latitudes of point s and point ¢, respectively

Specify dfunction(dhaversine) to compute haversine distances from coordinates

in degrees, and specify dfunction(rhaversine) to compute haversine distances from
coordinates in radians. Both dfunction(dhaversine) and dfunction(rhaversine)
by default use r = 6,371.009 to compute results in kilometers. To compute haversine

distances in miles, with r = 3,958.761, instead specify dfunction(dhaversine, miles)
or dfunction(rhaversine, miles).
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3.6 Truncation details

Unlike contiguity matrices, inverse-distance matrices cannot naturally yield a banded
structure because the off-diagonal elements are never exactly 0. Consider an example in
which we have nine units arranged on the real line with x denoting the unit locations.

. use truncex, clear

. list

id b4
1 1 0
2 2 1
3 3 2
4 4 503
5 5 504
6 6 505
7 7 1006
8 8 1007
9 9 1008

The units are grouped into three clusters. The units belonging to the same cluster
are close to one another, while the distance between the units belonging to different
clusters is large. For real-world data, the units may represent, for example, cities in
different states. We use spmat idistance to create the spmat object ex from the data:

. spmat idistance ex x, id(id)

The resulting spatial-weighting matrix of inverse distances is

0 1 0.5 0.00199 0.00198 0.00198 0.00099 0.00099 0.00099

1 0 1 0.00199 0.00199 0.00198  0.001  0.00099 0.00099

0.5 1 0 0.002  0.00199 0.00199 0.001 0.001  0.00099
0.00199 0.00199  0.002 0 1 0.5 0.00199 0.00198 0.00198
0.00198 0.00199 0.00199 1 0 1 0.00199 0.00199 0.00198
0.00198 0.00198 0.00199 0.5 1 0 0.002  0.00199 0.00199
0.00099  0.001 0.001  0.00199 0.00199  0.002 0 1 0.5
0.00099 0.00099  0.001  0.00198 0.00199 0.00199 1 0 1
0.00099 0.00099 0.00099 0.00198 0.00198 0.00199 0.5 1 0
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Theoretical considerations may suggest that the weights should actually be 0 below
a certain threshold. For example, choosing the threshold value of 1/500 = 0.002 for our
matrix results in the following structure:

0 1 05 0 0 0 0 0 7
1 0 1 0 0 0 0 O
051 0 0 O 0 0 0
0 0 0 O 1 05 0 0 O
0 0 O 1 0 1 0 0 O
0 o 0 051 O 0 0 O
0 0 0 0 0 0 1 05
0 0 O 0 0 1 0 1
0 0 O 0 0 05 1 O

Now the matrix with the truncated values can be stored more efficiently in a banded
form:

0 0 05 0O 0 05 0 0 05
0 1 1 0 1 1 0 1 1
o 0 0 0 0 O o0 o0 O
1 1 0 1 1 0 1 1 0
05 0 0 05 0 0O 05 0 O

spmat idistance provides tools for truncating the values of an inverse-distance ma-
trix and storing the truncated matrix in a banded form. Like spmat contiguity, spmat
idistance is capable of creating a banded matrix without creating the underlying n xn
representation of the matrix. The user must specify a theoretically justified truncation
criterion for such an application.

Here we illustrate how one could apply each of the truncation methods mentioned
in section[3.3]to our hypothetical inverse-distance matrix. The most natural way is to
use value truncation. In the code below, we create a new spmat object ex1 with the
values of W that are less than or equal to 1/500 set to 0.1 We also request that W be
stored in banded form.

. spmat idistance exl x, id(id) banded vtruncate(1/500)

The same outcome can be achieved with bin truncation. In bin truncation, we find
the maximum value in W denoted by m, divide the interval (0,m] into B bins of equal
length, and then truncate to 0 elements that fall into bins 1,...,b; see Bin truncation
details below for a more technical description. In our hypothetical matrix, the largest
element of W is 1. If we divide the values in W into three bins, the bins will be defined
by (0,1/3], (1/3,2/3], (2/3,1]. The values we wish to round to 0 fall into the first bin.

11. vtruncate() accepts any expression that evaluates to a number.
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In the code below, we create a new spmat object ex2 with the values of W that fall
into the first bin set to 0. We also request that W be stored in banded form.

. spmat idistance ex2 x, id(id) banded btruncate(l 3)

Diagonal truncation is not based on value comparison; therefore, in general, we will
not be able to replicate exactly the results obtained with bin or value truncation. In
the code below, we create a new spmat object ex3 with the values of W that fall more
than two diagonals below and above the main diagonal set to 0. We also request that
W be stored in banded form.

. spmat idistance ex3 x, id(id) banded dtruncate(2 2)

The resulting matrix based on diagonal truncation is shown below. No values in W
have been changed; instead, we copied the requested elements from W and stored them
in banded form, padding the banded format with Os when necessary (see section .

Diagonal truncation can be hard to justify on a theoretical basis. It can retain
irrelevant neighbors, as in this example, or it can wipe out our relevant ones. Its use
should be limited to situations in which one has a good knowledge of the underlying
structure of the spatial-weighting matrix. Bin or value truncation will generally be
easier to apply.

0 0 0.5 0.00199 0.00199 0.5 0.00199 0.00199 0.5
0 1 1 0.002 1 1 0.002 1 1
0 0 0 0 0 0 0 0 0
1 1 0.002 1 1 0.002 1 1 0
0.5 0.00199 0.00199 0.5 0.00199 0.00199 0.5 0 0

A word of warning: While truncation leads to matrices that can be stored more
efficiently, truncation should only be applied if supported by theory. Ad hoc truncation
may lead to a misspecification of the model and a subsequent inconsistent inference.

Bin truncation details

Formally, letting m be the largest element in W, btruncate (b B) divides the interval
(0,m] into B equal-length subintervals and sets elements in W whose value falls in the
b smallest subintervals to 0. We partition the interval (0,m] into B intervals (axr, arv],
where k = {1,...,B}, axr, = (k — 1)m/B, and ary = km/B. We set w;; = 0 if
wi; € (ak.L,akU] for k <b.
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4 Summarizing an existing spatial-weighting matrix

4.1 Syntax

spmat summarize objname [, links detail {banded|truncmeth0d}]

where truncmethod is one of btruncate(b B), dtruncate(dy dy), or
vtruncate (v).

4.2 Description

spmat summarize reports summary statistics about the elements in the spatial-weight-
ing matrix in the existing spmat object objname.

4.3 Options

links is useful when objname contains a contiguity or a normalized-contiguity matrix.
Rather than the default summary of the values in the spatial-weighting matrix,
links causes spmat summarize to summarize the number of neighbors.

detail requests a tabulation of links for a contiguity or a normalized-contiguity matrix.
The values of the identifying variable with the minimum and maximum number of
links will be displayed.

banded reports the bands for the matrix that already has a (possibly) banded structure
but is stored in an n x n form.

truncmethods are useful when you want to see summary statistics calculated on a spatial-
weighting matrix after some elements have been truncated to 0. spmat summarize
with a truncmethod will report the lower and upper band based on a matrix to
which the specified truncation criterion has been applied. (Note: No data are ac-
tually changed by selecting these options. These options only specify that spmat
summarize calculate results as if the requested truncation criterion has been ap-
plied.)

btruncate(b B) partitions the values of W into B bins and truncates to 0 entries
that fall into bin b or below.

dtruncate(d; dy) truncates to 0 the values of W that fall more than d, diagonals
below and dyy diagonals above the main diagonal. Neither value can be greater than

[ (cols(W)—1)/4].

vtruncate (v) truncates to 0 the values of W that are less than or equal to v.
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4.4 Saved results

Only spmat summarize returns saved results.

Let W, be a contiguity or normalized-contiguity matrix and W, be an inverse-
distance matrix.

spmat summarize saves the following results in r():

Scalars
r(b) number of rows in W r (1lmean) mean number of
r(n) number of columns in W neighbors in W,
r(1lband) lower band, if W is banded r(1lmax) maximum number of
r (uband) upper band, if W is banded neighbors in W,
r(min) minimum of Wy r(ltotal) total number of neighbors in W,
r(min0) minimum element > 0 in Wy r(eig) 1 if object contains
r (mean) mean of Wy eigenvalues, 0 otherwise
r (max) maximum of Wy r(canband) 1 if object can be banded
r(1min) minimum number of based on r(lband) and

neighbors in W, r(uband), 0 otherwise

4.5 Examples

It is generally useful to know some summary statistics for the elements of your spatial-
weighting matrices. In sections 2.4 and [3.4, we used spmat summarize to report sum-
mary statistics for spatial-weighting matrices.

Many spatial-weighting matrices contain many elements that are not 0 but are very
small. At times, theoretical considerations such as threshold effects suggest that these
small weights should be truncated to 0. In these cases, you might want to summarize
the elements of the spatial-weighting subject to different truncation criteria as part of
some sensitivity analysis.

b Example

In section[3.4] we stored an unnormalized inverse-distance spatial-weighting matrix
in the spmat object dcounty. In this example, we find the summary statistics of the
elements of a truncated version of this matrix.

For each county, we set to 0 the weights for counties whose centroids are farther
than 250 km from the centroid of that county. Because we are operating on inverse
distances, we specify 1/250 as the truncation criterion. The summary of the matrix
calculated after applying the truncation criterion is reported in the Truncated matrix
column. We can see that now the minimum nonzero distance is reported as 0.004.
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. spmat summarize dcounty, vtruncate(1/250)

Summary of spatial-weighting object dcounty

Current matrix Truncated matrix
Dimensions 3109 x 3109 3109 x 3109
Bands (3098, 3098)
Values
min 0 0
min>0 .0002185 .004
mean .0012296 .0002583
max 1.081453 1.081453

The Bands row reports the lower and upper bands with nonzero values. Those values
tell us whether the matrix can be stored in banded form. As mentioned in section 3.3,
neither value can be greater than | (cols(W)—1)/4]. In our case, the maximum values
for bands is (3,109 — 1)/4] = 777; therefore, if we truncated the values of the matrix
according to our criterion, we would not be able to store the matrix in banded form.'?
In section [5.1, we show how we can use the sorting tricks of Drukker et al. (2011) to
store this matrix in banded form.

d

5 Examples of banded matrices

Thus far we have claimed that banded matrices are useful when handling spatial-
weighting matrices, but we have not yet substantiated this point. To illustrate the
usefulness of storing spatial-weighting matrices in a banded-matrix form, we revisit the
U.S. counties data and introduce U.S. five-digit zip code data.

12. In practice, rather than calculating the maximum value for bands by hand, we would use the
r(canband), r(lband), and r(uband) scalars returned by spmat summarize; see section for
details.
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5.1 U.S. county data revisited

Recall that at the moment, we have the neighbor information stored in the spmat object
ccounty. We use spmat graph, discussed in section [7, to produce an intensity plot of
the n x n normalized contiguity matrix contained in the object ccounty by typing

. spmat graph ccounty, blocks(10)

Figure [2 shows that zero and nonzero entries are scattered all over the matrix.
This pattern arises because the original shapefiles had the counties sorted in an order
unrelated to their distances from a common point.

Columns
1 100 200 311

Rows

Figure 2. Normalized contiguity matrix for unsorted U.S. counties

We can store the normalized contiguity matrix more efficiently if we generate a
variable containing the distance from a particular place to all the other places and then
sort the data in an ascending order according to this variable!'3 We implement this
method in four steps: 1) we sort the county data by the longitude and latitude of the
county centroids contained in longitude and latitude, respectively, so that the first
observation will be the corner observation of Curry County, OR; 2) we calculate the
distance of each county from the corner county in the first observation; 3) we sort on
the variable containing the distances calculated in step 2; and 4) we recompute and
summarize the normalized contiguity matrix.

13. For best results, pick a place located in a remote corner of the map; see Drukker et al. (2011) for
further details.
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. sort longitude latitude

. generate double dist =
> sqrt( (longitude-longitude[1])"2 + (latitude-latitude[1])"2 )

. sort dist

. spmat contiguity ccounty2 using countyxy, id(id) normalize(minmax) banded
> replace

. spmat summ ccounty2, links

Summary of spatial-weighting object ccounty2

Matrix Description

Dimensions 3109 x 3109

Stored as 465 x 3109
Links

total 18474

min 1

mean 5.942104

max 14

. spmat graph ccounty2, blocks(10)

Specifying the option banded in the spmat contiguity command caused the con-
tiguity matrix to be stored as a banded matrix. The summary table shows that the
contiguity information is now stored in a 465 x 3,109 matrix, which requires much
less space than the original 3,109 x 3,109 matrix. Figure 3] clearly shows the banded
structure.

Columns
1 100 200 311
1 1

100+

Rows

200

3114

Figure 3. Normalized contiguity matrix for sorted U.S. counties
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Similarly, we can re-create the dcounty object calculated on the sorted data and
see whether the inverse-distance matrix can be stored in banded form after applying a
truncation criterion.

. spmat idistance dcounty longitude latitude, id(id) dfunction(dhaversine)
> vtruncate(1/250) banded replace

. spmat summ dcounty

Summary of spatial-weighting object dcounty

Matrix Description
Dimensions 3109 x 3109
Stored as 769 x 3109
Values

min 0

min>0 .004

mean .0002583

max 1.081453

We can see that the Values summary for this matrix and the matrix from section[4.5]
is the same; however, the matrix in this example is stored in banded form.

5.2 U.S. zip code data

The real power of banded storage is unveiled when we lack the memory to store spatial
data in an n X n matrix. We use the five-digit zip code level data for the continental
United States!'4 We have information on 31,713 five-digit zip codes, and as was men-
tioned in section[1.2, we need 7.5 gigabytes of memory to store the normalized contiguity
matrix as a general matrix.

14. Data are from the U.S. Census Bureau at ftp://ftp2.census.gov/geo/tiger/TIGER2008/.
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Instead, we repeat the sorting trick and call spmat contiguity with option banded,
hoping that we will be able to fit the banded representation into memory.

. use zipb, clear

. *xkeep continental US zip codes
. drop if latitude > 49.5 | latitude < 24.5 | longitude < -124
(524 observations deleted)

. sort longitude latitude

. generate double dist =
> sqrt( (longitude-longitude[1])~2 + (latitude-latitude[1])~2 )

. sort dist

. spmat contiguity zip5 using zipbxy, id(id) normalize(minmax) banded
warning: spatial-weighting matrix contains 131 islands

. spmat summarize zip5, links

Summary of spatial-weighting object zipb

Matrix Description

Dimensions 31713 x 31713

Stored as 1827 x 31713
Links

total 166906

min 0

mean 5.263015

max 26

warning: spatial-weighting matrix contains 131 islands

The output from spmat summarize indicates that the normalized contiguity matrix
is stored in a 1,827 x 31,713 matrix. This fits into less than half a gigabyte of memory!
All we did to store the matrix in a banded format was change the sort order of the data
and specify the banded option. We discuss storing an existing n x n spatial-weighting
matrix in banded form in sections and [18.2.

Having illustrated the importance of banded matrices, we return to documenting
the spmat commands.

6 Inserting documentation into your spmat objects

6.1 Syntax

spmat note objname | { : "text", replace|drop } ]

6.2 Description

spmat note creates and manipulates a note attached to the spmat object.
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6.3 Options

replace causes spmat note to overwrite the existing note with a new one.

drop causes spmat note to clear the note associated with objname.

6.4 Examples

If you plan to use a spatial-weighting matrix outside a given do-file or session, you
should attach some documentation to the spmat object.

spmat note stores the note in a string scalar; however, it is possible to store multiple
notes in the scalar by repeatedly appending notes.
b Example
We attach a note to the spmat object ccounty and then display it by typing
. spmat note ccounty : "Source: Tiger 2008 county files."
. spmat note ccounty
Source: Tiger 2008 county files.
As mentioned, we can have multiple notes:
. spmat note ccounty : "Created on 18jan2011."

. spmat note ccounty
Source: Tiger 2008 county files. Created on 18jan2011.

7 Plotting the elements of a spatial-weighting matrix

7.1 Syntax

spmat graph objname [, ﬂocks([(stat)] D) twoway,options]

7.2 Description

spmat graph produces an intensity plot of the spatial-weighting matrix contained in
the spmat object objname. Zero elements are plotted in white; the remaining elements
are partitioned into bins of equal length and assigned gray-scale colors gsO-gs15 (see
[G-4] eolorstyle), with darker colors representing higher values.

7.3 Options

blocks([ (stat) ] p) specifies that the matrix be divided into blocks of size p and that
block maximums be plotted. This option is useful when the matrix is large. To plot a
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statistic other than the default maximum, you can specify the optional stat argument.
For example, to plot block medians, type blocks ((p50) p). The supported statistics
include those returned by summarize, detail; see [R| summarize for a complete
list.

twoway-options are any options other than by (); they are documented in
[G-3] twoway_options.

7.4 Examples

An intensity plot of a spatial-weighting matrix can reveal underlying structure. For
example, if there is a banded structure to the spatial-weighting matrix, large amounts
of memory may be saved.

See section [5.1] for an example in which we use spmat graph to reveal the banded
structure in a spatial-weighting matrix.

8 Computing spatial lags
8.1 Syntax

spmat lag [type] newvar objname varname

8.2 Description

spmat lag uses a spatial-weighting matrix to compute the weighted averages of a vari-
able known as the spatial lag of a variable.

More precisely, spmat lag uses the spatial-weighting matrix in the spmat object
objname to compute the spatial lag of the variable varname and stores the result in the
new variable newwvar.

8.3 Examples

Spatial lags of the exogenous right-hand-side variables are frequently included in SAR
models; see, for example, LeSage and Pace (2009).

Recall that a spatial lag is a weighted average of the variable being lagged. If x_spl
denotes the spatial lag of the existing variable x, using the spatial-weighting matrix W,
then the algebraic definition is x_spl = Wx.
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The code below generates the new variable x_spl, which contains the spatial lag of x,
using the spatial-weighting matrix W, which is contained in the spmat object ccounty:

. clear all

. use county

. spmat contiguity ccounty using countyxy, id(id) normalize(minmax)
. generate x = runiform()

. spmat lag x_spl ccounty x

We could now include both x and x_spl in our model.

9 Computing the eigenvalues of a spatial-weighting ma-
trix

9.1 Syntax

spmat eigenvalues objname [, eigenvalues (vecname) replace}

9.2 Description

spmat eigenvalues calculates the eigenvalues of the spatial-weighting matrix contained
in the spmat object objname and stores them in wecname. The maximum-likelihood
estimator implemented in the spreg ml command, as described in Drukker, Prucha,
and Raciborski (2013b), uses the eigenvalues of the spatial-weighting matrix during the
optimization process. If you are estimating several models by maximum likelihood with
the same spatial-weighting matrix, computing and storing the eigenvalues in an spmat
object will remove the need to recompute the eigenvalues.

9.3 Options

eigenvalues (vecname) stores the user-defined vector of eigenvalues in the spmat object
objname. vecname must be a Mata row vector of length n, where n is the dimension
of the spatial-weighting matrix in the spmat object objname.

replace permits spmat eigenvalues to overwrite existing eigenvalues in objname.

9.4 Examples

Putting the eigenvalues into the spmat object can dramatically speed up the com-
putations performed by the spreg ml command; see Drukker, Prucha, and Raciborski
(2013b) for details and references therein.
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We can calculate the eigenvalues of the spatial-weighting matrix contained in the
spmat object ccounty and store them in the same object by typing

. spmat eigenvalues ccounty

Calculating eigenvalues.... finished.

10 Removing an spmat object from memory
10.1 Syntax

spmat drop objname

10.2 Description

spmat drop removes the spmat object objname from memory.

10.3 Examples

To drop the spmat object dcounty from memory, we type

. spmat drop dcounty
(note: spmat object dcounty not found)

11 Saving an spmat object to disk
11.1 Syntax

spmat save objname using filename [, replace]

11.2 Description

spmat save saves the spmat object objname to a file in a native Stata format.

11.3 Option

replace permits spmat save to overwrite filename.
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11.4 Examples

Creating a spatial-weighting matrix, and perhaps its eigenvalues as well, can be a time-
consuming process. If you are going to repeatedly use a spatial-weighting matrix, you
probably want to save it to a disk and read it back in for subsequent uses. spmat save
will save the spmat object to disk for you. Section[I2 discusses spmat use, which reads
the object from disk into memory.

If you are going to save an spmat object to disk, it is a good practice to use spmat
note to attach some documentation to the object before saving it. Section[6 discusses
spmat note.

Just like with Stata datasets, you can save your spmat objects to disk and share
them with other Stata users. The file format is platform independent. So, for example,
a Mac user could save an spmat object to disk and email it to a coauthor, and the
Windows-using coauthor could read in this spmat object by using spmat use.

We can save the information contained in the spmat object ccounty in the file
ccounty.spmat by typing

. spmat save ccounty using ccounty.spmat

12 Reading spmat objects from disk
12.1 Syntax

spmat use objname using filename [, replace}

12.2 Description

spmat use reads into memory an spmat object from a file created by spmat save; see
section[11 for a discussion of spmat save.

12.3 Option

replace permits spmat use to overwrite an existing spmat object.

12.4 Examples

As mentioned in section[11, creating a spatial-weighting matrix can be time consuming.
When repeatedly using a spatial-weighting matrix, you might want to save it to disk
with spmat save and read it back in with spmat use for subsequent uses.
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In section [11} we saved the spmat object ccounty to the file ccounty.spmat. We
now drop the existing ccounty object from memory and read it back in with spmat
use:

. spmat drop ccounty
. spmat use ccounty using ccounty.spmat

. spmat note ccounty
Source: Tiger 2008 county files. Created on 18jan2011.

13 Writing a spatial-weighting matrix to a text file
13.1 Syntax

spmat export objname using filename [, noid nlist replace]

13.2 Description

spmat export saves the spatial-weighting matrix contained in the spmat object objname
to a space-delimited text file. The matrix is written in a rectangular format with unique
place identifiers saved in the first column. spmat export can also save lists of neighbors
to a text file.

13.3 Options

noid causes spmat export not to save unique place identifiers, only matrix entries.

nlist causes spmat export to write the matrix in the neighbor-list format described
in section[2.3.

replace permits spmat export to overwrite filename.

13.4 Examples

The main use of spmat export is to export a spatial-weighting matrix to a text file that
can be read by another program. Long (2009, 336) recommends exporting all data to
text files that will be read by future software as part of archiving one’s research work.

Another use of spmat export is to review neighbor lists from a contiguity matrix.
Here we illustrate how one can export the contiguity matrix in the neighbor-list format
described in section

. spmat export ccounty using nlist.txt, nlist
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We call the Unix command head to list the first 10 lines of nlist.txt!®

. 'head nlist.txt

3109

1054 1657 2063 2165 2189 2920 2958
112 2250 2277 2292 2362 2416 3156
2294 2471 2575 2817 2919 2984

8 379 1920 2024 2258 2301

6 73 1059 1698 2256 2886 2896

5 1698 2256 2795 2886 2896 3098
517 1924 2031 2190 2472 2575

4 379 1832 2178 2258 2987

413 436 1014 1320 2029 2166

O 00 ~NO O WN -

The first line of the file indicates that there are 3,109 total spatial units. The
second line indicates that the unit with identification code 1 is a neighbor of units with
identification codes 1054, 1657, 2063, 2165, 2189, 2920, and 2958. The interpretation of
the remaining lines is analogous to that for the second line.

14 Getting a spatial-weighting matrix from an spmat ob-
ject

14.1 Syntax

spmat getmatrix objname [matname} [, id (vecname) eig(vecname)}

14.2 Description

spmat getmatrix copies the spatial-weighting matrix contained in the spmat object
objname and stores it in the Mata matrix matname; see [M-0] intro for an introduction
to using Mata. If specified, the vector of unique identifiers and the eigenvalues of the
spatial-weighting matrix will be stored in Mata vectors.

14.3 Options

id(vecname) specifies the name of a Mata vector to contain IDs.

eig(vecname) specifies the name of a Mata vector to contain eigenvalues.

15. Users of other operating systems should open the file in a text editor.
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14.4 Examples

If you want to make changes to an existing spatial-weighting matrix, you need to retrieve
it from the spmat object, store it in Mata, make the desired changes, and store the new
matrix back in the spmat object by using spmat putmatrix. (See section [17] for a
discussion of spmat putmatrix.)

spmat getmatrix performs the first two tasks: it makes a copy of the spatial-
weighting matrix from the spmat object and stores it in Mata.

As we discussed in section [3, spmat idistance creates a spatial-weighting matrix
of the form 1/d;;, where d;; is the distance between units ¢ and j. In section [17.4] we
use spmat getmatrix in an example in which we change a spatial-weighting matrix to
the form 1/exp(0.1 x d;;) instead of just 1/d;;.

15 Importing spatial-weighting matrices

15.1 Syntax

spmat import objname using filename [, noid nlist geoda idistance

normalize(norm) replace ]

15.2 Description

spmat import imports a spatial-weighting matrix from a space-delimited text file and
stores it in a new spmat object.

15.3 Options

noid specifies that the first column of numbers in filename does not contain unique place
identifiers and that spmat import should create and use the identifiers 1,..., n.

nlist specifies that the text file to be imported contain a list of neighbors in the format
described in section [2.3]

geoda specifies that filename be in the .gwt or .gal format created by the GeoDa™
software.

idistance specifies that the file contains raw distances and that the raw distances
should be converted to inverse distances. In other words, idistance specifies that
the (4,7)th element in the file be d;; and that the (i, 7)th element in the spatial-
weighting matrix be 1/d,;, where d;; is the distance between units ¢ and j.

normalize(norm) specifies one of the three available normalization techniques: row,
minmax, and spectral. In a row-normalized matrix, each element in row ¢ is divided
by the sum of row ¢’s elements. In a minmax-normalized matrix, each element is
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divided by the minimum of the largest row sum and column sum of the matrix. In
a spectral-normalized matrix, each element is divided by the modulus of the largest
eigenvalue of the matrix. See section for details.

replace permits spmat import to overwrite an existing spmat object.

15.4 Examples

One frequently needs to import a spatial-weighting matrix from a text file. spmat
import supports three of the most common formats: simple text files, GeoDa™ text
files, and text files that require minor changes such as converting from raw to inverse
distances.

By default, the unique place-identifying variable is assumed to be stored in the first
column of the file, but this can be overridden with the noid option.

In section 17.4, we provide an extended example that begins with using spmat
import to import a spatial-weighting matrix.

16 Obtaining a spatial-weighting matrix from a Stata
dataset

16.1 Syntax

spmat dta objname varlist [zf] [m} [, id(varname) idistance

normalize(norm) replace ]

16.2 Description

spmat dta imports a spatial-weighting matrix from the variables in a Stata dataset and
stores it in an spmat object.

The number of variables in varlist must equal the number of observations because
spatial-weighting matrices are n X n.

16.3 Options

id(varname) specifies that the unique place identifiers be contained in varname. The
default is to create an identifying vector containing 1,...,n.

idistance specifies that the variables contain raw distances and that the raw distances
be converted to inverse distances. In other words, idistance specifies that the ith
observation on the jth variable be d;; and that the (¢, j)th element in the spatial-
weighting matrix be 1/d,;, where d;; is the distance between units ¢ and j.
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normalize(norm) specifies one of the three available normalization techniques: row,
minmax, and spectral. In a row-normalized matrix, each element in row ¢ is divided
by the sum of row ¢’s elements. In a minmax-normalized matrix, each element is
divided by the minimum of the largest row sum and column sum of the matrix. In
a spectral-normalized matrix, each element is divided by the modulus of the largest
eigenvalue of the matrix. See section [2.5] for details.

replace permits spmat dta to overwrite an existing spmat object.

16.4 Examples

People have created Stata datasets that contain spatial-weighting matrices. Given the
power of infile and infix (see [D] infile (fixed format) and [D] infix (fixed for-
mat)), it is likely that more such datasets will be created. spmat dta imports these
spatial-weighting matrices and stores them in an spmat object.

Here we illustrate how we can create an spmat object from a Stata dataset. The
dataset schools.dta contains the distance in miles between five schools in the variables
c1-c5. The unique school identifier is recorded in the variable id. In Stata, we type

. use schools, clear

. list
id cl c2 c3 c4 chb
1. 101 0 5.9 8.25 6.22 7.66
2. 205 5.9 0 2.97 4.87 7.63
3. 113 8.25 2.97 0 4.47 7
4. 441 6.22 4.87 4.47 0 2.77
5. 573 7.66 7.63 7 2.77 0

. spmat dta schools c*, id(id) idistance normalize (minmax)

17 Storing a Mata matrix in an spmat object
17.1 Syntax

spmat putmatrix objname [matname} [, id(varname| vecname) eig(vecname)

idistance bands(l ) normalize(norm) replace]

17.2 Description

spmat putmatrix puts Mata matrices into an existing spmat object objname or into
a new spmat object if the specified object does not exist. The optional unique place
identifiers can be provided as a Mata vector or a Stata variable. The optional eigenvalues
of the Mata matrix can be provided in a Mata vector.
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17.3 Options

id(varname| vecname) specifies a Mata vector vecname or a Stata variable varname
that contains unique place identifiers.

eig(vecname) specifies a Mata vector vecname that contains the eigenvalues of the
matrix.

idistance specifies that the Mata matrix contains raw distances and that the raw
distances be converted to inverse distances. In other words, idistance specifies
that the (¢, 7)th element in the Mata matrix be d;; and that the (¢, j)th element in
the spatial-weighting matrix be 1/d;;, where d;; is the distance between units ¢ and

VE

bands ([ u) specifies that the Mata matrix matname be banded with [ lower and u upper
diagonals.

normalize(norm) specifies one of the three available normalization techniques: row,
minmax, and spectral. In a row-normalized matrix, each element in row ¢ is divided
by the sum of row i’s elements. In a minmax-normalized matrix, each element is
divided by the minimum of the largest row sum and column sum of the matrix. In
a spectral-normalized matrix, each element is divided by the modulus of the largest
eigenvalue of the matrix. See section for details.

replace permits spmat putmatrix to overwrite an existing spmat object.

17.4 Examples

spmat contiguity and spmat idistance create spatial-weighting matrices from raw
data. This section describes situations in which we have the spatial-weighting matrix
precomputed and simply want to put it in an spmat object. The spatial-weighting matrix
can be any matrix that satisfies the conditions discussed, for example, in Kelejian and
Prucha (2010).

In this section, we show how to create an spmat object from a text file by using
spmat import and how to use spmat getmatrix and spmat putmatrix to generate an
inverse-distance matrix according to a user-specified functional form.

The file schools.txt contains the distance in miles between five schools. We call
the Unix command cat to print the contents of the file:

. !cat schools.txt

5

101
205
113
441
573

~N o 00 0O
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The school ID is recorded in the first column of the file, and column ¢ records the
distance from school ¢ to all the other schools, including itself. We can use spmat
import to create a spatial-weighting matrix from this file:

. spmat import schools using schools.txt, replace
The resulting spatial-weighting matrix is

0 59 825 6.22 7.66
5.9 0 297 4.87 7.63
825 297 0 447 7.0
6.22 487 447 0 277
766 7.63 7.0 277 O

We now illustrate how to create a spatial-weighting matrix with the distance de-
clining in an exponential fashion, exp(—0.1d;;), where d;; is the original distance from
school ¢ to school j.

. spmat getmatrix schools x
. mata: x = exp(-.1:%x)
. mata: _diag(x,0)

. spmat putmatrix schools x, normalize(minmax) replace

Thus we read in the original distances, extract the distance matrix with spmat
getmatrix, use Mata to transform the matrix entries according to our specifications,
and reset the diagonal elements to 0. Finally, we use spmat putmatrix to put the
transformed matrix into an spmat object. The resulting minmax-normalized spatial-
weighting matrix is

0 0.217 0.172 0.211 0.182
0.217 0 0.292 0.241 0.183
0.172 0.292 0 0.251 0.195
0.211 0.241 0.251 0 0.297
0.182 0.183 0.195 0.297 0

18 Converting general matrices into banded matrices

This section shows how to transform a spatial-weighting matrix stored as a general
matrix in an spmat object in a banded format. If this topic is not of interest, you can
skip this section.

The easy case is when the matrix already has a banded structure so that we can
simply use spmat tobanded.

Now consider the more difficult case in which we have a spatial-weighting matrix
stored in an spmat object and we would like to use the sorting method described in
Drukker et al. (2011) to store this matrix in a banded format. This transformation
requires 1) permuting the elements of the existing spatial-weighting matrix to correspond
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to a new row sort order and then 2) storing the spatial-weighting matrix in banded
format. We accomplish step 1 by storing the new row sort order in a permutation
vector, as explained below, and then by using spmat permute. We use spmat tobanded
to perform step 2.

Note that most of the time, it is more convenient to sort the data as described
in section [5.1 and to call spmat contiguity or spmat idistance with a truncation
criterion. With very large datasets, spmat contiguity and spmat idistance will be
the only choices because they are capable of creating banded matrices from data without
first storing the matrices in a general form.

18.1 Permuting a spatial-weighting matrix stored in an spmat object

Syntax

spmat permute objname pvarname

Description

spmat permute permutes the rows and columns of the n x n spatial-weighting matrix
stored in the spmat object objname. The permutation vector stored in pvarname con-
tains a permutation of the integers {1,...,n}, where n is both the sample size and the
dimension of W. That the value of the ith observation of pvarname is j specifies that
we must move row j to row ¢ in the permuted matrix. After moving all the rows as
specified in pvarname, we move the columns in an analogous fashion. See Permutation
details: Mathematics below for a more thorough explanation.

Examples

spmat permute is illustrated in the Examples section of section|18.2.

Permutation details: Mathematics

Let p be the permutation vector created from pvarname, and let W be the spatial-
weighting matrix contained in the specified spmat object. The n x 1 permutation vector
p contains a permutation of the integers {1,...,n}, where n is the dimension of W.

The permutation of W is obtained by reordering the rows and columns of W as specified
by the elements of p. Each element of p specifies a row and column reordering of W.
That element ¢ of p is j—that is, p[i]=j—specifies that we must move row j to row ¢ in
the permuted matrix. After moving all the rows according to p, we move the columns
analogously.
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Here is an illustrative example. We have a matrix W, which is not banded:

. mata: W
[symmetric]
1 2 3 4 5

1 0

2 1 0

3 o 0 O

4 0 1 0 O

5 1 0 1 0 O

Suppose that we also have a permutation vector p that we could use to permute W to a
banded matrix.

. mata: p

See Permutation details: An example below to see how we used the sorting trick of
Drukker et al. (2011) to obtain this p. See Examples in section 18.2/ for an example
with real data.

The values in the permutation vector p specify how to permute (that is, reorder) the
rows and the columns of W. Let’s start with the rows. That 3 is element 1 of p specifies
that row 3 of W be moved to row 1 in the permuted matrix. In other words, we must
move row 3 to row 1.

Applying this logic to all the elements of p yields that we must reorder the rows of
W by moving row 3 to row 1, row 5 to row 2, row 1 to row 3, row 2 to row 4, and row 4
to row 5. In the output below, we use Mata to perform this operation on W, store the
result in A, and display A. If the Mata code is confusing, just check that A contains the
described row reordering of W.

. mata: A = W[p,.]

. mata: A
1 2 3 4 5
1 0 0 0 0 1
2 1 0 1 0 0
3 0 1 0 0 1
4 1 0 0 1 0
5 0 1 0 0 0

Having reordered the rows, we reorder the columns in the analogous fashion. Oper-
ating on A, we move column 3 to column 1, column 5 to column 2, column 1 to column 3,
column 2 to column 4, and column 4 to column 5. In the output below, we use Mata
to perform this operation on A, store the result in B, and display B. If the Mata code is
confusing, just check that B contains the reordering of A described above.
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. mata: B = A[.,p]

. mata: B
[symmetric]
1 2 3 4 5

1 0

2 1 0

3 0 1 0

4 0 0 1 0

5 o 0 oO 1 0

Note that B is the desired banded matrix. For Mata aficionados, typing W[p,p]
would produce this permutation in one step.

For those whose intuition is grounded in linear algebra, here is the permutation-
matrix explanation. The permutation vector p defines the permutation matrix E, where
E is obtained by performing the row reordering described above on the identity matrix
of dimension 5. Then the permuted form of W is given by ExW+E’, as we illustrate below:

. mata: E = I(5)

. mata: E
[symmetric]
1 2 3 4 5

1 1

2 0 1

3 0o o0 1

4 o o0 ©O 1

5 o o0 o0 O 1

. mata: E = E[p,.]

. mata: E

b WN -
OO mr OO
O O OO
O O O O
= O O OO
OO OO

. mata: ExWxE~
[symmetric]
1 2 3 4 5

1 0

2 1 0

3 0 1 0

4 o o0 1 0

5 0o 0 1 0

permutation (see [M-1] permutation) provides further details on permutation vec-
tors and permutation matrices.
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Permutation details: An example

spmat permute requires that the permutation vector be stored in the Stata variable
pvarname. Assume that we now have the unpermuted matrix W stored in the spmat
object cobj. The matrix represents contiguity information for the following data:

. list
id distance
1. 79 5.23
2. 82 27.56
3. 100 0
4. 114 1.77
5. 140 20.47

The variable distance measures the distance from the centroid of the place with id=100
to the centroids of all the other places. We sort the data on distance and generate the
permutation vector p, which is just a running index 1,...,5:

. sort distance

. generate p = _n
. list
id distance p
1. 100 0 1
2. 114 1.77 2
3. 79 5.23 3
4. 140 20.47 4
5. 82 27.56 5

We obtain our permutation vector by sorting the data back to the original order
based on the id variable:

. sort id
. list
id distance P
1. 79 5.23 3
2. 82 27.56 5
3. 100 0 1
4. 114 1.77 2
5. 140 20.47 4

Now coding spmat permute cobj p will reorder the rows and columns of W in
exactly the same way as the Mata code did above.
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18.2 Banding a spatial-weighting matrix

Syntax

spmat tobanded objnamel [objnameQ] [, truncmethod replace}

where truncmethod is one of btruncate(b B), dtruncate(dy dy), or vtruncate (#).

Description

spmat tobanded stores an existing, general-format spatial-weighting matrix in a banded
format. spmat tobanded has truncation options for inducing a banded structure in
spatial-weighting matrices that are not already in banded form.

More precisely, spmat tobanded stores the spatial-weighting matrix in an spmat
object in banded format.

Options

truncmethod specifies one of the three truncation criteria. The values of W that meet
the truncation criterion will be changed to O.

btruncate(b B) partitions the values of W into B bins and truncates to 0 entries
that fall into bin b or below.

dtruncate(d; dy) truncates to 0 the values of W that fall more than dj, diagonals
below and dy diagonals above the main diagonal. Neither value can be greater than

[ (cols(W)—1)/4].
vtruncate (#) truncates to 0 the values of W that are less than or equal to #.

replace allows objnamel or objname2 to be overwritten if it already exists.

Examples

Sometimes, we have large spatial-weighting matrices that fit in memory, but they take
up so much space that there is too little room to do anything else. In these cases, we are
better off storing these spatial-weighting matrices in a banded format when possible.



D. M. Drukker, H. Peng, I. R. Prucha, and R. Raciborski 283

spmat tobanded stores existing spatial-weighting matrices in a banded format. The
two allowed syntaxes are

spmat tobanded objnamel , replace
and
spmat tobanded objnamel objname2 [, replace]

The first syntax replaces the general-form spatial-weighting matrix in the spmat object
objnamel with its banded form.

The second syntax stores the general-form spatial-weighting matrix in the spmat object
objnamel in banded form in the spmat object objname2. You must specify replace if
objname?2 already exists.

We continue with the example from section [2.4, where we have the 3,109 x 3,109
normalized-contiguity matrix stored in the spmat object ccounty. In section 5.1, we
showed that if we sort the data on a distance variable, we can call spmat contiguity
again and get a banded matrix. Here we show that we can achieve the same result
by 1) creating a permutation vector, 2) calling spmat permute, and 3) running spmat
tobanded on the existing spmat object.

We begin by generating a permutation vector and storing it in the Stata variable p.
Recall that we want the ith element of p to contain the observation number that it
will have under the new sort order. This process is given in the code below and is
analogous to the one discussed in the subsections Permutation details: Mathematics
and Permutation details: An example in section [18.1. Because the data are already
sorted by ID, we begin by sorting them by longitudes and latitudes of the centroids so
that the first observation will contain a corner place. Next we generate the distance
from the corner place. After sorting the data in ascending order from the distance to
the corner observation, we generate our permutation vector p and finally put the data
back in the original sort order.

. use county, clear
. generate p = _n
. sort longitude latitude

. generate double dist =
> sqrt( (longitude-longitude[1])"2 + (latitude-latitude[1])"2 )

. sort dist
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We can now use this permutation vector and spmat permute to perform the per-
mutation, and we can finally call spmat tobanded to band the spatial-weighting matrix
stored inside the spmat object ccounty. Note that the reported summary is identical
to the one in section[5.1.

. spmat permute ccounty p
. spmat tobanded ccounty, replace
. spmat summarize ccounty, links

Summary of spatial-weighting object ccounty

Matrix Description

Dimensions 3109 x 3109

Stored as 465 x 3109
Links

total 18474

min 1

mean 5.942104

max 14

(object contains eigenvalues)

19 Conclusion

We discussed the spmat command for creating, managing, importing, manipulating, and
storing spatial-weighting matrix objects. In future work, we will consider additional
subcommands for creating specific types of spatial-weighting matrices.
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