
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal

Editors

H. Joseph Newton

Department of Statistics

Texas A&M University

College Station, Texas

editors@stata-journal.com

Nicholas J. Cox

Department of Geography

Durham University

Durham, UK

editors@stata-journal.com

Associate Editors

Christopher F. Baum, Boston College

Nathaniel Beck, New York University

Rino Bellocco, Karolinska Institutet, Sweden, and

University of Milano-Bicocca, Italy

Maarten L. Buis, WZB, Germany

A. Colin Cameron, University of California–Davis

Mario A. Cleves, University of Arkansas for

Medical Sciences

William D. Dupont, Vanderbilt University

Philip Ender, University of California–Los Angeles

David Epstein, Columbia University

Allan Gregory, Queen’s University

James Hardin, University of South Carolina

Ben Jann, University of Bern, Switzerland

Stephen Jenkins, London School of Economics and

Political Science

Ulrich Kohler, University of Potsdam, Germany

Frauke Kreuter, Univ. of Maryland–College Park

Peter A. Lachenbruch, Oregon State University

Jens Lauritsen, Odense University Hospital

Stanley Lemeshow, Ohio State University

J. Scott Long, Indiana University

Roger Newson, Imperial College, London

Austin Nichols, Urban Institute, Washington DC

Marcello Pagano, Harvard School of Public Health

Sophia Rabe-Hesketh, Univ. of California–Berkeley

J. Patrick Royston, MRC Clinical Trials Unit,

London

Philip Ryan, University of Adelaide

Mark E. Schaffer, Heriot-Watt Univ., Edinburgh

Jeroen Weesie, Utrecht University

Ian White, MRC Biostatistics Unit, Cambridge

Nicholas J. G. Winter, University of Virginia

Jeffrey Wooldridge, Michigan State University

Stata Press Editorial Manager

Lisa Gilmore

Stata Press Copy Editors

David Culwell and Deirdre Skaggs

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book

reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository

papers that link the use of Stata commands or programs to associated principles, such as those that will serve

as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go

“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate

or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to

a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users

(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers

analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could

be of interest or usefulness to researchers, especially in fields that are of practical importance but are not

often included in texts or other journals, such as the use of Stata in managing datasets, especially large

datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata

with topics such as extended examples of techniques and interpretation of results, simulations of statistical

concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-

ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch,

Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com

http://www.stata-journal.com


Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone

979-696-4600 or 800-STATA-PC, fax 979-696-4601, or online at

http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

Printed & electronic Printed & electronic

1-year subscription $ 98 1-year subscription $138

2-year subscription $165 2-year subscription $245

3-year subscription $225 3-year subscription $345

1-year student subscription $ 75 1-year student subscription $ 99

1-year university library subscription $125 1-year university library subscription $165

2-year university library subscription $215 2-year university library subscription $295

3-year university library subscription $315 3-year university library subscription $435

1-year institutional subscription $245 1-year institutional subscription $285

2-year institutional subscription $445 2-year institutional subscription $525

3-year institutional subscription $645 3-year institutional subscription $765

Electronic only Electronic only

1-year subscription $ 75 1-year subscription $ 75

2-year subscription $125 2-year subscription $125

3-year subscription $165 3-year subscription $165

1-year student subscription $ 45 1-year student subscription $ 45

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may

be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX

77845, USA, or emailed to sj@stata.com.

®

Copyright c© 2013 by StataCorp LP

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,

fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, , Stata Press, Mata, ,

and NetCourse are registered trademarks of StataCorp LP.

http://www.stata.com/bookstore/sj.html
http://www.stata.com/bookstore/sjj.html
http://www.stata-journal.com/archives.html


The Stata Journal (2013)
13, Number 2, pp. 221–241

Maximum likelihood and generalized spatial

two-stage least-squares estimators for a

spatial-autoregressive model with

spatial-autoregressive disturbances

David M. Drukker
StataCorp

College Station, TX

ddrukker@stata.com

Ingmar R. Prucha
Department of Economics
University of Maryland

College Park, MD

prucha@econ.umd.edu

Rafal Raciborski
StataCorp

College Station, TX

rraciborski@stata.com

Abstract. We describe the spreg command, which implements a maximum
likelihood estimator and a generalized spatial two-stage least-squares estimator
for the parameters of a linear cross-sectional spatial-autoregressive model with
spatial-autoregressive disturbances.
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1 Introduction

Cliff–Ord (1973, 1981) models, which build on Whittle (1954), allow for cross-unit
interactions. Many models in the social sciences, biostatistics, and geographic sciences
have included such interactions. Following Cliff and Ord (1973, 1981), much of the
original literature was developed to handle spatial interactions. However, space is not
restricted to geographic space, and many recent applications use these techniques in
other situations of cross-unit interactions, such as social-interaction models and network
models; see, for example, Kelejian and Prucha (2010) and Drukker, Egger, and Prucha
(2013) for references. Much of the nomenclature still includes the adjective “spatial”,
and we continue this tradition to avoid confusion while noting the wider applicability
of these models. For texts and reviews, see, for example, Anselin (1988, 2010), Arbia
(2006), Cressie (1993), Haining (2003), and LeSage and Pace (2009).

The simplest Cliff–Ord model only considers spatial spillovers in the dependent vari-
able, with spillovers modeled by including a right-hand-side variable known as a spatial
lag. Each observation of the spatial-lag variable is a weighted average of the values of the
dependent variable observed for the other cross-sectional units. The matrix containing
the weights is known as the spatial-weighting matrix. This model is frequently referred
to as a spatial-autoregressive (SAR) model. A generalized version of this model also
allows for the disturbances to be generated by a SAR process. The combined SAR model

c© 2013 StataCorp LP st0291



222 ML and GS2SLS estimators for a SARAR model

with SAR disturbances is often referred to as a SARAR model; see Anselin and Florax
(1995).1

In modeling the outcome for each unit as dependent on a weighted average of the
outcomes of other units, SARAR models determine outcomes simultaneously. This si-
multaneity implies that the ordinary least-squares estimator will not be consistent; see
Anselin (1988) for an early discussion of this point.

In this article, we describe the spreg command, which implements a maximum
likelihood (ML) estimator and a generalized spatial two-stage least-squares (GS2SLS)
estimator for the parameters of a SARAR model with exogenous regressors. For discus-
sions of the ML estimator, see, for example, the above cited texts and Lee (2004) for the
asymptotic properties of the estimator. For a discussion of the estimation theory for the
implemented GS2SLS estimator, see Arraiz et al. (2010) and Drukker, Egger, and Prucha
(2013), which build on Kelejian and Prucha (1998, 1999, 2010) and the references cited
therein.

Section 2 describes the SARAR model. Section 3 describes the spreg command. Sec-
tion 4 provides some examples. Section 5 describes postestimation commands. Section 6
presents methods and formulas. The conclusion follows.

We use the notation that for any matrix A and vector a, the elements are denoted
as aij and ai, respectively.

2 The SARAR model

The spreg command estimates the parameters of the cross-sectional model (i = 1, . . . , n)

yi = λ
∑n

j=1 wijyj +
∑k

p=1 xipβp + ui

ui = ρ
∑n

j=1 mijuj + εi

or more compactly,

y = λWy + Xβ + u (1)

u = ρMu + ǫ (2)

1. These models are also known as Cliff–Ord models because of the impact that Cliff and Ord (1973,
1981) had on the subsequent literature. To avoid confusion, we simply refer to these models as
SARAR models while still acknowledging the importance of the work of Cliff and Ord.
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where

• y is an n × 1 vector of observations on the dependent variable;

• W and M are n × n spatial-weighting matrices (with 0 diagonal elements);

• Wy and Mu are n × 1 vectors typically referred to as spatial lags, and λ and ρ
are the corresponding scalar parameters typically referred to as SAR parameters;

• X is an n × k matrix of observations on k right-hand-side exogenous variables
(where some of the variables may be spatial lags of exogenous variables), and β

is the corresponding k × 1 parameter vector;

• ǫ is an n × 1 vector of innovations.

The model in (1) and (2) is a SARAR with exogenous regressors. Spatial interactions
are modeled through spatial lags. The model allows for spatial interactions in the
dependent variable, the exogenous variables, and the disturbances.2

The spatial-weighting matrices W and M are taken to be known and nonstochastic.
These matrices are part of the model definition, and in many applications, W = M.
Let y = Wy. Then

yi =

n∑

j=1

wijyj

which clearly shows the dependence of yi on neighboring outcomes via the spatial lag
yi. By construction, the spatial lag Wy is an endogenous variable. The weights wij

will typically be modeled as inversely related to some measure of proximity between
the units. The SAR parameter λ measures the extent of these interactions. For further
discussions of spatial-weighting matrices and the parameter space for the SAR parameter,
see, for example, the literature cited in the introduction, including Kelejian and Prucha
(2010); see Drukker et al. (2013) for more information about creating spatial-weighting
matrices in Stata.

The innovations ǫ are assumed to be independent and identically distributed (IID)
or independent but heteroskedastically distributed, where the heteroskedasticity is of
unknown form. The GS2SLS estimator produces consistent estimates in either case
when the heteroskedastic option is specified; see Kelejian and Prucha (1998, 1999,
2010), Arraiz et al. (2010), and Drukker, Egger, and Prucha (2013) for discussions and
formal results. The ML estimator produces consistent estimates in the IID case but
generally not in the heteroskedastic case; see Lee (2004) for some formal results for the
ML estimator, and see Arraiz et al. (2010) for evidence that the ML estimator does not
generally produce consistent estimates in the heteroskedastic case.

2. An extension of the model to a limited-information-systems framework with additional endogenous
right-hand-side variables is considered in Drukker, Prucha, and Raciborski (2013), which discusses
the spivreg command.
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Because the model in (1) and (2) is a first-order SAR model with first-order SAR

disturbances, it is also referred to as a SARAR(1, 1) model, which is a special case of
the more general SARAR(p, q) model. We refer to a SARAR(1, 1) model as a SARAR

model. When ρ = 0, the model in equations (1) and (2) reduces to the SAR model
y = λWy + Xβ + ǫ. When λ = 0, the model in equations (1) and (2) reduces to
y = Xβ +u with u = ρMu+ ǫ, which is sometimes referred to as the SAR error model.
Setting ρ = 0 and λ = 0 causes the model in equations (1) and (2) to reduce to a linear
regression model with exogenous variables.

spreg requires that the spatial-weighting matrices M and W be provided in the form
of an spmat object as described in Drukker et al. (2013). spreg gs2sls supports both
general and banded spatial-weighting matrices; spreg ml supports general matrices
only.

3 The spreg command

3.1 Syntax

spreg ml depvar
[
indepvars

] [
if
] [

in
]
, id(varname)

[
noconstant level(#)

dlmat(objname
[
, eig

]
) elmat(objname

[
, eig

]
) constraints(constraints)

gridsearch(#) maximize options
]

spreg gs2sls depvar
[
indepvars

] [
if
] [

in
]
, id(varname)

[
noconstant

level(#) dlmat(objname) elmat(objname) heteroskedastic impower(q)

maximize options
]

3.2 Options for spreg ml

id(varname) specifies a numeric variable that contains a unique identifier for each
observation. id() is required.

noconstant suppresses the constant term in the model.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.

dlmat(objname
[
, eig

]
) specifies an spmat object that contains the spatial-weighting

matrix W to be used in the SAR term. eig forces the calculation of the eigenvalues
of W, even if objname already contains them.

elmat(objname
[
, eig

]
) specifies an spmat object that contains the spatial-weighting

matrix M to be used in the spatial-error term. eig forces the calculation of the
eigenvalues of M, even if objname already contains them.

constraints(constraints); see [R] estimation options.
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gridsearch(#) specifies the fineness of the grid used in searching for the initial values
of the parameters λ and ρ in the concentrated log likelihood. The allowed range is
[.001, .1]. The default is gridsearch(.1).

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log,

trace, gradient, showstep, hessian, showtolerance, tolerance(#),
ltolerance(#), nrtolerance(#), nonrtolerance, and from(init specs); see
[R] maximize. These options are seldom used. from() takes precedence over
gridsearch().

Options for spreg gs2sls

id(varname) specifies a numeric variable that contains a unique identifier for each
observation. id() is required.

noconstant suppresses the constant term.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.

dlmat(objname) specifies an spmat object that contains the spatial-weighting matrix
W to be used in the SAR term.

elmat(objname) specifies an spmat object that contains the spatial-weighting matrix
M to be used in the spatial-error term.

heteroskedastic specifies that spreg use an estimator that allows the errors to be
heteroskedastically distributed over the observations. By default, spreg uses an
estimator that assumes homoskedasticity.

impower(q) specifies how many powers of W to include in calculating the instrument
matrix H. The default is impower(2). The allowed values of q are integers in the
set 2, 3, . . . , ⌊√n⌋, where n is the number of observations.

maximize options: iterate(#),
[
no
]
log, trace, gradient, showstep,

showtolerance, tolerance(#), and ltolerance(#); see [R] maximize.
from(init specs) is also allowed, but because ρ is the only parameter in this opti-
mization problem, only initial values for ρ may be specified.

3.3 Saved results

spreg ml saves the following in e():

Scalars
e(N) number of observations e(p) significance
e(k) number of parameters e(rank) rank of e(V)
e(df m) model degrees of freedom e(converged) 1 if converged, 0 otherwise
e(ll) log likelihood e(iterations) number of ML iterations
e(chi2) χ2
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Macros
e(cmd) spreg e(user) name of likelihood-evaluator
e(cmdline) command as typed program
e(depvar) name of dependent variable e(estimator) ml
e(indeps) names of independent variables e(model) lr, sar, sare, or sarar
e(title) title in estimation output e(constant) noconstant or hasconstant

e(chi2type) type of model χ2 test e(idvar) name of ID variable
e(vce) oim e(dlmat) name of spmat object used in
e(technique) maximization technique dlmat()
e(crittype) type of optimization e(elmat) name of spmat object used in
e(estat cmd) program used to implement elmat()

estat e(properties) b V
e(predict) program used to implement

predict

Matrices
e(b) coefficient vector e(gradient) gradient vector
e(Cns) constraints matrix e(V) variance–covariance matrix of
e(ilog) iteration log the estimators

Functions
e(sample) marks estimation sample

spreg gs2sls saves the following in e():

Scalars
e(N) number of observations e(converged) 1 if generalized method
e(k) number of parameters of moments
e(rho 2sls) initial estimate of ρ converged, 0
e(iterations) number of generalized otherwise

method of moments e(converged 2sls)1 if two-stage least-
iterations squares converged,

e(iterations 2sls) number of two-stage 0 otherwise
least-squares iterations

Macros
e(cmd) spreg e(idvar) name of ID variable
e(cmdline) command as typed e(dlmat) name of spmat object
e(estimator) gs2sls used in dlmat()
e(model) lr, sar, sare, or sarar e(elmat) name of spmat object
e(het) homoskedastic or used in elmat()

heteroskedastic e(estat cmd) program used to
e(depvar) name of dependent variable implement estat
e(indeps) names of independent variables e(predict) program used to
e(title) title in estimation output implement predict
e(exogr) exogenous regressors e(properties) b V
e(constant) noconstant or hasconstant
e(H omitted) names of omitted instruments

in H matrix

Matrices
e(b) coefficient vector e(delta 2sls) initial estimate of β
e(V) variance–covariance matrix and λ

of the estimators

Functions
e(sample) marks estimation sample
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4 Example

In our examples, we use spreg.dta, which contains simulated data on the number of
arrests for driving under the influence for the continental U.S. counties.3 We use a
normalized contiguity matrix taken from Drukker et al. (2013). In Stata, we type

. use dui

. spmat use ccounty using ccounty.spmat

to read the dataset into memory and to put the spatial-weighting matrix into the
spmat object ccounty. This row-normalized spatial-weighting matrix was created in
Drukker et al. (2013, sec. 2.4) and saved to disk in Drukker et al. (2013, sec. 11.4).

Our dependent variable, dui, is defined as the alcohol-related arrest rate per 100,000
daily vehicle miles traveled (DVMT). Figure 1 shows the distribution of dui across
counties, with darker colors representing higher values of the dependent variable. Spatial
patterns of dui are clearly visible.

Figure 1. Hypothetical alcohol-related arrests for continental U.S. counties

3. The geographical location data came from the U.S. Census Bureau and can be found at
ftp://ftp2.census.gov/geo/tiger/TIGER2008/. The variables are simulated but inspired by
Powers and Wilson (2004).
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Our explanatory variables include police (number of sworn officers per 100,000
DVMT); nondui (nonalcohol-related arrests per 100,000 DVMT); vehicles (number of
registered vehicles per 1,000 residents); and dry (a dummy for counties that prohibit
alcohol sale within their borders). In other words, in this illustration,
X = [police,nondui,vehicles,dry,intercept].

We obtain the GS2SLS parameter estimates of the SARAR model parameters by typing

. spreg gs2sls dui police nondui vehicles dry, id(id)
> dlmat(ccounty) elmat(ccounty) nolog

Spatial autoregressive model Number of obs = 3109
(GS2SLS estimates)

dui Coef. Std. Err. z P>|z| [95% Conf. Interval]

dui
police -.5591567 .0148772 -37.58 0.000 -.5883155 -.529998
nondui -.0001128 .0005645 -0.20 0.842 -.0012193 .0009936

vehicles .062474 .0006198 100.79 0.000 .0612592 .0636889
dry .303046 .0183119 16.55 0.000 .2671553 .3389368

_cons 2.482489 .1473288 16.85 0.000 2.19373 2.771249

lambda
_cons .4672164 .0051261 91.14 0.000 .4571694 .4772633

rho
_cons .1932962 .0726583 2.66 0.008 .0508885 .3357038

Given the normalization of the spatial-weighting matrix, the parameter space for
λ and ρ is taken to be the interval (−1, 1); see Kelejian and Prucha (2010) for further
discussions of the parameter space. The estimated λ is positive and significant, indicat-
ing moderate SAR dependence in dui. In other words, the dui alcohol-arrest rate for
a given county is affected by the dui alcohol-arrest rates of the neighboring counties.
This result may be because of coordination among police departments or because strong
enforcement in one county leads some people to drink in neighboring counties.

The estimated ρ coefficient is positive, moderate, and significant, indicating mod-
erate SAR dependence in the error term. In other words, an exogenous shock to one
county will cause moderate changes in the alcohol-related arrest rate in the neighboring
counties.

The estimated β vector does not have the same interpretation as in a simple linear
model, because including a spatial lag of the dependent variable implies that the out-
comes are determined simultaneously. We present one way to interpret the coefficients
in section 5.
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For comparison, we obtain the ML parameter estimates by typing

. spreg ml dui police nondui vehicles dry, id(id)
> dlmat(ccounty) elmat(ccounty) nolog

Spatial autoregressive model Number of obs = 3109
(Maximum likelihood estimates) Wald chi2(4) = 62376.4

Prob > chi2 = 0.0000

dui Coef. Std. Err. z P>|z| [95% Conf. Interval]

dui
police -.5593526 .014864 -37.63 0.000 -.5884854 -.5302197
nondui -.0001214 .0005645 -0.22 0.830 -.0012279 .0009851

vehicles .0624729 .0006195 100.84 0.000 .0612586 .0636872
dry .3030522 .018311 16.55 0.000 .2671633 .3389412

_cons 2.490301 .1471885 16.92 0.000 2.201817 2.778785

lambda
_cons .4671198 .0051144 91.33 0.000 .4570957 .4771439

rho
_cons .1962348 .0711659 2.76 0.006 .0567522 .3357174

sigma2
_cons .0859662 .0021815 39.41 0.000 .0816905 .0902418

There are no apparent differences between the two sets of parameter estimates.

5 Postestimation commands

The postestimation commands supported by spreg include estat, test, and predict;
see help spreg postestimation for the full list. Most postestimation methods have
standard interpretations; for example, a Wald test is just a Wald test.

Predictions from SARAR models require some additional explanation. Kelejian and
Prucha (2007) consider different information sets and define predictors as conditional
means based on these information sets. They also derive the mean squared errors of
these predictors, provide some efficiency rankings based on these mean squared errors,
and provide Monte Carlo evidence that the additional efficiencies obtained by using
more information can be practically important.

One of the predictors that Kelejian and Prucha (2007) consider is based on the infor-
mation set {X,W,M,wiy}, where wi denotes the ith row of W, which will be referred
to as the limited-information predictor.4 We denote the limited-information predictor
by limited in the syntax diagram below. Another estimator that Kelejian and Prucha
(2007) consider is based on the information set {X,W,M}, which yields the reduced-
form predictor. This predictor is denoted by rform in the syntax diagram below.

4. Kelejian and Prucha (2007) also consider a full-information predictor. We have postponed imple-
menting this predictor because it is computationally more demanding; we plan to implement it in
future work.
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Kelejian and Prucha (2007) show that their limited-information predictor can be much
more efficient than the reduced-form predictor.

In addition to the limited-information predictor and the reduced-form predictor,
predict can compute two other observation-level quantities, which are not recom-
mended as predictors but may be used in subsequent computations. These quantities
are denoted by naive and xb in the syntax diagram below.

While prediction is frequently of interest in applied statistical work, predictions
can also be used to compute marginal effects.5 A change to one observation in one
exogenous variable potentially changes the predicted values for all the observations of
the dependent variable because the n observations for the dependent variable form a
system of simultaneous equations in a SARAR model. Below we use predict to calculate
predictions that we in turn use to calculate marginal effects.

Various methods have been proposed to interpret the parameters of SAR models: see,
for example, Anselin (2003); Abreu, De Groot, and Florax (2004); Kelejian and Prucha
(2007); and LeSage and Pace (2009).

5.1 Syntax

Before using predict, we discuss its syntax.

predict
[
type

]
newvar

[
if
] [

in
] [

, rform | limited | naive | xb
rftransform(matname)

]

5.2 Options

rform, the default, calculates the reduced-form predictions.

limited calculates the Kelejian and Prucha (2007) limited-information predictor. This
predictor is more efficient than the reduced-form predictor, but we call it limited

because it is not as efficient as the Kelejian and Prucha (2007) full-information pre-
dictor, which we plan to implement in the future.

naive calculates λ̂wiy + xiβ̂ for each observation.

xb calculates the linear prediction Xβ̂.

5. We refer to the effects of both infinitesimal changes in a continuous variable and discrete changes
in a discrete variable as marginal effects. While some authors refer to “partial” effects to cover the
continuous and discrete cases, we avoid the term “partial” because it means something else in a
simultaneous-equations framework.
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rftransform(matname) is a seldom-used option that specifies a matrix to use in com-
puting the reduced-form predictions. This option is only useful when computing
reduced-form predictions in a loop, when the option removes the need to recom-
pute the inverse of a large matrix. See section 5.3 for an example that uses this
option, and see section 6.3 for the details. rftransform() may only be specified
with statistic rform.

5.3 Example

In this section, we discuss two marginal effects that measure how changes in the ex-
ogenous variables affect the endogenous variable. These measures use the reduced-form
predictor ŷ = E(y|X,W,M) = (I − λW)

−1
Xβ, which we discuss in section 6.3, where

it is denoted as ŷ(1). The expression for the predictor shows that a change in a single
observation on an exogenous variable will typically affect the values of the endogenous
variable for all n units because the SARAR model forms a system of simultaneous equa-
tions.

Without loss of generality, we explore the effects of changes in the kth exogenous
variable. Letting xk = (x1k, . . . , xnk)′ denote the vector of observations on the kth
exogenous variable allows us to denote the dependence of ŷ on xk by using the notation

ŷ(xk) = {ŷ1(xk), . . . , ŷn(xk)}

The first marginal effect we consider is

∂ŷ(xk + δi)

∂δ
=

∂ŷ(x1k, . . . , xi−1,k, xik + δ, xi+1,k, . . . , xnk)

∂δ
=

∂ŷ(xk)

∂xik

where i = [0, . . . , 0, 1, 0, . . . , 0]′ is the ith column of the identity matrix. In terminology
consistent with that of LeSage and Pace (2009, 36–37), we refer to the above effect as
the total direct impact of a change in the ith unit of xk. LeSage and Pace (2009, 36–37)
define the corresponding summary measure

n−1
n∑

i=1

∂ŷi(xk + δi)

∂δ
= n−1

n∑

i=1

∂ŷi(x1k, . . . , xi−1,k, xik + δ, xi+1,k, . . . , xnk)

∂δ

= n−1
n∑

i=1

∂ŷi(xk)

∂xik
(3)

which they call the average total direct impact (ATDI). The ATDI is the average over
i = {1, . . . , n} of the changes in the ŷi attributable to the changes in the corresponding
xik. The ATDI can be calculated by computing ŷ(xk), ŷ(xk + δi), and the average of
the difference of these vectors of predicted values, where δ is the magnitude by which
xik is changed. The ATDI measures the average change in ŷi attributable to sequentially
changing xik for a given k.
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Sequentially changing xik for each i = {1, . . . , n} differs from simultaneously chang-
ing the xik for all n units. The second marginal effect we consider measures the effect
of simultaneously changing x1k, . . . , xnk on a specific ŷi and is defined by

∂ŷi(xk + δe)

∂δ
=

∂ŷi(x1k + δ, . . . , xik + δ, . . . , xnk + δ)

∂δ
=

n∑

r=1

∂ŷi(xk)

∂xrk

where e = [1, . . . , 1]′ is a vector of 1s. LeSage and Pace (2009, 36–37) define the corre-
sponding summary measure

n−1
n∑

i=1

∂ŷi(xk + δe)

∂δ
= n−1

n∑

i=1

∂ŷi(x1k + δ, . . . , xik + δ, . . . , xnk + δ)

∂δ

= n−1
n∑

i=1

n∑

r=1

∂ŷi(xk)

∂xrk
(4)

which they call the average total impact (ATI). The ATI can be calculated by computing
ŷ(xk), ŷ(xk +δe), and the average difference in these vectors of predicted values, where
δ is the magnitude by which x1k, . . . , xnk is changed.

We now continue our example from section 4 and use the reduced-form predictor to
compute the marginal effects of adding one officer per 100,000 DVMT in Elko County,
Nevada. We begin by using the reduced-form predictor and the observed values of the
exogenous variables to obtain predicted values for dui:

. predict y0
(option rform assumed)

Next we increase police by 1 in Elko County, Nevada, and calculate the reduced-form
predictions:

. generate police_orig = police

. quietly replace police = police_orig + 1 if st==32 & NAME00=="Elko"

. predict y1
(option rform assumed)

Now we compute the difference between these two predictions:

. generate deltay = y1-y0

The output below lists the predicted difference and the level of dui for Elko County,
Nevada:

. list deltay dui if (st==32 & NAME00=="Elko")

deltay dui

1891. -.5654716 19.777429

The predicted effect of the change would be a 2.9% reduction in dui in Elko County,
Nevada.
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Below we use four commands to summarize the changes and levels in the contiguous
counties:

. spmat getmatrix ccounty W

. generate double elko_neighbor = .
(3109 missing values generated)

. mata: st_store(.,"elko_neighbor",W[1891,.]´)

. summarize deltay dui if elko_neighbor>0

Variable Obs Mean Std. Dev. Min Max

deltay 9 -.0203756 .0000364 -.0204239 -.020298
dui 9 21.29122 1.6468 19.2773 23.49109

In the first command, we use spmat getmatrix to store a copy of the normalized-
contiguity spatial-weighting matrix in Mata memory; see Drukker et al. (2013, sec. 14)
for a discussion of spmat getmatrix. In the second and third commands, we generate
and fill in a new variable for which the ith observation is 1 if it contains information on a
county that is contiguous with Elko County and is 0 otherwise. In the fourth command,
we summarize the predicted changes and the levels in the contiguous counties. The
mean predicted reduction is less than 0.1% of the mean level of dui in the contiguous
counties.

In the output below, we get a summary of the levels of dui and a detailed summary
of the predicted changes for all the counties in the sample.

. summarize dui

Variable Obs Mean Std. Dev. Min Max

dui 3109 20.84307 1.457163 15.01375 26.61978

. summarize deltay, detail

deltay

Percentiles Smallest
1% -.0007572 -.5654716
5% 0 -.0204239

10% 0 -.0203991 Obs 3109
25% 0 -.0203991 Sum of Wgt. 3109

50% 0 Mean -.0002495
Largest Std. Dev. .0101996

75% 0 0
90% 0 0 Variance .000104
95% 0 0 Skewness -54.78661
99% 0 0 Kurtosis 3035.363

Less than 1% of the sample had any socially significant difference, with no change at
all predicted for at least 95% of the sample.
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In some of the computations below, we will use the matrix S = (In − λ̂W)−1, where

λ̂ is the estimate of the SAR parameter and W is the spatial-weighting matrix. In the
output below, we use the W stored in Mata memory in an example above to compute
S.

. spmat getmatrix ccounty W

. mata:
mata (type end to exit)

: b = st_matrix("e(b)")

: lam = b[1,6]

: S = luinv(I(rows(W))-lam*W)

: (b[1,1]/rows(W))*sum(S)
-.6993674779

: end

We next compute the ATDI defined in (3). The output below shows an instructive
(but slow) method to compute the ATDI. For each county in the data, we set police to
be the original value for all the observations except the ith, which we set to police + 1.
Then we compute the predicted value of dui for observation i and store this prediction in
the ith observation of y1. (We use the rftransform() option to use the inverse matrix
S computed above. Without this option, we would recompute the inverse matrix for
each of the 3,109 observations, which would cause the calculation to take hours.) After
computing the predicted values of y1 for each observation, we compute the differences
in the predictions and compute the sample average.

. drop y1 deltay

. generate y1 = .
(3109 missing values generated)

. local N = _N

. forvalues i = 1/`N´ {
2. quietly capture drop tmp
3. quietly replace police = police_orig
4. quietly replace police = police_orig + 1 in `i´
5. quietly predict tmp in `i´, rftransform(S)
6. quietly replace y1 = tmp in `i´
7. }

. generate deltay = y1-y0

. summarize deltay

Variable Obs Mean Std. Dev. Min Max

deltay 3109 -.5633844 .0009144 -.5690784 -.5599785

. summarize dui

Variable Obs Mean Std. Dev. Min Max

dui 3109 20.84307 1.457163 15.01375 26.61978

The absolute value of the estimated ATDI is −0.56, so the estimated effect is 2.7%
of the sample mean of dui.
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As mentioned, the above method for computing the estimate of the ATDI is slow.
LeSage and Pace (2009, 36–37) show that the estimate of the ATDI can also be computed
as

βk

n
trace(S)

where βk is the kth component of β and S = (In − λW)−1, which we computed above.
Below we use this formula to compute the ATDI,

. mata: (b[1,1]/rows(W))*trace(S)
-.5633844076

and note that the result is the same as above.

Now we estimate the ATI, which simultaneously adds one more police officer per
100,000 residents to each county. In the output below, we add 1 to police in each
observation and then calculate the differences in the predictions. We then calculate the
ATI defined in (4) by computing the sample average.

. drop y1 deltay

. quietly replace police = police_orig + 1

. predict y1
(option rform assumed)

. generate deltay = y1-y0

. summarize deltay

Variable Obs Mean Std. Dev. Min Max

deltay 3109 -.6993675 .0309541 -.8945923 -.5801525

. summarize dui

Variable Obs Mean Std. Dev. Min Max

dui 3109 20.84307 1.457163 15.01375 26.61978

The absolute value of the estimated average total effect is about 3.4% of the sample
mean of dui.

LeSage and Pace (2009, 36–37) show that the ATI is given by

βk

n

n∑

i=1

n∑

j=1

Si,j

where βk is the kth component of β and Sij is the (i, j)th element of S = (In−λW)−1.
In the output below, we use the spmat getmatrix command discussed in Drukker et al.
(2013) and a few Mata computations to show that the above expression yields the same
value for the ATI as our calculations above.
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. spmat getmatrix ccounty W

. mata:
mata (type end to exit)

: b = st_matrix("e(b)")

: lam = b[1,6]

: S = luinv(I(rows(W))-lam*W)

: (b[1,1]/rows(W))*sum(S)
-.6993674779

: end

In general, it is not possible to say whether the ATDI is greater than or less than the
ATI. Using the expressions from LeSage and Pace (2009, 36–37), we see that

ATI − ATDI =
βk

n

n∑

i=1

n∑

j=1

Si,j −
βk

n

n∑

i=1

Si,i =
βk

n

n∑

i=1

n∑

j=1
j 6=i

Si,j

which depends on the sum of the off-diagonal elements of S as well as on βk.

In the case at hand, one would expect the ATDI to be smaller than the ATI because the
ATDI, unlike the ATI, does not incorporate the reinforcing effects of having all counties
implement the change simultaneously.

6 Methods and formulas

6.1 ML estimator

Recall that the SARAR model under consideration is given by

y = λWy + Xβ + u (5)

u = ρMu + ǫ (6)

In the following, we give the log-likelihood function under the assumption that ǫ ∼
N(0, σ2I). As usual, we refer to the maximizer of the likelihood function when the
innovations are not normally distributed as the quasi-maximum likelihood (QML) esti-
mator. Lee (2004) gives results concerning the consistency and asymptotic normality of
the QML estimator when ǫ is IID but not necessarily normally distributed. Violations
of the assumption that the innovations ǫ are IID can cause the QML estimator to pro-
duce inconsistent results. In particular, this may be the case if the innovations ǫ are
heteroskedastic, as discussed by Arraiz et al. (2010).

Likelihood function

The reduced form of the model in (5) and (6) is given by

y = (I − λW)−1Xβ + (I − λW)−1(I − ρM)−1ǫ
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The unconcentrated log-likelihood function is

lnL(y|β, σ2, λ, ρ) = −n

2
ln(2π) − n

2
ln(σ2) + ln ||I − λW|| + ln ||I − ρM||

− 1

2σ2
{(I − λW)y − Xβ}T

(I − ρM)T (I − ρM) {(I − λW)y − Xβ} (7)

We can concentrate the log-likelihood function by first maximizing (7) with respect to
β and σ2, yielding the maximizers

β̂(λ, ρ) =
{
XT (I − ρM)T (I − ρM)X

}−1
XT (I − ρM)T (I − ρM)(I − λW)y

σ̂2(λ, ρ) = (1/n)
{

(I − λW)y − Xβ̂(λ, ρ)
}T

(I − ρM)T (I − ρM)
{

(I − λW)y − Xβ̂(λ, ρ)
}

Substitution of the above expressions into (7) yields the concentrated log-likelihood
function

Lc(y|λ, ρ) = −n

2
{ln(2π) + 1} − n

2
ln(σ̂2(λ, ρ)) + ln ||I − λW|| + ln ||I − ρM||

The QML estimates for the autoregressive parameters λ̂ and ρ̂ can now be computed by
maximizing the concentrated log-likelihood function. Once we have obtained the QML

estimates λ̂ and ρ̂, we can calculate the QML estimates for β and σ2 as β̂ = β̂(λ̂, ρ̂) and

σ̂2 = σ̂2(λ̂, ρ̂).

Initial values

As noted in Anselin (1988, 186), poor initial starting values for ρ and λ in the concen-
trated likelihood may result in the optimization algorithm settling on a local, rather
than the global, maximum.

To prevent this problem from happening, spreg ml performs a grid search to find
suitable initial values for ρ and λ. To override the grid search, you may specify your
own initial values in the option from().

6.2 GS2SLS estimator

For discussions of the generalized method of moments and instrumental-variable estima-
tion approach underlying the GS2SLS estimator, see Arraiz et al. (2010) and Drukker,
Egger, and Prucha (2013). The articles build on Kelejian and Prucha (1998, 1999,
2010) and the references cited therein. For a detailed description of the formulas, see
also Drukker, Prucha, and Raciborski (2013).

The GS2SLS estimator requires instruments. Kelejian and Prucha (1998, 1999) sug-
gest using as instruments H the linearly independent columns of

X,WX, . . . ,WqX,MX,MWX, . . . ,MWqX
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where q = 2 has worked well in Monte Carlo simulations over a wide range of reasonable
specifications. The choice of those instruments provides a computationally convenient
approximation of the ideal instruments; see Lee (2003) and Kelejian, Prucha, and Yuze-
fovich (2004) for further discussions and refined estimators. At a minimum, the instru-
ments should include the linearly independent columns of X and MX. When there is a
constant in the model and thus X contains a constant term, the constant term is only
included once in H.

6.3 Spatial predictors

The spreg command provides for several unbiased predictors corresponding to different
information sets, namely, {X,W,M} and {X,W,M,wiy}, where wi denotes the ith
row of W; for a more detailed discussion and derivations, see Kelejian and Prucha
(2007). Also in the following, xi denotes the ith row of X and ui denotes the ith
element of u.

The unbiased predictor corresponding to information set {X,W,M} is given by

ŷ(1) = (I − λW)−1Xβ

and is called the reduced-form predictor. If λ = 0, then ŷ(1) = Xβ. This predictor can
be calculated by specifying statistic rform to predict after spreg.

When specified, the rftransform() option specifies the name of a matrix in Mata
memory that contains (I − λW)−1. The rftransform() option specifies a matrix that
transforms the model to its reduced form. This option is useful when computing many
sets of reduced-form predictions from the same (I − λW)−1 because it alleviates the
need to recompute the inverse matrix.

Assuming that the innovations ǫ are distributed N(0, σ2I), the unbiased predictor
corresponding to information set {X,W,M,wiy} is given by

ŷ
(2)
i = λwiy + xiβ +

cov(ui,wiy)

var(wiy)
{wiy − E(wiy)}

where

Σu = (I − ρM)−1(I − ρMT )−1

Σy = (I − λW)−1Σu(I − λWT )−1

E(wiy) = wi(I − λW)−1Xβ

var(wiy) = σ2wiΣ
yw′

i

cov(ui,wiy) = σ2σu
i (I − λWT )−1w′

i

σu
i is the i th row of Σu

We call this unbiased predictor the limited-information predictor because Kelejian and
Prucha (2007) consider a more efficient predictor, the full-information predictor. The
former can be calculated by specifying statistic limited to predict after spreg.
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A further predictor considered in the literature is

ŷi = λwiy + xiβ

However, as pointed out in Kelejian and Prucha (2007), this estimator is generally bi-
ased. While this biased predictor should not be used for predictions, it has uses as
an intermediate computation, and it can be calculated by specifying statistic naive to
predict after spreg.

The above predictors are computed by replacing the parameters in the prediction
formula with their estimates.

7 Conclusion

After reviewing some basic concepts related to SARAR models, we presented the spreg

ml and spreg gs2sls commands, which implement ML and GS2SLS estimators for the
parameters of these models. We also discussed postestimation prediction. In future
work, we would like to investigate further methods and commands for parameter inter-
pretation.
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