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Abstract 

 An emerging body of research about climate change impacts is exploring temperature 

effects on human activities. However, most studies use simple identification strategies that only 

explore one or two attributes relating to temperature or to its abnormalities. These simple strategies 

limit the understanding of temperature effects, and there is debate about the effectiveness of simple 

identification strategies. To better understand complex temperature effects on human activities, 

this study uses residential energy consumption as an example and develops identification strategies 

to capture the temperature effects resulting from temporal patterns (temperature fluctuation), 

abnormality (temperature departure from normal), and the interdependence among these attributes. 

  For comparison, we use the same data set and model specification as in Deschênes and 

Greenstone (2011) except for specifications to capture complex temperature effects. We construct 

variables to capture additional temperature attributes and create the interaction terms among these 

attributes and temperature levels. Our findings verify the existence of complex temperature effects 

on energy consumption, and our paper may provoke the discussion of different strategies to better 

capture climate impacts on human activities. 

 

JEL: Q41, Q54 
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1. Introduction 

 A rapidly emerging body of research about climate change impacts explores temperature 

effects on human activities, as temperature, especially abnormal temperature, is well-recognized 

as a key attribute of climate change. Temperature has been found to have effects in diverse areas 

of human societies, from those with direct or obvious connections, such as public opinions toward 

climate change (Egan and Mullin, 2012), beverage consumption (Uri, 1986), human health 

(Deschênes et al., 2009, Deschênes and Greenstone, 2011) or energy consumption (Deschênes and 

Greenstone, 2011), but also some effects with less intuitive connections, such as civil war (Burke 

et al., 2009) or stock market returns (Cao and Wei, 2005, Kamstra et al., 2003).  

 However, in some areas, whether temperature has an effect on the dependent variable of 

interest is still a matter of debate. For instance, Jacobsen and Marquering (2008, 2009) argue that 

the strategies used in Kamstra et al. (2003) or Cao and Wei (2005) may misidentify temperature 

effects on stock market returns. Buhaug (2010) also suggests that temperature has no significant 

effect on civil wars. In the analyses of temperature effects on public opinions, while Brooks et al. 

(2014), Hamilton and Stampone (2013), Egan and Mullin (2012), and Scruggs and Benegal (2012) 

suggest more supportive attitudes when the respondents experience hotter temperature, Brulle et 

al. (2012),  Zaval et al. (2014), and Marquart-Pyatt et al. (2014) find that variables of temperature  

are not significant in their regression results.  

 As suggested by Jacobsen and Marquering (2008, 2009), Buhaug (2010), and Lee (2015), 

such divergent results may come from the identification strategies used to capture weather effects. 

Jacobsen and Marquering (2008) make an argument that a simple temperature variable used in the 

analysis cannot distinguish between weather and seasonal effects due to other factors such as a 

spike consumption near Christmas. While  Buhaug (2010) finds no empirical evidence to support 
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the effect of temperature on civil wars, he also mentions that it could be because the yearly 

measurement of temperature at large scale (country level) eliminates local variations. While Lee 

et al. (2016) demonstrate a negative effect of warmer temperature on public support toward climate 

change adaptation policies, Lee (2015) shows that such phenomena cannot be explained by the 

popularly used identification strategies and the analyses require further refinements in the 

empirical model. 

 Most studies of temperature effects include variables of temperature measurements such 

as degrees (Fahrenheit or Celsius), cooling / heating degree day, days within temperature bins, etc. 

A few studies, mostly discussing public opinion, further adopt measurements of temperature 

abnormality, such as temperature deviation from normal level, to explore the effects of climate 

change. These simpler identification strategies can only explore one or two attributes relating to 

temperature or to its abnormalities. Such simpler strategies, however, limit the understanding of 

temperature effects. Lee (2015) found a negative effect of warmer temperature during the second 

half of a warm spell, a period in which the mean temperature was hotter, is explained by 

temperature deviation from normal level, short term temperature variation, and the 

interdependence among the abnormalities. Solely using one of the popular but simple strategies 

leads to the same conclusion generally found in the existing literature (Lee, 2015), but such 

findings lose more subtle information meaningful to both scholars and policy makers. 

 In this article, we explore whether unconventional identification strategies may help 

explain complex temperature effects in topics other than public opinion. Simple empirical 

strategies associated with temperature levels, such as Fahrenheit / Celsius, cooling / heating degree 

day, or temperature bins, are still commonly used in studies focusing on phenomena other than 

public opinion. To capture the effects due to temperature attributes other than temperature levels, 
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we consider empirical strategies inspired from Lee (2015) to test if other temperature attributes 

also explain the outcomes of interest.    

 This study uses residential energy consumption to develop example identification 

strategies capturing temperature effects resulting from temporal patterns (short term temperature 

fluctuation), abnormality (temperature departure from normal), and the interdependence among 

these attributes. We use residential energy consumption for the example outcome of interest for 

two reasons. First, residential energy consumption is likely also associated with other temperature 

attributes such as short term temperature change (fluctuation), since human thermal sensation is 

not linear with objective ambient temperature (Li, 2005), and sudden ambient temperature changes 

may lead to larger magnitude of thermal sensation (de Dear et al., 1993, Arens et al., 2006). Second, 

to verify whether these additional attributes help to explain the outcome of interest, further analysis 

of a published study can avoid improvements due to different measurements, syntaxes, etc. Among 

the published studies, we found Deschênes and Greenstone’s (2011) work (hereafter, D&G) fits 

the purpose of our analysis. 

 We adopt D&G’s data set and empirical work about residential energy consumption as the 

baseline for comparison and discuss if the strategies capturing other features of temperature can 

help explain the outcome of interest. Our findings suggest the existence of complex temperature 

effects on energy consumption, and our paper may provoke the discussion of different strategies 

to better capture climate impacts on human activities. While most areas discussing temperature 

effects, mostly use simpler strategies, our findings suggest the need to further develop 

identification strategies for better capturing the temperature effects.  

 

2. Identification Strategies in the Energy Consumption Literature 
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For decades, identification strategies used in energy consumption studies relied on 

variables measuring temperature per se (degree Fahrenheit / Celsius), temperature deviation from 

comfort level (cooling / heating degree days, hereafter, CHDD), or a simple transformation of 

these measurements. The use of these two main measurements is because of intuitive and 

observable phenomena: humans prefer a specific level of temperature and air conditioning is 

turned on when ambient temperature deviates from this level. Thus, CHDD is measured with a 

chosen set point, such as 65o F, and represents the deviation from preferred temperature.    

Quayle and Diaz (1980), in one of the earliest studies, used heating degree days to analyze 

the temperature effect on residential electricity consumption. Similarly, Eskeland and Mideksa 

(2010) include CHDD variables in their empirical model to estimate electricity demand in 

European countries. Savić et al. (2014) also use CHDD to capture the influence of air temperature. 

Based on the purposes of analysis, there are other measurements similar to the CHDD used in 

aforementioned empirical studies. To capture the sensitivity of temperature variation on energy 

consumption, Kaufmann et al. (2013) measure cooling / heating degree by hour, and Fikru and 

Gautier (2015) measure cooling / heating degree by minute. Kaufmann et al. (2013) also find that 

cooling / heating degree calculated by set points other than 65o F may better explain energy 

consumption. Instead of regular CHDD, Considine (2000) calculates the deviation of CHDD from 

30-year-averaged level to identify the influence of abnormal weather on energy consumption in 

the USA. This study finds both warm and cool temperature has statistically significant influences, 

but the coefficients of the former are generally larger than the latter.  

However, using CHDD may not be an ideal strategy to capture temperature effects on 

energy consumption. The calculation of CHDD is criticized for the arbitrary choice of set point 

(Mansur et al., 2008). Although it is found that that the Americans, on average, favor 65o F (Albouy 
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et al., 2013), other studies suggest the preference can depend on socio-economic factors and scatter 

across a certain range (Wang et al., 2015, Kaufmann et al., 2013). In addition, as indicated by 

Mansur et al. (2008), “it is not clear that i degrees for j days is equivalent to j degrees for i days.” 

In fact, while CHDD are calculated by a single set point, using such variables to capture the 

temperature effect on energy consumption implicitly assumes that the use of air conditioning is 

the optimal choice to respond the departure of ambient temperature from one’s preferred 

level.However, within a range of departure, alternative measures to adapt to temperature change 

without energy consumption, such as wearing lighter clothing, could be preferred options. If this 

is the case, the partial derivative of temperature with respect to indirect utility is zero conditional 

on the temperature range.  

The other main empirical strategy to capture temperature effects is using variables that 

represent temperature level or its simple transformation such as temperature bins. Since 

temperature varies across time, the temperature level of a certain window is often represented by 

mean value of temperature. For example, De Cian et al. (2013) use seasonal mean temperature to 

capture the temperature effect on energy demand. However, averaged temperature of a longer time 

period could mask short term variations of temperature during the window and cause the analyses 

to be less accurate (Kaufmann et al., 2013, Lee, 2015, Buhaug, 2010).  

A commonly used alternative measurement is sorting temperature into a set of bins and 

counting the number of days falling into each of the bins. For instance, temperature bins may be 

set by equidistant cutoffs   (e.g., 10o F - 20o F as one bin) or by equal percentile of temperature 

distributions (Auffhammer and Aroonruengsawat, 2011). Then, the number of days with daily 

temperature falling into each bin within the time period of measurement is counted. Say, the 

number is 25 for bin 10o F - 20o F if there are 25 days with daily temperature falling into the bin 
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during the year. Through this strategy, the information about temperature levels is kept even in a 

longer time period of measurement. This strategy also allows the non-linearity of temperature 

effect on the outcome of interest. Deschênes and Greenstone (2011), Auffhammer and 

Aroonruengsawat (2011), and De Cian and Sue Wing (2016) all use this strategy in their energy 

studies. In addition to the above articles, several technical reports studying energy consumption 

use CHDD or days in temperature bins to capture temperature effects (Mideksa and Kallbekken, 

2010).   

Although the strategy of temperature bins avoids some disadvantages that CHDD strategy 

has, it has some drawbacks. While numbers of days are counted, this strategy ignores the dynamic 

and path-dependent nature of temperature variation. For instance, within a year, if there are 25 

days with daily temperature in the bin of 40o F - 50o F, the record is 25, regardless of whether they 

occur consecutively or spread across several months.  Also, the measure is the same irrespective 

of season. Thus, temporal patterns of temperature variations cannot be analyzed though this 

strategy. This strategy, therefore, implicitly assumes human thermal sensation and the consequent 

energy consumption do not depend on short term temperature change. As we discussed above, this 

implicit assumption is not valid if the sensation-temperature stimulus relationship is non-linear.  

In addition, while studies using this temperature bins strategy simply count the days of 

temperature for each bin (e.g., Deschênes and Greenstone, 2011, Auffhammer and 

Aroonruengsawat, 2011, De Cian and Sue Wing, 2016), the abnormality of temperature is not fully 

captured. For the same instance of 25 days with daily temperature in the bin of 40o F - 50o F, in 

northeastern states, such temperature would be abnormal in summer and winter but quite normal 

in spring or fall. To explore the effect of abnormal temperature in the context of climate change, 

Deschênes and Greenstone (2011), for instance, adopt simulation results of future temperature 
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based on the scenario of climate change with rising temperature. This method, however, estimates 

the potential impact of future climate change instead of the impact from the historical changing 

climate (Lee and Loveridge, 2016). The CHDD strategy also suffers from these two disadvantages 

if it is adopted without proper improvement. To our knowledge, in the energy consumption 

literature, we find that only Considine (2000) uses CHDD deviation to capture temperature 

abnormality.  

In short, while both CHDD and temperature bins strategies are commonly found in the 

literature, these two mainstream strategies do not identify the effects resulting from temporal 

patterns or other attributes relating to temperature that may also influence energy consumption. 

The effect of temperature abnormality is also rarely identified in the energy consumption literature. 

Thus, in addition to CHDD and temperature bins, our study will adopt identification strategies for 

short term temperature variation and temperature abnormality to discuss the potential contribution 

of these strategies in the analysis of energy consumption.  

 

3. Method and Data 

To explore potential complex temperature effects and to avoid that improvement of our 

empirical work is due to other causes, such as better data collection, empirical models, or software 

syntaxes, we use D&G’s published work on residential energy consumption as the baseline for 

comparison. We use the same panel data set and model specification as in D&G except for the set 

of temperature variables for capturing complex temperature effects. Many studies do not provide 

necessary details to replicate their empirical work due to length limits of the papers.  D&G’s work 

is an exception, and their data set and Stata modeling codes are accessible on the website of 

American Economic Journal: Applied Economics. We construct different temperature variables 
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that represent the temperature attributes of interest through their temperature data set using Stata 

13 in the Unix system. D&G’s accessible Stata codes also allow us to use exactly the same syntaxes 

for our regressions. Thus, except for the temperature variables, the rest of our empirical model are 

controlled and the same as D&G’s work.  

The empirical model used in D&G for residential energy consumption analysis is the 

following: 

ln(𝐶𝑠𝑡) = ∑ 𝜃𝑗
𝑇𝑀𝐸𝐴𝑁

𝑗

𝑇𝑀𝐸𝐴𝑁𝑠𝑡𝑗 + ∑ 𝛿𝑙
𝑃𝑅𝐸𝐶

𝑙

𝑃𝑅𝐸𝐶𝑠𝑡𝑙 + 𝑿𝑠𝑡𝜷 + 𝛼𝑠 + 𝛾𝑑𝑡 + 휀𝑠𝑡 

In the equation, 𝐶𝑠𝑡  is annual residential energy consumption for year t and state s. 

𝑇𝑀𝐸𝐴𝑁𝑠𝑡𝑗  denotes the number of days with daily temperature in jth temperature bin, state s, and 

year t. 𝑃𝑅𝐸𝐶𝑠𝑡𝑙  is a similar variable for the lth precipitation bin. The vector 𝑿𝑠𝑡  includes 

population, GDP, and their squared terms at the state level. In the model, 𝛼𝑠 captures state fixed 

effects and 𝛾𝑑𝑡 captures census division-by-year fixed effects (Deschênes and Greenstone, 2011). 

D&G also use CHDD as an alternative strategy. In the empirical model using CHDD, variables of 

temperature bins are replaced by variables of cooling and heating degree days. Because the 

temperature bins approach produces a better statistical fit, we refer it as the baseline model for 

comparing to other temperature specifications. 

Based on the above baseline model, we used different specifications for capturing 

temperature effects. While the days within temperature bins captures the distribution of absolute 

temperature level within a year, we construct variables representing alternative temperature 

attributes, such as temperature fluctuation and temperature departure, for capturing the rapid 

change of temperature in a temporal pattern and abnormality of temperature, respectively. We also 

construct the interaction terms between these alternative attributes and days in temperature bins.  
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Thus, there are three types of model specifications. In the first type of model specification, 

we replace the temperature variables used in D&G’s empirical model by each of the temperature 

variables we construct. Since the outcome variable is measured annually, these temperature 

variables are generated from daily data aggregated into yearly level. The construction of 

temperature variables are shown in Table 1. This allows us to compare the conventional strategy 

of using days in temperature bins with other identification strategies.  

In Table 1, we define temperature fluctuation as the temperature change from one day prior. 

Temperature departure, as commonly suggested in the literature, is defined by the difference 

between observed temperature and normal temperature, which is usually represented by a long 

term average value. We define normal temperature asthe mean value of temperature from 1968 to 

2002, which is the period in D&G’s data set. Since this definition of temperature departure does 

not take the normal variation of temperature into consideration (Lee, 2015), we further construct 

a variable of extreme temperature departure by measuring the deviation values above 1.645 

standard deviation so that the variation within a 95% confidence interval is omitted and only the 

extreme values are counted. We also construct two variables to denote the days of extreme hot and 

cold temperature within a year. 

In the second type of model specification, we add each of the variables we construct to the 

baseline model. Instead of replacing the variables of days in temperature bins, adding the variables 

to the baseline model allows us to explore if capturing additional temperature attributes  improves 

the explanatory power of the baseline model. In the third type of model specification, we further 

include interaction terms the empirical model.  Lee’s (2015) public opinion study finds that short 

term temperature variation and temperature abnormality depend on each other as well as on the 
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time period of a warm spell. Thus, through adding interaction terms, we further explore the 

potential complexity of temperature effects on residential energy consumption. 

Table 1 Temperature Variables Measuring Different Attributes 

Specification 

Number 

Identification Strategies 

N/A Baseline specification: days in temperature bins 

∑ 𝜃𝑗
𝑇𝑀𝐸𝐴𝑁

𝑗 𝑇𝑀𝐸𝐴𝑁𝑗 , 𝑗 = 1~10  

Bin_1 < 10o F ≤ Bin_2 < 20o F ≤ …< 80o F ≤ Bin_9 < 90o F ≤ Bin_10 

1 Sum of daily mean temperature  

𝑇_𝑀𝑒𝑎𝑛 = ∑ 𝑇𝑒𝑚𝑝𝑖
365
𝑖=1    

2 Temperature fluctuation  

𝐹𝑙𝑐 = ∑ 𝑇𝑒𝑚𝑝𝑖 − 𝑇𝑒𝑚𝑝𝑖−1
365
𝑖=2    

𝑇𝑒𝑚𝑝𝑖is the daily temperature of day i. 

3 Absolute temperature fluctuation  

𝐹𝑙𝑐_𝐴𝑏𝑠 = ∑ 𝑎𝑏𝑠(𝑇𝑒𝑚𝑝𝑖 − 𝑇𝑒𝑚𝑝𝑖−1
365
𝑖=2 )  

4 Temperature fluctuation: measured by percentage change  

𝐹𝑙𝑐_𝑃𝑐𝑡 = ∑ (𝑇𝑒𝑚𝑝𝑖 − 𝑇𝑒𝑚𝑝𝑖−1
365
𝑖=2 )/𝑎𝑏𝑠(𝑇𝑒𝑚𝑝𝑖−1)  

5 Temperature fluctuation: absolute percentage change  

𝐹𝑙𝑐_𝑃𝑐𝑡_𝐴𝑏𝑠 = ∑ 𝑎𝑏𝑠{(𝑇𝑒𝑚𝑝𝑖 − 𝑇𝑒𝑚𝑝𝑖−1
365
𝑖=2 )/𝑎𝑏𝑠(𝑇𝑒𝑚𝑝𝑖−1)}  

6 Temperature departure  

𝐷𝑒𝑝 = ∑ 𝑇𝑒𝑚𝑝𝑖 − 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇𝑒𝑚𝑝𝑖
365
𝑖=1   

𝑁𝑜𝑟𝑚𝑎𝑙 𝑇𝑒𝑚𝑝𝑖 denotes normal temperature of day I represented by mean value 

of 1968-2002 records of day i. 

7 Absolute temperature departure  

𝐷𝑒𝑝_𝐴𝑏𝑠 = ∑ 𝑎𝑏𝑠(𝑇𝑒𝑚𝑝𝑖 − 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇𝑒𝑚𝑝𝑖)
365
𝑖=1   

8 Extreme temperature departure  

𝐷𝑒𝑝_𝑆𝑡𝑑 = ∑ (𝑇_𝐷𝑒𝑝_𝐻𝑜𝑡𝑖 + 𝑇_𝐷𝑒𝑝_𝐶𝑜𝑙𝑑𝑖
365
𝑖=1 )  
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𝑇_𝐷𝑒𝑝_𝐻𝑜𝑡𝑖 = 𝑎{(𝑇𝑒𝑚𝑝𝑖 − 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇𝑒𝑚𝑝𝑖) −

1.645𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑖  }  

𝑎{. } reports temperature departure above 1.645 standard deviation from normal 

level and 0 if temperature departure smaller than 1.645 standard deviation 

𝑇_𝐷𝑒𝑝_𝐶𝑜𝑙𝑑𝑖 = {(𝑇𝑒𝑚𝑝𝑖 − 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇𝑒𝑚𝑝𝑖) + 1.645𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑖  }  

𝑏{. } reports temperature departure below -1.645 standard deviation from normal 

level and 0 if temperature departure larger than -1.645 standard deviation 

9 Days of extreme temperature (this specification contains two variables)   

𝐷𝑎𝑦_𝐸𝑥𝑡𝑟𝑒𝑚𝑒 = ( 𝑇_𝐷𝑒𝑝_𝐻𝑜𝑡_𝐷𝑎𝑦𝑠
𝑇_𝐷𝑒𝑝_𝐶𝑜𝑙𝑑_𝐷𝑎𝑦𝑠

)  

 

𝑇_𝐷𝑒𝑝_𝐻𝑜𝑡_𝐷𝑎𝑦𝑠 = ∑ 𝑑{(𝑇𝑒𝑚𝑝𝑖 − 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇𝑒𝑚𝑝𝑖) −365
𝑖=1

1.645𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑖}  

𝑑{. } Is a dummy function which returns 1 if temperature departure is larger than 

1.645 standard deviation from normal level  

𝑇_𝐷𝑒𝑝_𝐶𝑜𝑙𝑑_𝐷𝑎𝑦𝑠 = ∑ 𝑑{(𝑇𝑒𝑚𝑝𝑖 − 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇𝑒𝑚𝑝𝑖) +365
𝑖=1

1.645𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑖}  

𝑑{. } Is a dummy function which returns 1 if temperature departure is less than -

1.645 standard deviation from normal level 

 

4. Baseline Results from Deschênes and Greenstone (2011) 

 We consider results reported in D&G’s Table 4, Panel A, as the baseline for comparison. 

Their results show that all the coefficients for temperature bins and CHDD are positive. These 

estimates are significant at the 5% level, except for the bin of 60o – 70o F and the bin of 70o – 80o 

F.1 The estimates of temperature bins suggest a U-shaped temperature effect while, in the range of 

50o – 80o F, there seems no influence on residential energy consumption as the coefficients are not 

                                                 
1 In their model, bin of 50o – 60o F is set as the base (Deschênes and Greenstone, 2011). 
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significant. This result also implies that CHDD might lead to certain bias for capturing temperature 

effects, since CHDD suggests that minor deviation from the set point temperature has the influence. 

 For comparison, we report the relative qualities of the two baseline models from D&G in 

Table 2, as these are not shown in their article. Given these measures, the model using temperature 

bins explains residential energy consumption better than the model using CHDD. Three measures, 

adjusted R2, Akaike information criterion (AIC) and Bayesian information criterion (BIC) are 

developed for comparing model’s explanatory power, but there is no consensus about which 

criteria is best for model selection (Lindsey and Sheather, 2010). Although the criteria are designed 

to produce penalties for more predictors, there still could be overfitting issues (Lindsey and 

Sheather, 2010). Therefore, when comparing models with different numbers of predictors, we 

should be conservative in using these criteria for model selection. 

Table 2 Relative Qualities of Baseline Models 

Model Temperature Bins CHDD 

Adjusted R2 0.99735 0.99735 

AIC -5651.3679 -5641.3060 

BIC -5389.9038 -5379.8419 

 

5. Results 

5.1 Models Replacing Temperature Bins with Other Temperature Features 

 By replacing the variables of days in each temperature bin in the baseline model with 

alternative measures of temperature attributes, we have nine specifications different from the 

baseline model (Table 1). The regression results of the first type model specifications show that, 

overall, the non-temperature control variables have estimates of coefficients with same direction 
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and significance level as to the corresponding estimates in the baseline model. For brevity, we 

report the estimates of the temperature variables only in Table 3.  

 Among the nine alternative specifications of temperature, temperature fluctuation and 

extreme temperature departure are both significant (Table 3). The positive coefficient on 

temperature fluctuation implies that a rapid increase of temperature within two days leads to more 

energy consumption, which is consistent with the non-linear thermal sensation we discussed above. 

The negative sign on extreme temperature requires careful discussion. While it suggests less 

energy consumption when temperature deviates to an extreme heat level, it makes sense when the 

absolute temperature is cold but it is not reasonable when absolute temperature level is hot. The 

results of the last model in Table 3 suggest that the negative sign of extreme temperature could be 

due to the dominant effect of temperature deviation in cold days. In model 9, more days of extreme 

cold temperature results in more energy consumption while the coefficient of more days of 

extremely hot temperature is not significant.  

 However, replacing temperature bins by those temperature variables does not provide 

better fit according to adjusted R2, AIC, or BIC. Since there could be an overfitting issue in the 

baseline model because it includes 8 additional predictors from 9 temperature bin variables, we 

calculate the temperature fluctuation, temperature departure, and extreme temperature departure 

for each of the ten temperature bins. The construction of these variables are the same as described 

in Table 1 except that the calculation includes the observations with daily temperature in the bin 

to which it belongs. For instance, the calculation of temperature fluctuation for each bin is: 

𝐹𝑙𝑐_𝐵𝑖𝑛_𝑗 = ∑ 𝐹𝑙𝑐𝑖
365
𝑖=2  ∀ 𝑇𝑒𝑚𝑝𝑖  ∈ 𝐵𝑖𝑛_𝑗, 𝑗 = 1~10   

We use these sets of variables constructed by temperature bins instead of the corresponding single 

variables and the regression results are reported in Table 4. Still, after adjusting the numbers of 



14 

 

predictors to be equal in each model, the baseline model has the best performance according to 

adjusted R2, AIC and BIC. More significant coefficients of temperature departure (Dep and 

Dep_Std) in colder temperature bins also support our guess about the negative sign of Dep and 

Dep_Std in Table 3. These negative coefficients suggest that, when absolute temperature is low 

but relatively warmer than usual, residential energy consumption could be less than the prediction 

solely considering temperature level, as households may be used to colder temperature and require 

less heat. 

 Overall, these results suggest that, among the strategies in the first type of model 

specifications that capture only one feature of temperature, number of days in temperature bins 

explains the overall temperature effect better. However, temperature fluctuation and temperature 

departure could be associated with residential energy consumption as several of their coefficients 

are statistically significant (Table 3 and Table 4). Therefore, in the second type of model 

specification, we add one of the two temperature attributes to the baseline model to explore if 

capturing more temperature attributes improve the explanation of temperature effects.  
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Table 3 Estimates of Different Temperature Measures 

Model 

Temperature 

Variable 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

T_MEAN -0.0000 

(0.0000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FLC  

 

0.0003*** 

(0.0001) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FLC_ABS  

 

 

 

0.0000 

(0.0000) 

 

 

 

 

 

 

 

 

 

 

 

 
FLC_PCT  

 

 

 

 

 

-0.0000 

(0.0000) 

 

 

 

 

 

 

 

 

 

 
FLC_PCT_ABS  

 

 

 

 

 

 

 

0.0000 

(0.0000) 

 

 

 

 

 

 

 

 
Dep  

 

 

 

 

 

 

 

 

 

-0.0000 

(0.0000) 

 

 

 

 

 

 
Dep_ABS  

 

 

 

 

 

 

 

 

 

 

 

0.0000 

(0.0000) 

 

 

 

 
Dep_Std  

 

 

 

 

 

 

 

 

 

 

 

 

 

-0.0002*** 

(0.0001) 

 

 
Dep_Plus_Days  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0004 

(0.0004) 
Dep_Minus_Days  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0005* 

(0.0003) 

Adjusted R2 0.99724 0.99723 0.99723 0.99723 0.99723 0.99724 0.99724 0.99725 0.99724 

AIC -5571.9824 -5566.7054 -5563.9187 -5565.4775 -5565.3728 -5571.9824 -5567.9255 -5574.6582 -5568.7488 

BIC -5310.5183 -5305.2414 -5302.4546 -5304.0134 -5303.9087 -5310.5184 -5306.4614 -5307.7470 -5307.2847 

Standard errors in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 
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Table 4 Estimates of Different Temperature Measures by Bins 

 (1) (2) (3) 

 Flc Dep Dep_Std 

BIN_1 -0.0000 

(0.0002) 

-0.0001** 

(0.0000) 

-0.0005*** 

(0.0001) 

BIN_2 0.0003** 

(0.0002) 

-0.0001* 

(0.0000) 

-0.0003** 

(0.0001) 

BIN_3 0.0003** 

(0.0001) 

-0.0001 

(0.0001) 

-0.0006** 

(0.0002) 

BIN_4 0.0003*** 

(0.0001) 

-0.0000 

(0.0000) 

-0.0002 

(0.0002) 

BIN_5 0.0002*** 

(0.0001) 

-0.0001** 

(0.0000) 

0.0003 

(0.0004) 

BIN_7 -0.0000 

(0.0001) 

0.0000 

(0.0000) 

0.0001 

(0.0002) 

BIN_8 -0.0000 

(0.0001) 

0.0001* 

(0.0000) 

0.0002 

(0.0002) 

BIN_9 0.0001 

(0.0003) 

0.0001*** 

(0.0000) 

0.0010*** 

(0.0002) 

BIN_10 0.0037** 

(0.0019) 

0.0002 

(0.0002) 

0.0003 

(0.0010) 

Adjusted R2 0.99727 0.99732 0.99729 

AIC -5599.0296 -5629.6531 -5608.9510 

BIC -5332.1183 -5362.7419 -5342.0397 

Standard errors in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 

 

5.2 Models Including Additional Temperature Features 

 The results show that adding temperature attribute variables to the baseline model improves 

adjusted R2, AIC and BIC (Table 5), while estimates of temperature bins are similar to those in 

baseline model. Among the variables added to the baseline model, only temperature fluctuation 

has a significant coefficient (Table 5). Temperature departure, regardless whether it is measured 

with extreme abnormality or not, is not significant, although the AICs and BICs of the two models 

including either one of the two measurements of temperature abnormality are better than those in 

the baseline model. While the joint test of temperature bins and each of the added variables rejects 

the null hypothesis that the coefficients are jointly zero, variance inflation factors (VIFs) suggest 

the potential issue of multicollinearity among temperature bins and the added temperature variable. 

These results suggest the improvement by capturing more features of temperature, even though 
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the potential collinearity issue could influence the estimates. The results also imply that rapid 

change of temperature could be one feature of temperature which is not well modeled with 

temperature bins. We also add variables of these temperature features calculated by each 

temperature bin. The results of temperature fluctuation are in general similar to Table 4, while 

most of the estimates for temperature departure or extreme departure are not significant. 

 

Table 5 Adding Temperature Attributes to Baseline Model 

Model  

Coefficient 

(1) (2) (3) 

Flc 0.0002** 

(0.0001) 

 

 

 

 

Dep  

 

-0.0001 

(0.0001) 

 

 

Dep_Std  

 

 

 

-0.0001 

(0.0001) 

Adjusted R2 0.99735 0.99736 0.99735 

AIC -5652.9014 -5658.6828 -5653.0557 

BIC -5391.4373 -5397.2187 -5391.5916 

Standard errors in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 

 

5.3 Interdependence Models 

 We further explore the potential interdependence among the temperature attributes through 

a third type of model. We report the results of interaction models in Table 6. The days of 

temperature bins used in baseline model represent the distribution of daily temperature, and 

interacting temperature fluctuation in each temperature bin with the corresponding number of days 

in that bin implies the conditional effect of temperature fluctuation or the temperature bin.  

 In Table 6, we can see that some coefficients for Days_Bin_j in bin 1 and 2 are no longer 

significant despite their significance in the baseline regression. This could be due to 

multicollinearity as well. All joint tests of temperature variables reject the hypotheses that the 
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coefficients are jointly zero. For temperature fluctuation, its coefficients in bin 2 to bin 5 are 

significant and positive, while interaction terms of temperature fluctuation and the corresponding 

bins are both negative. The coefficients of interaction terms are significant for bin 2 and bin 5, 

suggesting the existence of interdependence. Therefore, in cooler days (< 50o F), while a rapid 

increase of temperature within two days leads to more residential energy consumption, more days 

in the corresponding temperature bin hamper the fluctuation effect slightly. In other words, when 

humans’ non-linear thermal sensation leads to more energy consumption, more days of similar 

temperature, restricted within the 10o F bin, decreases the fluctuation effect, as it implies a 

relatively more stable temperature within a year. The positive coefficients of temperature 

fluctuation in bins with lower temperature seem to be counterintuitive, as it suggests that rapid 

increase of temperature in colder days actually results in more residential energy consumption. 

While the D&G’s data set has no information about what the uses of the energy, we cannot verify 

if this positive effect is due to cooling demand as people have heat illusion2 or they experience the 

illusion as unbearable cold and take defensive action by using heat. We should keep in mind that 

in this model, the marginal effect of temperature fluctuation is not constant and depends on days 

of the corresponding bin. When the number of days is larger than 38 days, the marginal effect of 

rapid temperature increase is positive. Therefore, when the small range of temperature occurs more 

frequently, a rapid increase of temperature in such a relatively stable weather still results in 

increased energy use.  

 The interaction model of extreme temperature departure and days in bins tells a slightly 

different story, which consistently demonstrates the complex effects of temperature. Similar to the 

                                                 
2 A similar example is that, when skin temperature is quite low, flushing skin with water of a bit higher temperature 

than the skin often leads to a strong but mistaken sensation that the water is hot. This illusion may cause some 

people to take action to warm up. 
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results in Table 4, most of the temperature departure and extreme departure coefficients in the 

lower temperature bins are negative. These coefficients are not significant, possibly due to 

multicollinearity. The interaction terms of temperature departure or extreme temperature departure 

with number of days have a similar explanation. We thus focus on results of extreme departure as 

it captures abnormality without counting normal variation of temperature. 

 The coefficients of the interaction terms are negative in colder bins (i.e., bin 1 and bin 3), 

which suggests that, conditional on same number of days in the temperature bin, a warmer 

departure from long term trend contributes to less residential energy consumption in cold days and 

a colder departure further increases the consumption in addition to the absolute temperature level. 

Similarly, the positive coefficient (0.0001) in of the interaction term in bin 10 suggests that, when 

the absolute temperature level is above 90o F, extreme temperature departure leads to further 

consumption of residential energy.  

 The negative coefficient of extreme departure in bin 10 (-0.004) seems counterintuitive at 

first glance. Yet, as the coefficient of its interaction term with days of that bin is significant, it 

suggests the interdependence. The marginal effect of this extreme departure of hot days can lead 

to either more or less energy consumption, because of inverse sign of the coefficient for that 

interaction term. Therefore, when temperature is high but total hot days in bin 10 (> 90o F) in a 

year is less than 35, heatt abnormality leads to less residential energy consumption. But if hot days 

within bin 10 occur more frequently, heat departure from long term trend results in additional 

residential energy consumption. Together, these results suggest that, when temperature is hotter 

than its long term trend, households’ adaptation activities are conditional on how frequently the 

hot days occur, regardless whether it is usual or not.  
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Table 6 Adding Interaction Terms to Baseline Model 

 (1) (2) (3) 

 Fluctuation Departure Extreme Departure 

Days_Bin_1 0.003214*** 
(0.0006) 

0.000487 
(0.0023) 

0.001825 
(0.0015) 

Days_Bin_2 0.001479 

(0.0011) 

0.002404 

(0.0022) 

0.002411** 

(0.0010) 
Days_Bin_3 0.001989*** 

(0.0006) 

0.002409* 

(0.0014) 

0.001848*** 

(0.0006) 

Days_Bin_4 0.001037** 
(0.0005) 

0.001694* 
(0.0010) 

0.001398** 
(0.0006) 

Days_Bin_5 0.000763** 

(0.0004) 

0.001091*** 

(0.0004) 

0.000840** 

(0.0004) 
Days_Bin_7 -0.000076 

(0.0004) 

0.000266 

(0.0006) 

-0.000029 

(0.0004) 

Days_Bin_8 0.000382 
(0.0005) 

0.000009 
(0.0008) 

-0.000046 
(0.0005) 

Days_Bin_9 0.001534** 

(0.0006) 

0.001498 

(0.0012) 

0.001205* 

(0.0007) 
Days_Bin_10 0.003348*** 

(0.0011) 

0.004269* 

(0.0023) 

0.003233*** 

(0.0012) 

Var_Bin_1+ -0.000086 
(0.0003) 

-0.000186** 
(0.0001) 

-0.000098 
(0.0002) 

Var_Bin_2 0.000612*** 

(0.0002) 

-0.000036 

(0.0001) 

-0.000114 

(0.0003) 
Var_Bin_3 0.000393** 

(0.0002) 

-0.000056 

(0.0001) 

0.000674 

(0.0005) 
Var_Bin_4 0.000353* 

(0.0002) 

0.000156 

(0.0001) 

-0.000079 

(0.0005) 

Var_Bin_5 0.000561** 
(0.0003) 

0.000022 
(0.0001) 

0.001622 
(0.0010) 

Var_Bin_7 -0.000239 

(0.0004) 

0.000185* 

(0.0001) 

0.000186 

(0.0010) 
Var_Bin_8 0.000489 

(0.0003) 

-0.000107 

(0.0001) 

-0.000043 

(0.0005) 

Var_Bin_9 -0.000145 
(0.0006) 

-0.000114 
(0.0001) 

0.000646 
(0.0006) 

Var_Bin_10 -0.001196 

(0.0023) 

-0.000576** 

(0.0003) 

-0.003968*** 

(0.0013) 
Var_x_Days_Bin_1+ 0.000006 

(0.0000) 

0.000000 

(0.0000) 

-0.000009* 

(0.0000) 

Var_x_Days_Bin_2 -0.000016** 
(0.0000) 

-0.000000 
(0.0000) 

0.000007 
(0.0000) 

Var_x_Days_Bin_3 -0.000007 

(0.0000) 

0.000001 

(0.0000) 

-0.000034* 

(0.0000) 
Var_x_Days_Bin_4 -0.000003 

(0.0000) 

-0.000002 

(0.0000) 

0.000007 

(0.0000) 

Var_x_Days_Bin_5 -0.000007* 
(0.0000) 

-0.000000 
(0.0000) 

-0.000019 
(0.0000) 

Var_x_Days_Bin_7 0.000004 

(0.0000) 

-0.000002* 

(0.0000) 

0.000000 

(0.0000) 
Var_x_Days_Bin_8 -0.000006 

(0.0000) 

0.000002* 

(0.0000) 

0.000003 

(0.0000) 

Var_x_Days_Bin_9 0.000002 
(0.0000) 

0.000001 
(0.0000) 

-0.000007 
(0.0000) 

Var_x_Days_Bin_10 0.000039 

(0.0000) 

0.000010** 

(0.0000) 

0.000112* 

(0.0001) 

Adjusted R2 0.99736 0.99737 0.99737 

AIC -5680.4808 -5688.7458 -5689.1631 

BIC -5419.0167 -5427.2817 -5427.6990 
+ Var in column 1, 2, and 3, is temperature fluctuation, temperature departure, and extreme temperature departure, 

respectively. For instance, in column 1, Var_Bin_1 is the temperature fluctuation that occurs below 10o F, and 

Var_x_Days_Bin_1 is the interaction term of temperature fluctuation and number of days in this temperature bin. 

Standard errors in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 
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6. Discussion and Conclusion 

Using D&G’s data set and empirical model, but adding strategies for capturing alternative 

and additional temperature attributes, our work discuss potentially ignored features of temperature 

and the complexity of temperature effects on energy consumption. Our results show that, in models 

capturing a single temperature attribute, popularly used temperature bin strategy provides better 

explanatory power according to the adjusted R2, AIC and BIC. However, the significance of the 

alternative temperature variables other than temperature bins suggests omitted temperature 

attributes when empirical models include variables such as temperature bins which capture only 

absolute temperature level. By adding a variable capturing additional temperature attribute to the 

baseline model using temperature bins, we further explore if these additional attributes contribute 

to the analysis of temperature effects. The results suggest an improvement in explanatory power 

in comparison to the baseline model. In particular, variables measuring rapid temperature change 

may capture the influence of temperature not identified by temperature bins. While the positive 

coefficient of temperature fluctuation implies additional residential energy consumption from 

absolute temperature level, omitting non-linear human sensation of short term temperature change 

may produce models that suffer from biased estimates and prediction.  

We further explore the potential complexity of temperature effects through interaction 

terms between distribution of absolute temperature level and the alternative temperature attributes. 

The results suggest that, for some ranges of temperature levels, the effect of temperature 

fluctuation or extreme temperature departure do depends on the days in the corresponding bins. 

Yet, the results and implication of the two types of attributes are different. If the temperature is 

less than 50o F, the rapid temperature increase results in more residential energy consumption. 

While nonlinear thermal sensation suggests a stronger hot feeling from such temperature change, 
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due to data limitations, we cannot further verify the increase in energy consumption is for cooling 

due to heat illusion or for heating. But more days with similar temperature hampers the fluctuation 

effect, which could be due to that fact that humans adjust to the stimulus of rapid temperature 

change if similar temperatures occur often, such that people perceive the weather as stable. 

Similarly, the more dramatic the rapid increase, the smaller marginal effect of colder temperature 

bins could be on increasing energy consumption, which is consistent with non-linear thermal 

sensation. 

The results of the interaction model including extreme temperature departure, days of 

temperature bins, and their interaction terms, demonstrate more complicated temperature effects 

in hot days, which are somewhat counterintuitive, while the effect of temperature abnormality is 

straightforward in cold days. When temperature level is low (e.g., bin 1), warmer abnormality 

results in less residential energy consumption, as households are used to normally even lower 

temperature in the long term. The coefficients of abnormality in hot temperature (i.e., bin 10, > 

90o F) are negative. It indicates less energy consumption when temperature should be cooler than 

usual but is actually hotter. Taking the interaction term into consideration, the marginal effect of 

temperature abnormality in hot days depends on the frequency of temperature in bin 10. Our results 

suggest that, households have different responses to adapt hot abnormality conditional on the 

frequency of hot days. If a year has more than 35 hot days ( > 90o F), households appear to respond 

to extreme hot abnormality through alternative actions not associated with residential energy 

consumption. But if such hot days are more frequent in the year, then households’ adaptation to 

heat abnormality results in more residential energy consumption. While heat abnormality 

represents the departure of temperature from long term trend, households may not invest in air 

conditioning if normal temperature is not that hot and in the abnormal year hot days are infrequent. 
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Our findings also have policy implications. In the context of climate change and global 

warming, our findings suggest that abnormal weather may not always lead to more energy 

consumption, which is somewhat different than the findings in received literature. Abnormally hot 

weather in the cold days reduces energy consumption, and its effect in the hot days could either 

decrease or increase residential energy consumption, depending on the frequency of hot days of 

the year. In the long term, climate change may not necessarily lead to more residential air 

conditioning energy demand, if climate change is associated with larger variation in temperature. 

Residential energy policies aiming to respond climate change need to be reviewed if they adopt 

the assumptions based on non-conditional relationships between temperature abnormality and 

energy consumption.  

Through the discussion of three types of model specification, our study provides a more 

complete understanding of complex temperature effects on residential energy consumption and 

suggests ways to improve the effectiveness of related research methods. Our analysis of 

interdependence and abnormality further demonstrates the existence of complex temperature 

effects on energy consumption. These findings may also contribute to energy supply management 

and power plant construction policies in the context of climate change in which there could be 

more variations in temperature in addition to warmer annual temperature, or even simply to better 

forecast power needs in the short term. According to our findings, empirical models discussing 

temperature effects on energy consumption may consider including temperature variables in 

addition to the conventional CHDD or temperature bins. The inclusion of interdependence among 

temperature attributes may also help to explain the influences of abnormal temperature instead of 

the comparison of historical temperature data and forecasted temperature data. While our analysis 

provides some insights into the relationship between temperature and market outcomes, the 
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analysis of complex temperature effects requires further efforts to better deal with potential 

multicollinearity and to understand the positive correlation between temperature fluctuation and 

low temperature. 
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