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Abstract

We discuss the design of interactive, internet based benchmarking using pa-
rametric (statistical) as well as non-parametric (DEA) models. The user
receives benchmarks and improvement potentials. The user is also given the
possibility to search different efficiency frontiers and hereby to explore alter-
native improvement strategies. An implementation of both a parametric and
a non parametric model are presented.
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1 Introduction

Theorists and practitioners alike have devoted a lot of interest to benchmar-
king and relative performance evaluations in recent years. Theoretical ad-
vances, most notably the development of Data Envelopment Analysis (DEA)
have gone hand in hand with new applications within all areas of society. On
DEA alone, a 1999 bibliography lists more than 1000 studies1, most of them
published in good quality scientific journals. This is indeed an impressing
record since DEA was only conceptualized some 24 years ago.

In general terms, benchmarking is the process of comparing the perfor-
mance/activities of one unit against that of “best practice” units. DEA
and other frontier evaluation techniques like Stochastic Frontier Analysis
(SFA) are explorative data analysis and relative performance evaluation tech-
niques that support advanced benchmarking. DEA was originally proposed
by Charnes, Cooper and Rhodes(1978,79) and has subsequently been refined
and applied in a rapidly increasing number of papers. For recent text books
covering also related techniques like SFA, see Charnes, Cooper, Lewin and
Seiford(1994), and Coelli, Rao and Battese(1998). Instead of using a tra-
ditional single dimensional performance indicator, say profit maximization,
the DEA approaches use a multiple dimensional perspective and allow for
different (efficient) combinations of products and services to be equally at-
tractive. Also, instead of benchmarking against a theoretical engineering or a
statistical average performance, DEA invokes a minimum of a priori assump-
tions and evaluates the performance of an unit to that of one or a combination
of a few other, actual units. For these reasons, DEA has become a popular
benchmarking approach when there is considerable uncertainty about the
possibilities, e.g. the production structure of a hospital or university, and
when the precise trade-off between different products and services, e.g. heart
versus lung surgery, are hard to define.

There are multiple uses of relative performance evaluation and benchmar-
king. At least three distinct applications can be identified. Benchmarking
can be used to get general insight, e.g. about the productive development of
a given sector. For an extensive survey see Emrouznejad (2001). It can also
be used to facilitate decision making, e.g. about the allocation of budgets
within an organization Korhonen et.al. (2001) or the choice of consumption
goods (or even communities) with respect to price and quality. There are a
lot of papers in this area as well see e.g. Korhonen et al. (1992) for a review
of Multi Criteria Decision Making (MCDM) based decision support systems.

1See e.g. www.deazone.com.

2



Thirdly, benchmarking and relative performance evaluation is the backbone
of incentive provision in multiple agents contexts. For instance a regulator
can use benchmarking to set prices or revenue caps (e.g. Bogetoft, 1994 and
2000).

Despite of the obvious success of the modern benchmarking approaches, we
suggest that the potential of these techniques have not yet been fully realized.
The reason is that most analyses still introduce a series of restrictions that
the users may not accept or that they may want to modify over time and as
the application of the analyses changes. It is therefore advantageous if the
benchmarking can be tailored towards the specific circumstances and user.

To tailor the analysis to the specific user and context, a traditional report is
insufficient. We need easy interaction with the different users. We therefore
suggest to offer a benchmarking environment rather than a benchmarking
report. To benchmark, the user interacts directly with a computer program.
Moreover, to ease the communication of the benchmarking throughout an
organization, an industry etc. the program shall be executed over the inter-
net.

Of course, we cannot expect the traditional user to be trained in the pros
and cons of different benchmarking approaches. An important challenge is
therefore to allow flexibility via the benchmarking environment while at the
same time offering more structure and guidance that the existing computer
codes to support DEA, SFA and similar techniques.

The primary flexibility concerns the benchmark or reference selection. A tra-
ditional benchmarking exercise involves the selection of a reference or peer
performance and the evaluation of a given performance against this reference.
The choice of relevant reference can be guided by theory using axiomatic ap-
proaches, cf. e.g. Bogetoft and Hougaard(1999) and Färe and Lovell (1978),
and it may be relevant to put some restrictions on the choice of reference.
On the other hand, the choice of reference should also be a reflection of the
preference of the user. It involves the trade-off between different performance
dimensions and between different types of improvements. We shall therefore
think of the reference selection as a choice problem. The user, whom we shall
often think of as a decision maker (DM), chooses the benchmarking direction.
To solve this choice problem, the user can be supported in many ways. He
can basically draw on most of decision theory. In conformity with the flexi-
bility philosophy and as a consequence of the many possible uses and users
over time, we suggest to draw on the literature on multiple criteria decision
making (MCDM). For text book introductions, see for example Bogetoft and
Pruzan(1997) or Steuer(1986).
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We realize of course that much of the benchmarking and efficiency analysis
literature work on the no-preference-information assumption. In fact, this
explains part of its success. On the other hand, focus on efficiency (doing
things right) without being concerned about effectiveness (doing the right
things) will in general lead to sub-optimal decisions.

The appropriate choice of a reference may not only be question of which
direction to move in. It may also be a question of how far to move. In
the short run, it may unrealistic to fully mimic a best practice unit. It is
desirable therefore to allow some flexibility as to the choice of performance
level against which to benchmark. The user shall for example be allowed to
decide which best practice fractile to compare to.

In this paper we discuss in more details the design of such interactive, internet
based benchmarking environments where the user specifies the desired mix
of improvements as well as the performance level. We shall work both with
parametric (statistical) as well as non-parametric (DEA) models. The user’s
specification of (relative) preference information affects the benchmarks and
improvement potentials presented to him. We illustrate an implementation
of a simple parametric model in 50 different industries at a commercial site.
The model have capital and labor as inputs and gross profit as output. Fur-
thermore a non-parametric DEA model is presented. 189 Danish banks are
compared in an Internet based benchmarking model with 2 inputs and 3
outputs.

There are several papers that link multiple criteria decision making and
benchmarking. By introducing information about desired improvements and
trade-offs between alternative improvements, it is possible to beyond a simple
efficiency analysis and towards a goal attainment or effectiveness analysis.
Golany(1988a) and Ali, Cook and Seiford(1991) suggest the introduction of
at least partial preference information in a dual formulation of the usual DEA
models, while Golany(1988b) outlines the linkage with interactive multiple
criteria methods. Along similar lines, Belton and Vickers(1992, 1993) sug-
gest to integrate MCDM and DEA via a so-called VIDEA software, where
the user can change the weights of the individual inputs and outputs. In the
traditional DEA these weights are chosen such that the DMU being evalua-
ted performs as good as possible. The most elaborate suggestions along these
lines have come from Professor Korhonen and his coauthors. Korhonen and
Laakso(1986) early introduced the so-called Reference Direction Approach
to MCDM in a dynamic version supported by computer graphics. It was
subsequently developed into the so–called Pareto Race, cf. Korhonen and
Wallenius(1988). Pareto Race is an interface that support the user’s search
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on the frontier in a Multiple Objective Linear Programming (MOLP). Korho-
nen(1997) suggests the use of Pareto Race in DEA to choose a desired unit.
Also, Joro et.al.(1998) emphasize the technical analogies between DEA and
MCDM and Halme et.al. (1999) and Korhonen(2002) discuss the refinement
of efficiency measures by incorporating preferences.

We deviate from the previous approaches linking multiple criteria decision
making and benchmarking by stressing the individual learning and decision
making perspective. For an unit seeking to improve, the interesting aspects
to know are the improvement potentials and the possible trade-offs between
alternative improvement dimensions. In the terminology of the literature, we
are interested in the choice of a reference or peer unit and the comparison in
absolute terms with this. We are much less interested in the measurement
or index problem of summarizing the differences between the actual unit and
the reference unit in a single number. For this reason, we draw on the MCDM
literature because it contains useful knowledge about how to learn about and
search among multiple dimensional alternatives.

The outline of the paper is as follows. In Section 2 we set the stage for
benchmarking in general. Section 3 describes the interactive approach we
propose. Integration with modern benchmarking techniques are discussed in
Section 4 covering parametric and non-parametric benchmarking. In Section
5 , we describes the implementation of these ideas in Internet-based parame-
tric and a non-parametric benchmarking modules. Section 6 discuss the two
implementations and Section 7 concludes.

2 General benchmarking

Consider k organizations, usually referred to as Decision Making Unit (DMUs),
that each transforms n inputs into m outputs. Let xi = (xi

1, . . . , x
i
n) ∈ R

n
0 be

the inputs consumed and let yi = (yi
1, . . . , y

i
m) ∈ R

m
0 be the outputs produced

by DMUi, i ∈ I = {1, 2, . . . , k}. The production possibility set is given by:

T = {(x, y) ∈ R
n+m
0 |x can produce y} (1)

The production correspondence is given by: x → P (x) and the consumption
correspondence by: y → L(y), where

P (x) = {y|(x, y) ∈ T} L(y) = {x|(x, y) ∈ T} (2)
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i.e. P (x) is the set of outputs that x can produce and L(y) is the set of input
that can produce y.

Inefficiency is the ability to reduce inputs without affecting output or the abi-
lity to expand output without requiring more inputs. In the multiple inputs,
multiple outputs case a popular measure has become the so-called Farrell
index. It measures the possibility to make proportional input reductions E
or output expansions F :

Ei = min{E ∈ R0|(Exi, yi) ∈ T} (3)

F i = max{F ∈ R0|(xi, Fyi) ∈ T} (4)

Benchmarking compares the performance of a DMU to the frontier of T .
Sometimes, it is useful to compare only towards a subset of T . The subset
might exclude a certain percentage of the best performing DMUs, DMUs
from certain geographic areas or DMUs of a certain sizes etc.

Figure 2 illustrate different benchmarking situations. In the ideal full infor-
mation model at Stage 1 the individual DMUs’ effectiveness are measured by
assuming that we know the preferences, U(.), and the production technology,
T . This full information approach is usually not feasible. Estimating utility
functions are difficult and sometimes even theoretical impossible. Substitu-
ting the preferences with the criteria: “producing more with less” leads to
the absolute efficiency model in Stage 2. Without a set of preferences a priori,
we move from effectiveness to efficiency. That is, instead of a unique best
plan, the result is a set of best performances - the efficient frontier. Stage
2 still assume that we know the true technology, T . In most situations this
is not the case. We therefore replace T with an estimate, T ∗. At Stage 3,
efficiency is measured relative to T ∗, i.e. relative to the other DMUs. T ∗ can
be determined by either parametric or non-parametric methods.

We reintroduce preferences in Stage 4. The true preferences U(.) are ap-
proximated by a simplified preference model U∗(.). Hereby relative efficiency
is replaced with an approximation of relative effectiveness. The approxi-
mated preferences can be introduced via a communication process with an
interactive exchange of preferences and benchmarks reflecting the submitted
preferences.

We will distinguish between individual benchmarking and overall benchmar-
king. In individual benchmarking, the focus is on a detailed analysis of a
single DMU, its improvement possibilities and the peer units corresponding
to different improvement strategies. In overall benchmarking, the whole po-
pulation of units are analyzed in terms of a common improvement perspective
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Absolute Effectiveness e.g U(xi,yi)
max U(x,y) s.t. (x,y)∈T

U(.) unknown Replaced U with “Produce more with less”

Absolute Efficiency e.g. Ei = min{E|(Exi, yi) ∈ T}

T unknownT unknown Replaced T with an estimate, T ∗

Relative Efficiency e.g. Ei = min{E|(Exi, yi) ∈ T ∗}

Interaction Introduce approximate preferences U∗(.)

Relative Effectiveness e.g. U∗(xi,yi)
max U∗(x,y) s.t. (x,y)∈T ∗

Figure 1: The basic benchmark approach

like the Farrell measure. Modern benchmarking studies using techniques like
DEA have almost exclusively been used to evaluate the performance of all
the units in an industry. We introduce the term individual benchmarking
to emphasize also the usefulness of these techniques for detailed analyses of
improvement possibilities in different directions for a single DMU. In the ter-
minology of MCDM, both approaches are directed by the user - the Decision
Maker (DM). Individual benchmarking is an analog to progressive articula-
tion of alternatives approach, where the DM iteratively changes his prefe-
rences and hereby moves between benchmark. Overall benchmarking is a
variety of the method of prior articulation of alternatives, where all alterna-
tives are given to the DM.

3 Interactive benchmarking

We shall now leave the no-preference-information regime of traditional bench-
marking and allow the user or decision maker DM to influence the bench-
marking or reference selection.

In the context of individual benchmarking the starting point is typically the
actual performance, (x, y) = (xi, yi) ∈ T , of a particular DMU. The user
expresses his preferences by specifying directly or indirectly an appropriate
benchmark (x̄, ȳ) against which to compare (x, y). The issue now is what
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User

Benchmarking Tool

Benchmark

Constraints
Weights
Targets
Directions

(Decision Maker)

(Analyst)

Figure 2: Progressive articulation of benchmarks

restrictions we can put on (x̄, ȳ) and how we can support the user’s choice of
(x̄, ȳ).

It is often natural to restrict the reference plan to be efficient. By definition
(x̄, ȳ) is efficient if there does not exist any point (x∗, y∗) ∈ T such that:

x∗ ≤ x̄, y∗ ≥ ȳ and x∗i < x̄i ∨ y∗j > ȳj (5)

for some i = 1, 2, . . . , n or j = 1, 2, . . . ,m. That is, in an efficient plan,
it is impossible to increase any output without decreasing other outputs or
increase some inputs. Also, it is impossible to decrease any input without
increasing other inputs or decreasing some outputs. Let TE be the set of
efficient plans in T .

The choice of a benchmark is essentially a multiple criteria decision pro-
blem. It involves a trade-off between different performance criteria, viz im-
provements in the different input and output dimensions. Many MCDM
procedures can support the user’s choice of benchmark. For a taxonomy of
methods, see Bogetoft and Pruzan(1997). For a flexible benchmarking en-
vironment, we believe that it is most appropriate to use methods from the
progressive articulation of alternatives class. In this class of MCDMmethods,
the user gradually learns about different alternative, here benchmarks. Also,
he directs the search for new alternatives, i.e. benchmarks, via instructions
to an analyst or computer code. The approach is illustrated in Figure 3.

A progressive articulation approach is attractive because it allows the user
great flexibility in his learning. He is allowed to change his “preferences” as
he go along and his implicit articulation of preferences is facilitated by the
gradual revelation of actual benchmarks.
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There are many methods based on the progressive articulation of alternative
approach that can be relevant to apply. The user can direct the analyst or
program using varying side constraints, weights as well as targets. We have
experimented with all these methods in different applications. To illustrate
the idea, however, it suffices to consider just one approach which we call
the directional approach. This approach has proved useful in applications
and it moreover links nicely with the modern benchmarking literature via
the notion of a so-called directional distance functions, cf. Luenberger(1992)
and Chambers, Chung & Färe(1995, 98).

In the directional approach, the user expresses his preferences or gives his
instructions by specifying the direction, d = (dx, dy) ∈ R

n+m, to look. DMU
i’s benchmark (x̄i, ȳi) is hereafter given by (xi, yi) + d · σ, where σ is:

σ = max{σ|(xi, yi) + d · σ ∈ T} (6)

By varying d, it is clearly possible to make any efficient production plan in
T the desired benchmark for a given inefficient2 DMU. Moreover the choice
of d can be supported by thinking in terms of:

Side constraints: The user restricts certain inputs or outputs and a new
point on the frontier, (x̂, ŷ) that reflect these constraints are calculated3.
In this case we can set d = (x̂, ŷ)− (xi, yi).

Weights: The user submits relative weights between inputs and outputs, w.
These weights can be thought of as a subjective price vector. In this
case we can use d = w.

Targets: The user submits a goal, (xg, yg), and we use d = (xg, yg)−(xi, yi).

It might be useful to bound the directional vector to ensure that the resulting
reference plan is efficient. In some applications it might also be relevant to
restrict the search for benchmarks to points that are weakly improving in all
dimensions i.e. to require

0 ≥ dx and 0 ≤ dy (7)

2Starting out at an efficient point, the procedure can not generate all other efficient
points. In this case it will be sufficient to let the search start out at a slightly pertubed
point. We will return to this in Section 4 below.

3There are many ways to pick (x̂, ŷ). We can for example maximize
∑m

i=1(ŷi − yi) +∑n
i=1(xi − x̂i) subject to the conditions that (x̂, ŷ) ∈ T and that (x̂, ŷ) fulfill the side

constraints.
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where dx and dy are the n and m dimensions of d corresponding to the inputs
and outputs.

Unlike individual benchmarking the purpose of overall benchmarking is not
to search the frontier, but to present a ranking of all DMUs. Traditionally
all DMUs are ranked using the Farrell measure. One way to incorporate
preferences would be to measure efficiency for all DMUs using the same
direction d rather than the units specific directions implied by the Farrell
approach. By changing d, the ranking of all DMUs may change. We shall
return to the choice of ranking index in Section 4.

4 Parametric and non-parametric benchmar-

king

In the discussion so far, we have assumed that the underlying technology T
was given. In practice, T must be estimated from observed performances, say
the inputs xi = (xi

1, . . . , x
i
n) ∈ R

n
0 consumed and outputs yi = (yi

1, . . . , y
i
m) ∈

R
m
0 produced in DMUi, i ∈ I. Much of the progress in modern benchmarking

theory has been on the estimation of advanced production structures.

It is common to distinguish between parametric and non-parametric ap-
proaches.

In the parametric approach, initial regularity on T is by postulating a certain
functional structure, say

T = {(x, y)|f(x, y, α) ≤ 0}

where f is a function mapping inputs x, outputs y and parameters α into the
real numbers. By estimating α from observations of realized input-output
combinations, an approximation of T is obtained that can be used as the
basis for reference point selection. In the case of a single output (classi-
cal production function) or a single input (classical cost function), standard
econometric theory can be used to estimate α. Also, more advanced Sto-
chastic Frontier Analysis (SFA) can be used. These methods work with both
a normally distributed noise term that can increase or decrease production
(or costs) in the usual way, and a one-side inefficiency term, that can only
decrease production or increase costs. For an introduction to SFA, see for
example Coelli et.al. (1998).
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Now, given a functional representation of T the directional approach requires
the analyst or computer program to find DMU i’s benchmark (x̄i, ȳi) =
(xi, yi) + σ∗ · d, where σ∗ is:

σ∗ = max{σ|f(xi + σ · dx, y
i + σ · dy, α) ≤ 0} (8)

In general, numerical methods will be needed to solve this problem, but if
the functional form is sufficiently well behaved or the number of input-output
dimensions sufficiently small, analytical solutions may be possible as well.

In the non-parametric approach, the technology T is estimated from a set of
basic postulates about T and the so-called minimal extrapolation principle.
The basic postulates about T are usually:

Free disposability : (x′, y′) ∈ T and x′′ ≥ x′ and y′′ ≤ y′ ⇒ (x′′, y′′) ∈ T i.e.
“more can produce less”.

Convexity : T is convex. That is weighted averages of feasible production
plans are feasible as well. This is usually the case, although in the case of
non-parametric models one might relax this assumption.

Return to scale: (x′, y′) ∈ T ⇒ s(x′, y′) ∈ T for s ∈ S(h), where h equals:
crs (constant return to scale), drs (decreasing return to scale), vrs (variable
return to scale) or irs (increasing return to scale), and S(crs) = R0, S(drs) =
[0, 1], S(vrs) = 1 or S(irs) = [1,∞).

The idea of minimal extrapolation is now to find the smallest subset of R
n+m
0

that contains the actual input-output observations and satisfy certain combi-
nations of the assumptions above. The original DEA model by Charnes, Co-
oper and Rhodes(1978,79) invokes free disposability, convexity and constant
return to scale. For alternative specifications invoking different combinations
of assumptions, see for example Charnes, Cooper, Lewin and Seiford (1994).
In general, the technology estimated by the non-parametric approach can be
expressed using mathematical constraints. Thus, for example, invoking the
free disposability and convexity assumption leads to the estimate

T = {(x, y)|x ≤
∑
j∈I

λjxj, y ≥
∑
j∈I

λjyj,
∑
j∈I

λj = 1, λj ≥ 0∀j ∈ I}

and if we assume decreasing return to scale or constant return to scale, we
simply replace

∑
j∈I λ

j = 1 with either
∑

j∈I λ
j ≤ 1 or

∑
j∈I λ

j ∈ R0.
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Given a non-parametric representation of T as above, the directional ap-
proach requires the analyst or computer program to find DMU i’s bench-
mark (x̄i, ȳi) = (xi, yi) + σ∗ · d, where σ∗ is a solution to the following linear
programming (LP) program

σ∗ = max
σ,λ

σ

s.t. xi ≥
∑
j∈I

λjxj − σdx

yi ≤
∑
j∈I

λjyj − σdy

∑
j∈I

λj = 1

(9)

Whether we use a parametric or a non-parametric approach, the traditional
Farrell approach is a special case of the directional approach. With d =
(−xi, 0) we have E = 1− σ in the input based case and with d = (0, yi) we
have F = 1 + σ in the output based case.

The estimated inefficiency for DMUi, σ∗d, is an inefficiency measure in abso-
lute numbers. This has advantages in the case of individual benchmarking.
However moving from individual to overall benchmarking a relative perfor-
mance index is needed to rank all units. In Figure 3 an index for a pessimistic
improvement potential is given by:

min

(
1− x̄h

xi
h

, h = 1, . . . , n, 1− yi
k

ȳk

, k = 1, . . . ,m.

)
(10)

The interpretation of the improvement potential is straightforward: it gives
the minimum each and every inputs can be reduced and outputs expanded
compared with the benchmark. An efficient firm will have 0 improvement
potential. In the case of a Farrell measure the improvement potential would
equal 1− E (input) and F − 1 (output).

The improvement index is easy to interpret, however it is very sensitive to
the DMU’s actual structure and it is not an ideal ranking index. A more
appropriate ranking index, which however is less intuitive, is given in Figure
4. This index is entirely built on distances. Although it does not have the
same easy interpretation it is identical with the improvement index in the
case of Farrell.
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Improvement index: min
(
1− yi

1

ȳ1
, 1− ȳi

2

ȳ2

)

Benchmark: (ȳi
1, ȳ

i
2)

Figure 3: Index for improvement potential

y1

y2

yi = (yi
1, y

i
2)

|yi|

|σd| Benchmark: (ȳi
1, ȳ

i
2)

Ranking index: |σd|
|yi|+|σd|

Figure 4: Ranking index
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5 Applications

In this section, we describe the implementation of two interactive, internet-
based benchmarking models. The purpose of the first implementation is to
illustrate the strength of interactive benchmarking with a simple parametric
model. The second implementation shows how a traditional non-parametric
DEA model can be expanded to an Internet based benchmarking model.

5.1 Parametric application

The software described in this section is used at the commercial Internet
site: www.managershotline.dk, that sells managerial advises. 50 different
industries in Denmark are covered. In each industry a simple parametric
capital-labor-gross profit model are estimated. The data are provided by
Købmandsstandens Oplysningsforbund.

The variables are:

Labour Number of full-time employees (L)

Capital Fixed assets, the part of all assets that is continuously owned (C)

Gross profit Total turnover excluding taxes minus primary inputs (Y )

These numbers are easily found in most accounts. The model is a simple
Cobb-Douglas function, that explain the gross profit by labor and capital:

Y = β0L
β1Cβ2 (11)

After a logarithmic transformation the β parameters were estimated using
Ordinary Least Square. The statistical tests were supporting the model e.g.
the R2 measures belong to the interval: [0, 62; 0, 92]4.

4Except the industry ”Dentists” with a R2 equal to 0,48.
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The benchmarking

The user submits data on labor and capital and receive 3 estimated levels of
gross profit:

• The expected gross profit Ŷ

• The 25 % best gross profit Y25

• The 10 % best gross profit Y10

Here, Ŷ (Li, Ci) is the expected gross profit given the user’s labor and capital
numbers, i.e. Ŷ (Li, Ci) = β0L

iβ1C
i
2β2 with the estimated parameter values

inserted.

The next two benchmarks are found by scaling the expected gross profit
with the corresponding efficiency score fractiles. The inverse Farrell based
efficiency score is

Gi =
Y i

Ŷ (Li, Ci)
(12)

Let G25 be the 25 % highest efficiency score Gi. Then in the 25 % best gross
profit scenario, the DMUi is compared with:

Y25 = G25 · Ŷ (Li, Ci) (13)

and similar for Y10.

Surfing the frontiers

After the initial benchmark the user can study the firms improvement poten-
tial in more details. The kind of questions that can be answered are “How
many employees and how much fixed capital could I save if I was as efficient
as the 25 % best”.

The same level of gross profit can be produced with different combinations of
L and C. The possibility of substitution makes it useful to explore the fron-
tiers. The traditional benchmark that comes from a proportional (Farrell)
change in the variables is used as the starting point:

Y i = G25β0(δ · Li)β1(δ · Ci)β2 (14)
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The proportional reduction δ and the saving potential in real numbers given
the ambition to do as well at the chosen fractile, here the 25% best, are given
as a start. From this point the user can freely move along the frontier. The
user is simply submitting a new level of either L or C and the corresponding
values of C or L are calculated.

Figure 5 shows a situation, where the user perform between the 25 % and
the 10 % best. The figure depicts 3 iso-efficiency curves, all points produce
the same output, Y i, with different efficiency levels. If the user chose to
benchmark against the 10 % best, point A would be the starting point. A
represent a proportional reduction in all inputs. He can now move along the
frontier by changing either L or C5. The user could also compare himself with
the 25 % best, which initially will bring him to point B. Point B represent a
proportional increase in all inputs required for producing the same with this
lower efficiency.

C

L

Y i = G25 · Ŷ (L,C)
Y i = Gi · Ŷ (Li, Ci)

Y i = G10 · Ŷ (L,C)

L

L

C C

A

B

START

Figure 5: Choosing different frontiers

Figure 6 is a screen shot from the searching part. Figure 6 corresponds to
point A in Figure 5 and it illustrate how the search can be communicated.

5It is basically up to the user to decide to what degree substitution between L and C
is possible but to reflect the estimation conditions, we have introduced upper and lower
limits (L,L) and (C,C) in the program.
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Figure 6: Searching the frontier (screen shot)

5.2 Non-parametric application

This Section describes the design of an Internet based interactive benchmar-
king system based on a non-parametric DEA model. The software have been
programmed in SAS and SASIntr is used to create a CGI-connection (com-
mon gateway interface) through a browser. The setup is a two tier system
where all calculation and data is managed through SAS.

We have analyzed 189 Danish commercial and savings banks in a DEA model
with two inputs:

• Staff & admin, Staff and administrative expenses and other operating
expenses.

• Own funds, Own funds total.

and three outputs:

• Net income (Interest), Net income from interest.

• Charges a.o. income, Charges and commissions receivable (- payable)
and other operating income.
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• Guaranties etc., Guaranties and other commitments.

The production possibility set, T , is assumed to be convex and free dispo-
sable. This leads to a cautious, small envelopment of the data. Benchmarks
are calculated using the directional distance approach.

The user can either choose individual benchmarking or overall benchmarking.
In individual benchmarking the user searches the frontier interactively by
changing the direction d. In overall benchmarking, all DMUs are ranked
relatively to each other and the result is presented by sorted lists and plots.
The user can move from individual benchmarking to overall benchmarking
at any time.

Individual benchmarking

Figure 7 shows the user interface in individual benchmarking. The bench-
mark given in Figure 7 is determine by the submitted “weights”. The weights
point out a direction d in which the best (x, y) ∈ T ∗ is given. The side
constraints can be used to further restrain the search. They are initially gi-
ven with default values equal to the extreme observations in the data set. The
improvement potential 1,8 % is the smallest feasible proportional contraction
of all inputs and expansion of all outputs with this benchmark.

The benchmark is a linear combination of a set of efficient peer DMUs. In
this case the benchmark consist of 4 different banks. The peers actual data is
given in more detail by clicking the “Peers in details” button. At the bottom
of the page the actual performance and the reference peer performance are
illustrated graphically.

The search starts at the DMUi’s actual performance (xi, yi). Using positive
weights corresponding to dx < 0 and dy > 0 , the system will give bench-
marks that weakly dominate the actual performance. However, by allowing
negative weights an (inefficient) unit can search the entire frontier by chan-
ging the weights. As fixed points the proportional Farrell projections are
made available via single clicks.

To measure the improvement potential, it is natural to start out at the actual
performance. However, this may prevent an efficient DMU from exploring
the entire frontier. The problem is that points at the relative interior of the
facet to which the unit belong will not be generated using the directional
search program from the previous section. To allow efficient units to search
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Figure 7: Interface for Individual Benchmarking
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the frontier - and to give almost efficient units a more smooth search, the
“free search” module can be used. If the user select “free search” the frontier
can be searched starting at a strongly inefficient point. The starting point
uses the double of all inputs to produce half of all outputs as actual DMU
does.

Overall benchmarking

Overall benchmarking list the relative performance of all DMUs sorted by
the score. The score could be the well-known Farrell input or output oriented
scores or it could be the directional score presented in Section 4. The distri-
bution of the scores are provided in different diagrams like in a traditional
DEA study. Furthermore the peer-structure of all DMUs are provided on
request.

At any time, the user can chose any DMU and go to individual benchmarking
to explore the improvement potential of this DMU. Furthermore the user
can drill down to the very details of the individual DMUs or get descriptive
statistics for the entire data set.

6 Discussion

Although both the parametric and the non-parametric approaches can handle
multiple inputs and multiple outputs models, they have different cost and
benefit profiles.

Outliers are not too troublesome to a - well performed - parametric estima-
tion. There are ways also to deal with them in DEA, e.g. peeling, sensitivity
analysis, more frontiers etc. Still, the quality of data is more important in
DEA.

Little a priori information about the underlying technology is needed in a
non-parametric model compared to a parametric model. In terms of infor-
mation to the user the non-parametric approach also provides more detailed
data driven information. Information on the performance of actual peer
units is very useful and in high demand. Anonymity requirements, however,
may work in the opposite direction. A parametric representation provides
the highest level of anonymity. A fair level of anonymity could be reach in
non-parametric models as well, e.g. new efficient DMU can be created using
sampling techniques to cover the actual DMUs.

20



A parametric representation is more complicated to establish than a non-
parametric one, but ones established it is easier to use. In terms of compu-
tation time parametric models are more sensitive to the number of variables
and less depended on the number of DMUs than a non-parametric approach.

7 Conclusion

In this paper, we have proposed to embed modern benchmarking techniques
in interactive benchmarking environments that can be assessed via the inter-
net. We believe that this will increase the usefulness of these techniques since
it will allow individualized analyzes and support learning that is directed by
the learning unit and not by an analyst. Ultimately, such systems most prove
there worth in real life applications. From other computer implementations
of decision support systems etc, however, it is well known that the communi-
cation between the program and the user, including the use of an appealing
design of the interface, is crucial. We have - starting from the theory and
practice of multiple criteria decision making - made several suggestions about
the design of such easy to use and simple interfaces.

Several issues remains to be solved. We have already discussed outliers,
information and anonymity and computation time. A fourth issue concerns
the use of the direction approach in overall benchmarking. We need a better
ranking index with an intuitive interpretation. Also, the computation time
must be reduced when applying a certain direction to all units at the same
time.
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