
[Jpn. J. Rural Econ┻ Vol┻8┼ pp┻1┡11┼ 2006]

Linear Structural Models of Production under Price
Uncertainty : A Mean-Standard Deviation Approach

Takahiro Nakashima┢

The linearization of structural models of random price production may be carried out by
exploiting the mean-standard deviation approach under a location and scale parameter
condition┻ As shown here┼ the linearization problem may be solved under widely em-
ployed assumptions on production technology (i┻eχ┼ a homogeneous production function)
and on the type of risk aversion (i┻eχ┼ constant absolute risk aversion or constant rela-
tive risk aversion)┻ The linear structural models proposed in this study are more practi-
cal than those developed using the expected utility approach┼ for several reasons┻ First┼
they remarkably reduce the cost of estimating agent risk parameters┻ Second┼ they fa-
cilitate the calculation of various analytic measures that are useful for understanding
production behavior┼ such as the risk premium and the elasticity of supply┻ Third┼ they
allow for geometric explanations of agent attitudes toward price uncertainty┻ These
practical attributes would facilitate a structural examination of farmer production be-
havior in the face of price risk┻ Furthermore┼ since the location and scale parameter
condition under which all the arguments in this study are made is satisfied in a large
number of economic models┼ the structural model simplification procedure considered
here would be effective for developing tractable structural models involving alternative
types of randomness┼ such as yield and financial uncertainties┻

Key words : mean-standard deviation approach┼ location and scale parameter condition┼
structural form approach┼ linearization┼ risk aversion┼ competitive firm┼ price uncer-
tainty┻

1┻　Introduction

The production behavior of farmers facing
uncertainty is a major area of empirical re-
search in the field of agricultural economics┼
because agricultural production necessarily in-
volves risk in the form of price and yield un-
certainties┻ Much attention has recently been
paid to a particular empirical approach to in-
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vestigating this behavior that has been
called┼ alternatively┼ the ┣joint estimation
approach─ and the ┣structural form ap-
proach─ (see┼ for example┼ Love and Buccola
[17] ; Saha┼ Shumway┼ and Talpaz [25] ;
Chavas and Holt [6] ; Saha [24]┼ Isik and
Khanna [15] ; and Eggert and Tveteras
[7])┻1) This approach utilizes the first-order
conditions resulting from the optimization of
economic models to estimate directly the
structural parameters that indicate agent risk
preferences and production technologies┻ Pre-
vious research involving such structural mod-
els has made use┼ primarily┼ of one of two
distinct decision-making criteria┻ The first of
these is the expected utility (EU) approach┼
the axiomatic fundamentals of which were
provided by von Neumann and Morgenstern
[31] and Savage [28]┻ The second is the
mean- standard deviation (MS) approach┼



which is extremely practical┼ and was em-
ployed by Markowitz [18] and Tobin [30]┻

At an early stage in the development of
structural production models┼ Love and Buc-
cola [17] adopted the EU hypothesis and de-
veloped a structural model of random yield
production under constant absolute risk aver-
sion (CARA)┻ Saha┼ Shumway┼ and Talpaz
[25] and Chavas and Holt [6] subsequently
relaxed the CARA restriction in their models
of random yield production┼ and of random
yield and random price production┼ respec-
tively┻ Needless to say┼ general models are
most useful in explaining economic phenome-
na that result from various farmer attitudes
toward risk ; however┼ structural production
models are frequently generalizable only at
the cost of tractability┻ In particular┼ opti-
mizing the trade-off between generality and
tractability is a problem in the case of struc-
tural models developed using the EU ap-
proach┼ because these commonly involve an
expectation operator and an intrinsically non-
linear specification┼ the very two factors
that complicate structural models┻ These
troublesome factors make structural estima-
tion a very costly process┻ For example┼ Sa-
ha┼ Shumway┼ and Talpaz [25] conducted nu-
meric integral calculus within nonlinear opti-
mization routines┻ In addition┼ due to the ex-
pectation operator┼ the estimation of some
useful analytical measures┼ such as the risk
premium and the elasticity of supply┼ re-
quires numerical integral calculation┻
Although the EU approach undoubtedly has
axiomatic fundamentals┼ its adoption tends
to considerably reduce the tractability of
structural models┻

During the next stage of the evolution of
structural estimation┼ the MS approach was
adopted as an alternative to the EU ap-
proach┻ The recent popularity of the MS ap-
proach has arisen┼ primarily┼ because of the
theoretical contributions made by Meyer
[19]┻ He demonstrated that the MS approach
is equivalent to the EU approach under a lo-
cation and scale parameter (LS) condition┼
observing that this LS condition is actually
satisfied in a wide range of economic models
as a result of their structures┻ In addition┼ he
successfully translated various EU-based be-
havioral hypotheses┼ such as Arrow [2] and
Pratt's [23] risk aversion measures┼ into ap-

propriate analogues under the MS approach
and the LS condition┻2) This breakthrough
made possible the translation of many EU
models into the MS framework┼ with no loss
of accuracy┻ Moreover┼ these transformed
MS models could be analyzed on the basis of
EU-based behavioral hypotheses┻ Thus┼ the
MS approach is not only practical┼ but is also
flexible enough to provide full explanations
for the LS class of economic models┻ Saha
[24]┼ Isik and Khanna [15]┼ and Eggert and
Tveteras [7] took advantage of Meyer's theo-
retical contributions in their development of
structural models involving randomness┻ Hav-
ing adopted the MS approach┼ they formulat-
ed theoretical models that meet the LS condi-
tion┻ Owing to their theoretical structure┼
these models are equivalent to corresponding
EU models and can be interpreted using EU-
based behavioral hypotheses┻ In addition┼ the
structural models subsequently derived from
these do not involve an expectation operator┼
one of the factors that generally complicates
EU-based structural models┻ Although these
models retain an intrinsic nonlinearity┼ tradi-
tionally the other complicating factor of EU-
based structural models┼ they are far more
tractable than their predecessors┻

This study attempts a further simplifica-
tion of structural production models by ex-
ploiting the MS approach under the LS condi-
tion┻ As a prominent example of a case in
which the LS condition holds┼ Sandmo's [26]
production theory under price uncertainty has
been adopted┼ and an attempt is made to lin-
earize the structural model to which it gave
rise┻ In particular┼ this study demonstrates
that the linearization problem may be solved
under frequently employed conditions on pro-
duction technology┼ i┻eχ┼ a homogeneous pro-
duction function┼ and on the type of risk
aversion┼ namely CARA or constant relative
risk aversion (CRRA)┻ The linear structural
models proposed in this study are more prac-
tical than those developed using the EU ap-
proach┼ for several reasons┻ First┼ they re-
markably reduce the cost of estimating risk
parameters┼ since they do not involve an ex-
pectation operator and are linear ; therefore┼
neither numeric integral calculus nor nonlin-
ear estimation methods are required┻ Second┼
they facilitate the calculation of various use-
ful measures┼ including the risk premium and
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the elasticity of supply┼ because numeric in-
tegral calculation methods are no longer nec-
essary┻ Third┼ they make it possible to ex-
plain agent attitudes toward price uncertain-
ty geometrically┻ In consequence┼ these mod-
els are┼ potentially┼ of practical use in the
structural analysis of the production behavior
of farmers who must manage under unstable
agricultural prices┻ Furthermore┼ the LS con-
dition under which all of the conclusions of
this study obtain is satisfied in a large num-
ber of economic models┻ Thus┼ the procedure
used to simplify the structural model consid-
ered would also be effective in the develop-
ment of tractable structural models involving
alternative random factors┼ such as yield and
financial uncertainties┻

The linear structural models of random
price production considered in this paper are
developed by means of a two-step procedure┻
After a brief review of the economic implica-
tions of the LS condition┼ Sandmo's EU-
based random production theory is translated
into an MS model satisfying the LS condi-
tion┻ As a result of this step┼ the expectation
operator is excluded without a loss of accura-
cy┻ Next┼ a structural model is derived from
the MS model┼ and the possibility of remov-
ing its intrinsic nonlinearity is considered┻ In
the course of solving this linearization prob-
lem┼ special attention is paid to the issue of
the specification of the utility function in the
MS approach under the LS condition┻ Two
functional forms are then proposed┼ one for
each of the cases of CARA and CRRA┻ Final-
ly┼ the practical merits of the linear structur-
al models proposed in this paper are dis-
cussed┻

2┻　MS-Based Random Price Production
Theory

The LS condition considered in this paper is
defined as a condition under which the distri-
butions of random payoffs differ from one
another only by location and scale parame-
ters (Feller [10])┻ Meyer [19] demonstrated
that┼ under this LS condition┼ an agent's ex-
pected utility can be represented using only
the first two moments of his random
payoff┻3) More concretely┼ assume that a ran-
dom payoff ㎅i meets the LS condition┼ and
denote ㌘ as the random variable obtained
from the standardizing transformation of ㎅i┼

㌘＝(㎅i－Ыi)/㎇i┼ where Ыi and ㎇i denote the fi-
nite mean and the standard deviation of ㎅i┼
respectively┻ Under the LS condition on ㎅i┼㌘
is unique┼ regardless of which ㎅i is selected
for the purpose of defining ㌘┻ Therefore┼ the
expected utility from ㎅i(＝Ыi＋㎇i㌘) for any
agent with a von Neumann-Morgenstern utili-
ty function U(㎅i) and a cumulative distribu-
tion function for ㌘┼F(㌘)┼ can be written as
the function of the first two moments of ㎅i┼
as described below:

EU(㎅i) ＝ ゃ
b

a
U(Ыi＋㎇i㌘)dF(㌘)

(1)

≡ V(㎇i┼Ыi)┼

where a and b denote the endpoints of the in-
terval containing the support of ㌘┻ It should
be noted here that┼ since the LS condition
holds for the random payoff ㎅i as a whole┼
no restrictions are placed on the utility func-
tion U(㎅i) or the cumulative distribution
function F(㌘)┻

Meyer subsequently pointed out that the LS
condition is actually satisfied in a wide varie-
ty of EU models┼ owing to the actual struc-
ture of these models┼ because the random
payoff in a given EU model depends linearly
on a random parameter that is unique to that
model┻4) For example┼ in the context of Sand-
mo's [26] random price production theory┼
which has been frequently applied in the field
of agricultural economics┼ the random payoff
(profit) ㎅ may be formalized as :

㎅＝ pq－C(q┼w┼k)－B┼ (2)

where p denotes a random output price┼ q de-
notes output┼ w denotes a vector of variable
input prices┼ k denotes a vector of fixed in-
puts┼ C(q┼w┼k) denotes a variable cost func-
tion┼ and B denotes a fixed cost┻ Since the
random payoff ㎅ is a linear transformation
of the unique random parameter p┼ the distri-
butions of the random payoff ㎅ differ from
one another only by the location parameter
of p┼ namely －C(q┼w┼k)－B┼ and the scale
parameter q┻5) Thus┼ the LS condition is met
through the formation of the random payoff
㎅ itself┻

The implication of the above observation is
that many EU models can be transformed by
means of the MS approach┼ without imposing
assumptions on the von Neumann-Morgen-
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stern utility function (e┻gχ┼ a quadratic utili-
ty function) or the probability density func-
tion of the random payoff (e┻gχ┼ a normal
distribution)┻ Therefore┼ Sandmo's produc-
tion model┼ which meets the LS condition┼
can equivalently be transformed by means of
the MS approach┼ as follows :

Max
q

V(㎇┼Ы)┼

Ы＝ Ыpq－C(q┼w┼k)－B┼ (3)
㎇＝ ㎇pq┼

where V(㎇┼Ы) denotes the utility function un-
der the MS approach┼ where Ы and ㎇┼ respec-
tively┼ denote the mean and standard devia-
tion of ㎅┼ and where Ыp and ㎇p┼ respectively┼
denote the mean and standard deviation of p┻
The equivalency of the new MS model (3) to
the original EU model can be demonstrated
algebraically via the application of standard
calculus and Meyer's Properties 1┼ 2┼ 4┼ 5
and 6┼ which translate EU-based behavioral
hypotheses into an MS framework satisfying
the LS condition┻6┼7)

Property 1：VЫ(㎇┼Ы)＞0 if and only if U㎅
(㎅)＞0┻
Property 2：V㎇(㎇┼Ы)＜0(＝0) if and only if

U㎅㎅(㎅)＜0(＝0)┻

Properties 1 and 2 jointly determine the sign
of the slope of the indifference curve
of V(㎇┼Ы)┼ which is denoted S ( ㎇ ┼ Ы ) ＝
－V㎇(㎇┼Ы)/VЫ(㎇┼Ы)┻8) Thus┼ S(㎇┼Ы) is positive
(zero) if the agent is risk-averse (risk-neu-
tral) (Meyer's Property 3)┻

Property 4：V(㎇┼Ы) is concave if and only
if U㎅(㎅)＞0 and U㎅㎅(㎅)㎠0┻
Property 5：SЫ(㎇┼Ы)＜0(＝0┼＞0) if and on-

ly if absolute risk aversion is decreasing (con-
stant┼ increasing)┻
Property 6：St(t㎇┼tЫ)＜0(＝0┼＞0) if and

only if relative risk aversion is decreasing
(constant┼ increasing)┻

As a result of this translation of the EU mod-
el into an MS model satisfying the LS condi-
tion┼ one of the factors typically complicat-
ing EU-based structural models┼ namely the
expectation operator┼ has been excluded with-
out a loss of accuracy┻

3┻　Linearization of the Structural Model

So that a structural model may be derived

from the MS model (3)┼ it is assumed that
(3) has an interior solution┻ Under this as-
sumption┼ the first-order condition character-
izing the optimum is given by :9)

Ыp－S(㎇┼Ы)㎇p＝ Cq(q┼w┼k)┻ (4)

When equation (4) is divided by average vari-
able cost C ( q┼w┼ k ) / q and is modified
through the addition of an error term ㎢ that
is associated with optimization error┼ a
structural model of random price production
is obtained :

Ыpq
C(q┼w┼k) ＝ ㎥＋S(㎇┼Ы)

㎇
C(q┼w┼k)＋㎢┼ (5)

where ㎥＝ゅ ln C(q┼w┼k)/ゅ ln q is the output
elasticity of variable cost┻ In the above
model (5)┼ the left-hand term Ыpq/C(q┼w┼k)
and part of the second term on the right-
hand side┼ namely ㎇/C(q┼w┼k)┼ are observ-
able given actual values for Ыp┼ ㎇p┼ q and
C(q┼w┼k)┻10) On the other hand┼ the output
elasticity of variable cost┼ ㎥┼ and the slope
of the indifference curve of the utility func-
tion in the MS framework┼ S(㎇┼Ы)┼ are gen-
erally unknown functions to be estimated┻
Thus┼ the structure of model (5) is deter-
mined by the functional specifications chosen
for ㎥ and S(㎇┼Ы) ; moreover┼ it is clear that
this formulation may be reduced to a linear
model if ㎥ is specified to be a constant func-
tion (i┻eχ┼ a parameter) and S(㎇┼Ы) is speci-
fied to be a function that is linear in parame-
ters┻ The following discussion demonstrates
that these specifications may be selected un-
der widely employed assumptions on produc-
tion technologies and types of risk aversion┻

The parameterization of ㎥ may be obtained
easily under the following assumption┻

Assumption 1：The production function is
well behaved and homogeneous of degree m in
the short-run┻11)

Under this assumption┼ the corresponding
variable cost function may be written as :

C(q┼w┼k) ＝ q
１
m╲(w┼k)┼ (6)

where ╲(w┼k) denotes a non-decreasing and
linear homogeneous function in w┻12) The cost
function (6) yields ㎥＝1/m ; that is┼ ㎥ is the
reciprocal of the degree of homogeneity of
the underlying production function┻ There-
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fore┼ ㎥ is a parameter that is independent of
q┼ w and k┻

The linearization of (5) may be achieved
through a linear specification of S(㎇┼Ы)┼
which┼ in turn┼ may be achieved under either
of the following two assumptions┻

Assumption 2┻1：The agent is a risk avert-
er with constant absolute risk aversion
(CARA)┻
Assumption 2┻2：The agent is a risk avert-

er with constant relative risk aversion
(CRRA)┻

In choice problems not involving uncertainty┼
an ordinal utility function is sufficient ; that
is┼ the specification of the utility function
has no intrinsic meaning┻ Ordinal utility the-
ory┼ however┼ does not hold for the MS ap-
proach under the LS condition┻ As is appar-
ent from Meyer's Property 4 (i┻eχ┼ the concav-
ity condition)┼ the utility function V(㎇┼Ы)
has a cardinal meaning and┼ therefore┼ its
functional form must be appropriately speci-
fied prior to a discussion of whether it is pos-
sible to specify the slope of the indifference
curve S(㎇┼Ы) as a function that is linear in
parameters┻

Two sets of conditions must be fully satis-
fied in the specification of V(㎇┼Ы)┻ One of
these comes from Meyer's Properties 1┼ 2┼ 4┼
5 and 6┼13) while the other derives from the
Arrow-Pratt risk aversion measures┻ The for-
mer is straightforward┻ For example┼ Proper-
ty 1 restricts V(㎇┼Ы) to be increasing in Ы┼
while Property 2 specifies that it must be de-
creasing in ㎇┼ if the agent is a risk averter┻
Similarly┼ Property 4 stipulates that the rele-
vant Hessian matrix with respect to Ы and ㎇
is negative semi-definitive if the agent is a
risk averter┻ Properties 5 and 6 restrict the
slope of the indifference curve┼ S(㎇┼Ы)┻ In
particular┼ Property 5 restricts S(㎇┼Ы) to be
decreasing (constant┼ increasing) in Ы when
the agent's absolute risk aversion is decreas-
ing (constant┼ increasing)┼ while Property 6

restricts it to be decreasing (constant┼ in-
creasing) along rays through the origin when
the agent's relative risk aversion is decreas-
ing (constant┼ increasing)┻ In contrast┼ the
second set of conditions requires careful con-
sideration┼ because it is implicitly imposed
by the conditions imposed by Meyer's Proper-
ties 5 and 6┻ As mentioned by Saha [24]┼ the
Arrow-Pratt definition of risk aversion se-
verely restricts the relationship between ab-
solute and relative risk aversion┻ More for-
mally┼ let A(㎅) and R(㎅)＝㎅A(㎅) respectively
denote absolute and relative risk aversion┻
Then the differentiation of R(㎅) yields R㎅(㎅)
＝A(㎅)＋㎅A㎅(㎅)┻ If absolute risk aversion is
decreasing (DARA)┼ i┻eχ┼ A(㎅)＞0 and A㎅(㎅)
＜0┼ then the sign of R㎅(㎅) is not deter-
mined┻ In other words┼ DARA does not
restrict the type of relative risk aversion┻
However┼ when the absolute risk aversion
measure is constant (CARA) or increasing
(IARA)┼ i┻eχ┼ when A(㎅)＞0 and A㎅(㎅)♢0┼
the sign of R㎅(㎅) is restricted to being posi-
tive┻ That is┼ increasing relative risk aver-
sion (IRRA) is indicated┼ and decreasing rela-
tive risk aversion (DRRA) and CRRA are
ruled out┻ As summarized in Table 1┼ the
combination of absolute and relative risk
aversion is uniquely determined┼ except that
relative risk aversion is not restricted under
DARA and absolute risk aversion is not
restricted under IRRA┻14) Under the EU for-
mulation┼ attention need not be paid to this
relationship┼ since it is automatically ful-
filled in the specification of a von Neumann-
Morgenstern utility function┻ However┼ its
fulfillment is not guaranteed in the MS ap-
proach under the LS condition ; therefore┼
this relationship must be explicitly taken into
consideration in the specification of the utili-
ty function V ( ㎇ ┼ Ы )┻ For example┼ since
CARA implies IRRA┼ both of the conditions
that Meyer's Properties 5 and 6 impose on V
(㎇┼Ы) must be fulfilled simultaneously┻ Thus┼
the slope of the indifference curve S(㎇┼Ы)

Table 1.　Relationships among Arrow-Pratt risk aversion measures（Saha [24])

DRRA CRRA IRRA

DARA Feasible Feasible Feasible

CARA Infeasible Infeasible Feasible

IARA Infeasible Infeasible Feasible
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must be increasing along rays through the ori-
gin┼ as well as constant in Ы┻

The following discussion provides the pa-
per's main results regarding the functional
specification of V(㎇┼Ы)┻ These results are
consistent with Assumptions 2┻1 (CARA) and
2┻2 (CRRA) under the LS condition┻ An at-
tempt is then made to derive further results
that yield a specification of S(㎇┼Ы) that is
linear in parameters┻ These modifications
convert the structural model (5) into a linear
model┻
　1)　Constant absolute risk aversion

(CARA)
An additively separable and partially linear

functional form┼ such as

V(㎇┼Ы) ＝ ЬЫ＋h(㎇)┼ (7)

where Ь denotes a positive parameter and
h(㎇) denotes a monotonically decreasing and
strictly concave function in ㎇┼ is appropriate
under Assumption 2┻1 and the LS condition
(see the Appendix for the derivation of (7))┻
However┼ the above functional form (7) may
be further restricted so that the slope of the
indifference curve S(㎇┼Ы) is linear in parame-
ters┻ In particular┼ this study focuses on the
following functional form :

V(㎇┼Ы) ＝ Ы－
n

∑
i＝1

Эi

i!
㎇i┼ (8)

where the Эi(i＝1┼2┼3┼…┼n) denote parame-
ters that are restricted to Эi♢(i＝1┼2┼3┼…┼n)
and Эi＞0┼ for at least one i(i＝2┼3┼4┼…┼n)┻
As may be easily confirmed┼ this functional
form (8) belongs to the family of forms spec-
ified in (7)┼ and the slope of its indifference

curve┼ S(㎇┼Ы)＝∑n
i＝1Эi㎇i－1/(i－1)!┼ is linear

in the parameters Эi(i＝1┼2┼3┼…┼n) (see the
Appendix for the derivation of (8))┻

Through a substitution of the slope of this
indifference curve for (5)┼ a structural model
of random price production may be obtained┻

Model I：　Y＝ ㎥＋
n

∑
i＝1
ЭiXi＋㎢┼ (9)

where Y＝Ыp q/C(q┼w┼k) and Xi＝㎇i/{(i－
1)!C(q┼w┼k)}(i＝1┼2┼3┼…┼n)┻ In Model I┼
the dependent variable Y and the explanatory
variables Xi(i＝1┼2┼3┼…┼n) are observable
given actual values of Ыp┼ ㎇p┼ q and
C(q┼w┼k)┻ In addition┼ as has been previous-

ly discussed┼ ㎥ is a parameter under Assump-
tion 1┻ Thus┼ the linearization of the struc-
tural model may be readily achieved under
Assumptions 1 and 2┻1┻
　2)　Constant relative risk aversion

(CRRA)
Although additive separability and partial

linearity play a crucial role in the specifica-
tion of (7)┼ their functional properties are
not applicable under Assumption 2┻2┼ as de-
scribed in the following corollary :

Corollary 1：V(㎇┼Ы) is 1) non-additively
separable┼ 2) nonlinear in Ы and ㎇┼ and 3) ho-
mothetic┼ if the agent is a risk averter with
CRRA under the LS condition (see the Ap-
pendix for the proof)┻

Instead┼ the third part of the above Corollary
1 is significant here┼ because a large fraction
of the functional forms that have been devel-
oped and exploited in economic analyses be-
long to this homothetic family┻ Therefore┼
candidates for the specification of V(㎇┼Ы)
can be chosen from this family┻ For example┼
consider the constant-elasticity-of-substitu-
tion (CES) function┻ A modified version of
the CES function is given by

V(㎇┼Ы) ＝ (Ым－Ю㎇м)
１
м ┼ (10)

where Ю and м denote parameters that are re-
stricted as Ю＞0 and м＞1┼ and that are appro-
priate under Assumption 2┻2 and the LS
condition┻15┼16) Then┼ this functional form
(10) may be further restricted so as to yield a
slope for the indifference curve S(㎇┼Ы) that
is linear in parameters┻ Since its slope de-
rived from (10)┼ S(㎇┼Ы)＝ЮЫ1－м㎇м－1┼ is linear
in Ю but nonlinear in м┼ the value of м may be
assigned arbitrarily a priori┼ as long as м＞1┻
This study focuses on the case of м＝2┼ which
implies

V(㎇┼Ы) ＝ (Ы2－Ю㎇2)
１
２┻ (10′)

Through a substitution of the slope of the
indifference curve of (10′)┼ S(㎇┼Ы)＝ЮЫ－1㎇┼
for (5)┼ another structural model of random
price production may be obtained┻

Model II：　Y＝ ㎥＋ЮZ＋㎢┼ (11)

where Z＝㎇2/ЫC(q┼w┼k)┻ The dependent vari-
able Y and the explanatory variable Z are ob-
servable given actual values of Ыp┼ ㎇p┼ q and
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C(q┼w┼k)┻ Furthermore┼ ㎥ is a parameter un-
der Assumption 1┻ Thus┼ the structural model
of random price production likewise may be
successfully linearized under Assumptions 1
and 2┻2┻

4┻　Discussion

Models I and II┼ which are linear structural
models of random price production┼ were de-
veloped under the assumptions of CARA and
CRRA ; moreover┼ they have been widely em-
ployed in EU-based empirical studies (e┻gχ┼
Love and Buccola [17] ; Bontems and Thomas
[3])┻ For example┼ the exponential function
(CARA ; Freund [11]) and the power function
(CRRA ; Hansen and Singleton [13]) are well-
known specifications of von Neumann-Mor-
genstern utility functions┻ Compared to EU-
based models based on these functional
forms┼ the linear models considered in this
study have several practical advantages┻

First┼ they greatly reduce the cost of esti-
mating agent risk preferences regarding ran-
dom price production┼ since they do not in-
volve an expectation operator and are linear┻
Therefore┼ their estimation requires neither
numeric integral calculus nor nonlinear esti-
mation methods┻ In fact┼ these models are
probably the simplest structural models of
random price production that have so far
been developed┻

Second┼ these models facilitate the calcula-
tion of various useful tools that are common-
ly employed to analyze agent production be-
havior┼ such as the risk premium and the
elasticity of supply┻ The risk premium┼
which is denoted by ㎆I in Model I and by ㎆II in
Model II┼ may be obtained by substituting
the functional forms (8) and (10′) for the
second term on the left-hand-side of (4) :

㎆I＝
n

∑
i＝1
Эi

㎇i

(i－1)!q
┼ (12)

㎆II＝ Ю
㎇2

Ыq
┻ (13)

These variables represent marginal willing-
ness-to-pay for the insurance that secures ex-
pected profit┻ In the case of the elasticity of
supply┼ for example┼ the expected price┼
price-risk┼ and safety-income elasticities may
be derived from a comparative-static analysis
of the models┻ The expected price elasticity
of supply┼ denoted by ㎖I in Model I and by ㎖II

in Model II┼ and the price-risk elasticity of
supply┼ denoted by ㎤I in Model I and by ㎤II in
Model II┼ may be respectively obtained as:

㎖I＝
Ыpq

㎥(㎥－1)C(q┼w┼k)＋
n

∑
i＝2
Эi

㎇i

(i－2)!

┼

(14┳a)

and

㎖II＝
Ыpq(1＋ЮЫ－2㎇2)

㎥(㎥－1)C(q┼w┼k)＋ЮЫ－3㎇2(Ы2－Ю㎇2) ┼

(15┳a)

㎤II＝－
2ЮЫ－1㎇2

㎥(㎥－1)C(q┼w┼k)＋ЮЫ－3㎇2(Ы2－Ю㎇2) ┻

(15┳b)
Needless to say┼ these elasticities represent
agent supply responses to the mean and the
standard deviation of the output price┻ The
safety-income elasticity of supply┼ denoted
by ┇II┼ may be derived from Model II as

┇II＝
ЮЫ－2㎇2L

㎥(㎥－1)C(q┼w┼k)＋ЮЫ－3㎇2(Ы2－Ю㎇2) ┼

(15┳c)
where L is the amount of safety income┻17)

The elasticity ┇II would be a meaningful mea-
sure by which to evaluate the effect of a di-
rect payment policy on supply under price un-
certainty┻ These analytical tools can be calcu-
lated easily using the estimates of the param-
eters ㎥┼ Эi(i＝1┼2┼3┼…┼n)┼ and Ю┼ and the ac-
tual values of Ыp┼ ㎇p┼ q and C(q┼w┼k)┻ The
simplicity of these calculations contrasts
sharply with the complexity of analogous
ones in the cases of EU-based structural mod-
els┼ where more complex procedures┼ such as
numerical integral calculation┼ are commonly
required to calculate these measures┻

Third┼ these models make it possible to ex-
plain agent attitudes toward price uncertain-
ty geometrically┻ For example┼ under the ad-
ditional assumptions Эi＝0(i＝1┼2┼…┼k－1┼
k＋1┼…┼n ; kм1)┼ Model I reduces to a two-
variable model :

Model I′： Y＝ ㎥＋ЭkXk＋㎢ (k＝2┼3┼4┼…┼n)┻

(9′)
A scatter plot of (Xk┼Y) indicates whether an
agent is risk-averse┻ If Xk is positively corre-

㎤I＝－

n

∑
i＝1
Эi

i㎇i

(i－1)!

㎥(㎥－1)C(q┼w┼k)＋
n

∑
i＝2
Эi

㎇i

(i－2)!

┼

(14┳b)
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lated with Y (i┻eχ┼ Эk＞0)┼ then the agent is
risk-averse┻ In contrast┼ if Xk is not correlat-
ed with Y (i┻eχ┼ Эk＝0)┼ then the agent is
risk-neutral┼ for the reason that the relation-
ship between Xk and Y decides the sign of the
slope of the indifference curve upon which
Model I′is based┼ i┻eχ┼ S(㎇┼Ы)＝Эk ㎇k－1/
(k－1)!┻ If Эk＞0┼ then this slope is positive ;
when Эk ＝ 0┼ it is instead equal to zero
(Meyer's Property 3)┻ In particular┼ the case
of k＝2 is noteworthy because┼ if a positive
correlation between X2 and Y is observed┼ the
angle of the scatter plot can itself be inter-
preted as a measure of absolute risk aver-
sion┻ That is┼ if k＝2┼ the utility function
(8) upon which Model I′is based becomes a

linear mean-variance model┼ V(㎇┼Ы)＝Ы－
Э2
２

㎇2 ; therefore┼ the parameter Э2 may be inter-
preted as a measure of absolute risk
aversion┻18) Furthermore┼ the intercept of the
Y-axis indicates the existence of economies of
scale in production because┼ as has been al-
ready discussed┼ ㎥ represents the reciprocal
of the degree of homogeneity of the produc-
tion function┻ The judgment criterion in this
case is whether the intercept is greater than
(diseconomy of scale) or less than (economy
of scale) one┻ Such a geometric analysis
would be useful as a preliminary examination
of agent production behavior under price un-
certainty┻

5┻　Conclusion

This study has considered the linearization
of structural models of random price produc-
tion by exploiting the MS approach under the
LS condition; it has also shown that such lin-
earization can be achieved under widely em-
ployed assumptions on production technology
(i┻eχ┼ a homogeneous production function)
and on the type of risk aversion (i┻eχ┼ CARA
and CRRA)┻ As has been previously noted┼
the linear structural models proposed in this
study excel┼ especially in tractability┼ and
they would be useful in performing a practi-
cal structural analysis of farmer production
behavior under price uncertainty┻ Despite the
fact that this study has focused on the lin-
earization of structural models of random
price production┼ the simplification proce-
dure proposed should be applicable also to
other models┻ For many production theories┼

the LS condition holds┼ and the functional
specification of the MS approach discussed
here would be applicable┻ An extensive appli-
cation of this simplification procedure to oth-
er models remains for future research┻

1) The reduced-form approach┼ which directly
specifies supply and derived demand functions┼
has been adopted as well (e┻gχ┼ Chavas and Holt
[5]; Pope and Just [22]; Appelbaum and Ullah
[1])┻ Although the approach is convenient for
understanding agent responses to exogenous
variables┼ it does not facilitate the derivation
of structural parameters indicating attitudes
toward risk┻
2) Sinn [29] independently studied the economic

implications of the LS condition┻ He referred to
a set of random variables for which the LS con-
dition holds as a linear distribution class┻
3) The normal distribution condition┼ which has

been often cited as a sufficient condition for
the EU and MS approaches to be consistent
with one another┼ is a special case of the LS
condition┻ This relationship is apparent from
the fact that normality is preserved under a lo-
cation and scale shift┻
4) Sandmo's [26] random price production theo-

ry┼ the extended theories ( e┻ gχ ┼ Holthausen
[14]; Feder [8]; Feder┼ Just┼ and Schmitz [9])┼
and Tobin's [30] portfolio theory are all promi-
nent examples of frameworks satisfying the LS
condition┻
5) Sandmo's [26] production model can be inter-

preted as a model in which the location and
scale shift parameters are decided endogenous-
ly┻
6) Functions with subscripts denote partial

derivatives┼ and all functions are assumed to
be differentiable┻
7) In proving the necessity of Properties 2 and
4┼ it is implicitly assumed that the second de-
rivative of the von Neumann-Morgenstern utili-
ty function U㎅㎅(㎅) does not change sign depend-
ing on the level of the payoff ㎅ ; that is┼ the
situation that was discussed by Friedman and
Savage [12]┼ namely the coexistence of insur-
ance and a lottery┼ is ruled out┻
8) As in traditional consumer theory┼ the slope

of the indifference curve S(㎇┼Ы) is obtained
through the implicit differentiation of V(㎇┼Ы)┼
for V(㎇┼Ы)＝const┻
9) The second-order condition is given by :
－Cqq(q┼w┼k)－㎇p{SЫ(㎇┼Ы)(Ыp－Cq(q┼w┼k))
　＋S㎇(㎇┼Ы)㎇p} ＜ 0┻

10) Strictly speaking┼ Ыp and ㎇p are exogenous
variables in a subjective sense; however┼ they
have been estimated in the past (e┻gχ┼ Saha┼
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Shumway┼ and Talpaz [25]; Chavas and Holt
[6])┻
11) Strict concavity on the production function
(m＜1) is not imposed here┼ since such a con-
dition is not always necessary for the exis-
tence and uniqueness of an optimal solution in
Sandmo's [26] production model┻

12) See Chambers [4┼ pp┻68┡77] for details re-
garding the duality between the production
function and the cost function under Assump-
tion 1┻
13) Property 3 does not need to be considered in

the specification of V(㎇┼Ы)┼ because it auto-
matically applies if Properties 1 and 2 hold┻

14) The relationships presented in Table 1 can be
explained using a similar discussion┼ if a given
type of relative risk aversion is assumed┻ For
example┼ in the case of DRRA (A(㎅)＞0 and
R㎅(㎅)＜0)┼ A㎅(㎅) is restricted to being nega-
tive┼ which implies DARA┻

15) Although the sign of the parenthetical ex-
pression (Ым－Ю㎆м) in (10) must be positive┼ this
fact can be checked a posteriori through the use
of estimation techniques and actual data┻
16) During the refereeing process of this article┼

Nelson and Escalante [21] modified the linear
mean-variance model to V(㎇┼Ы)＝－(Ы2－㎐㎇2)－1

(㎐＞0); moreover┼ they showed that this model
represents CRRA under the LS condition┻
17) In the case of CRRA that implies DARA (see

Table 1)┼ supply is increasing in safety income;
in addition┼ in the case of CARA┼ it is indepen-
dent of safety income┻ See Sandmo [26][27]┻

18) See Freund [11] for the derivation of the lin-
ear mean-variance model┼ and for the interpre-
tation of the risk parameter┻ Nakashima [20]
used Model I′(k＝2) to analyze Japanese rice
production empirically for the period of 1995┡
1997┻
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Appendix

1┻　Constant Absolute Risk Aversion
(CARA)

If the agent is a risk averter of type CARA
under the LS condition┼ then V(㎇┼Ы) must
fully meet the following conditions :

VЫ(㎇┼Ы) ＞ 0┼ (A1)
V㎇(㎇┼Ы) ＜ 0┼ (A2)
VЫЫ(㎇┼Ы)㎠ 0┼ (A3┳a)
V㎇㎇(㎇┼Ы)㎠ 0┼ (A3┳b)

VЫЫ(㎇┼Ы)V㎇㎇(㎇┼Ы)－V2Ы㎇(㎇┼Ы)♢ 0┼(A3┳c)
VЫ㎇(㎇┼Ы)VЫ(㎇┼Ы)－VЫЫ(㎇┼Ы)V㎇(㎇┼Ы) ＝ 0┼(A4)
V㎇㎇(㎇┼Ы)VЫ(㎇┼Ы)－VЫ㎇(㎇┼Ы)V㎇(㎇┼Ы) ＜ 0┻(A5)

Conditions (A1)┡(A3)┼ which are at all times
imposed when the agent is risk-averse under
the LS condition┼ derive from Properties 1┼
2┼ and 4┼ respectively┻ Condition (A4) de-
rives from Property 5 when SЫ(㎇┼Ы)＝0 is ex-
pressed in terms of V(㎇┼Ы)┻ Similarly┼ condi-
tion (A5) may be derived from Properties 5
and 6 by expressing St(t㎇┼tЫ)＞0 in terms of
V(㎇┼Ы)┼ setting t＝1┼ and then substituting
(A4) for the inequality┻

The functional specification of V(㎇┼Ы) may
be carried out using the signs of the differen-
tial coefficients that fully satisfy conditions
(A1)┡(A5)┻ Although this procedure relies on
a trial-and-error method┼ it allows the objec-
tive to be accomplished in three steps┻ First┼
a rough outline of V(㎇┼Ы) may be drawn us-
ing (A1) and the signs of the derivatives VЫЫ
(㎇┼Ы)＝0┼ VЫ㎇(㎇┼Ы)＝0┼ and V㎇㎇(㎇┼Ы)＜0┼
which satisfy (A3┳a)┼ (A3┳b)┼ (A3┳c)┼ (A4)┼
and (A5)┻ For example┼ the combination of
(A1) and VЫЫ(㎇┼Ы)＝0 indicates that V(㎇┼Ы)
is linearly increasing in Ы ; in addition┼ VЫ㎇
(㎇┼Ы)＝0 indicates that it is additively sepa-
rable┻ These inferences together imply the
form :

V(㎇┼Ы) ＝ ЬЫ＋h(㎇)┼ (A6)
where Ь denotes a positive parameter and
h(㎇) denotes some function of ㎇┻ Second┼
form (A6) must be restricted so that it meets
the remaining conditions┼ (A2) and V㎇㎇(㎇┼Ы)
＜0┻ This step may be easily carried out by
imposing the restriction that h(㎇) be monoto-
nously decreasing and strictly concave┻ Thus┼
form (A6)┼ in conjunction with the restric-
tions Ь＞0┼ h㎇(㎇)＜0┼ and h㎇㎇(㎇)＜0┼ fully
meets conditions (A1)┡(A5)┻ Therefore┼ a
functional form belonging to this family rep-
resents CARA under the LS condition (e┻gχ┼
Freund's [11] linear mean-variance model)┻
The third step involves a further restriction
of (A6) that yields a slope for the indiffer-
ence curve S(㎇┼Ы) that is linear in parame-
ters┻ Since the S(㎇┼Ы) derived from (A6)
may be written as

S(㎇┼Ы) ＝－
h㎇(㎇)
Ь
┼ (A7)

the desirable result is obtained if an arbitrary
number in the range Ь＞0 is selected for the
denominator a priori┼ and if the numerator is
specified to be a linear function of its param-
eters┻ This study focuses on the case in which
Ь＝1 and h(㎇) is specified to be a polynomial

10



function┼ so that its first derivative is linear
in parameters┻ Now consider the nth-order
Taylor series approximation of h(㎇)┻ By ex-
panding h(㎇) and evaluating ㎇ at ㎇0＝0┼ the
following function may be obtained :

h(㎇)≪ h(㎇0)＋
n

∑
i＝1

h(i)(㎇0)
i!

㎇i┻

Defining h(㎇0)＝Э0┼ h(i)(㎇0)＝－Эi(i＝1┼2┼3┼
…┼n) then yields

h(㎇)≪ Э0－
n

∑
i＝1

Эi

i!
㎇i┼ (A8)

where the Эi(i＝0┼1┼2┼…┼n) are parameters┻
Since┼ as has already been mentioned┼ h(㎇)
must meet the restrictions h㎇(㎇)＜0 and h㎇㎇
(㎇)＜0┼ the parametric restrictions┼ Эi♢0(i＝
1┼2┼3┼…┼n) and Эi＞0┼ for at least one i(i＝
2┼3┼4┼…┼n)┼ are imposed on (A8)┻ Note also
that┼ as the parameter Э0 does not play an
important role┼ Э0＝0 is assumed a priori┻
The substitution of (A8)┼ Ь＝1┼ and Э0＝0 for
(A6) yields a functional form that is relevant
to CARA under the LS condition :

V(㎇┼Ы) ＝ Ы－
n

∑
i＝1

Эi

i!
㎇i┼ (A9)

where the above-mentioned parametric re-
strictions on Эi(i＝1┼2┼3┼…┼n) are imposed┻

2┻　Constant Relative Risk Aversion
(CRRA)

If the agent is a risk averter of type CRRA
under the LS condition┼ then V(㎇┼Ы) must

satisfy conditions (A1)┡(A3)┼ as well as the
following conditions :

VЫ㎇(㎇┼Ы)VЫ(㎇┼Ы)－VЫЫ(㎇┼Ы)V㎇(㎇┼Ы)＞ 0┻
(A10)

ゅ
ゅt(－V㎇(t㎇┼tЫ)

VЫ(t㎇┼tЫ)) ＝ 0┻ (A11)

Condition (A10) may be derived from Proper-
ty 5 by expressing SЫ(㎇┼Ы)＜0 in terms of
V(㎇┼Ы) (see Table 1)┻ Condition (A11) is
merely an alternate expression of the condi-
tion St(t㎇┼tЫ)＝0 (Property 6)┻

As discussed in the text┼ the three parts of
Corollary 1 follow from an examination of
these conditions┼ as follows :

Proof of the first part of Corollary 1 : Sup-
pose that V(㎇┼Ы) is additively separable┼
i┻eχ┼ VЫ㎇(㎇┼Ы)＝0┻ Then┼ condition (A10) re-
duces to VЫЫ(㎇┼Ы)V㎇(㎇┼Ы)＜0┻ This condition
reduces further to VЫЫ(㎇┼Ы)＞0┼ as a conse-
quence of condition (A2)┻ However┼ this in-
equality contradicts condition (A3┳a)┼ and
the desired result is therefore obtained┻

■

Proof of the second part of Corollary 1 :
Suppose that V(㎇┼Ы) is linear in either Ы or ㎇
and┼ thus┼ that VЫЫ(㎇┼Ы)＝0 or V㎇㎇(㎇┼Ы)＝0┻
Then condition (A3┳c) reduces to V2Ы㎇(㎇┼Ы)㎠
0┼ which implies VЫ㎇(㎇┼Ы)＝0┻ However┼ this
means that V(㎇┼Ы) is additively separable┼
which contradicts the first part of Corollary
1┻ Therefore┼ the desired result is obtained┻

■

Proof of the third part of Corollary 1 : This
follows directly from condition (A11) and
Lau's [16] Lemma┻

■
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