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Risk Aversion and Optimal Input Utilization under
State Contingent Technology

Motoi Kusadokoro＊

The theory of production under uncertainty predicts that, in a single input case, a risk-
averse farmer with fair insurance increases fertilizer and decreases pesticide. However, em-
pirical studies do not always support the theoretical predictions. Chambers and Quiggin
presented state contingent technology and a method to decompose the difference of optimal
revenues between farmers with different risk attitudes to the pure-risk effect and the ex-
pansion effect. The theory has potential to explain the ambiguous results in the empirical
studies. However, because their analyses only considered risk-averse vs. risk-neutral farm-
ers and assumed some restrictive conditions on the technology, the implication was limited.
This paper aims to address these weaknesses. An alternative method of decomposition is
introduced to consider the degree of risk-aversion. Local property of marginal revenue-cost
function is discussed to examine the sign of expansion effect under more general conditions
of technology. This paper provides a theoretical basis for the ambiguity in the empirical
studies.

Key words: uncertainty, pesticide, fertilizer, state contingent technology, degree of risk-
aversion, pure-risk effect, expansion effect, marginal revenue-cost function.

　
1. Introduction

Optimal input utilization under uncertainty
has been intensively studied in agricultural eco-
nomics in the last three decades. It has been
well analyzed theoretically that, in a single in-
put case, a risk-averse farmer uses less (more)
inputs than a risk neutral farmer if the in-
put increases (decreases) the variability of out-
puts (e.g., Pope and Kramer [11] and Ra-
maswami [13]). Accordingly, an input which
increases (decreases) the variability of outputs
is called a risk-increasing (risk-decreasing) in-
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put. Most empirical studies estimating agricul-
tural production technology under uncertainty
showed that fertilizer is a risk-increasing input,
while pesticide is a risk-decreasing input, which
matches with our intuition (see Roumasset et
al. [16] for fertilizer and Marra and Carlson [8]
for pesticide).

Given the nature of these inputs, the theory
predicts that a risk-averse farmer with a fair
insurance will increase the utilization of fertil-
izer, but decrease the utilization of pesticide,
because she will behave as a risk-neutral farmer
(Nelson and Loehman [10]). However, empirical
studies which estimated the effect of insurance
on the factor demand of fertilizer and pesticide
have not been able to produce clear-cut results
as predicted (e.g., Horowitz and Lichtenberg [6]
and Smith and Goodwin [17]).

Following them, some studies tried to explain
the mixed results theoretically. Loehman and
Nelson [7] showed that in the case of multi in-
put production technologies, whether a risk-
averse farmer uses more inputs than a risk-
neutral farmer depends not only on the effect
of input on variability of output but also the
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substitutability or complementarity between in-
puts. Roosen and Hennessy [14] concluded that
additional restrictive conditions on the produc-
tion technology are necessary to assure that an
increase in the degree of risk-aversion reduces
(increases) the optimal input utilization.

These studies assumed the stochastic produc-
tion function (SPF) to represent the production
technology under uncertainty. Chambers and
Quiggin [4], on the other hand, studied the ef-
fect of fair insurance on the revenues and the
input use under the state-contingent technol-
ogy (SCT). They decomposed the effect on the
optimal revenues to a part representing the dif-
ference of the degrees of riskiness (the pure-risk
effect) and a part representing the difference of
the expected values (the expansion effect), and
showed that even if the pure-risk effect gives an
incentive to increase (decrease) the input uti-
lization, the total cannot be always determined:
If the expansion effect gives the opposite incen-
tive, the total difference of input utilization is
ambiguous.

However, Chambers and Quiggin [4] still have
two points of weakness. First, they did not con-
sider the effect of degree of risk-aversion. Most
of agricultural policies intended to promote or
regulate input uses by mitigating uncertainty
do not remove all uncertainty the farmers con-
front. It is necessary to understand the effect of
degree of risk-aversion on the input utilization
in order to examine the effect of such policies
(Roosen and Hennessy [14]). Second, they as-
sumed only constant absolute riskiness (CAR)
technology or constant relative riskiness (CRR)
technology, and did not consider if the CAR or
CRR restriction was necessary to determine the
property of pure-risk effect and expansion effect
respectively. As a result, they cannot examine
the total difference of input utilization under
general condition of technology, and the impli-
cation of their theoretical analyses is limited.

This paper extends the results of Chambers
and Quiggin [4]. The input utilization of farm-
ers with different degrees of risk-aversion is com-
pared under more general conditions of technol-
ogy. To this end, first, this paper uses an alter-
native way to decompose the effect of degree of
risk-aversion on the revenues into the pure-risk
effect and the expansion effect. Second, instead
of imposing CAR or CRR, this paper examines
the local property of technology. The marginal
revenue-cost function with a certain increment

of revenues (denoted by function D) is clas-
sified to risk substitute and risk complement
near the optimum. We will see that the decom-
position works well when the effect of degree
of risk-aversion is considered. The property of
pure-risk effect does not depend on the technol-
ogy considered in this paper. Consequently, the
sign of incentive which the pure-risk effect gives
for the input use depends on the type of input
(whether it is a risk substitute or risk comple-
ment) at the optimal. In contrast, the property
of expansion effect depends on the technology
(whether D is risk substitute or risk comple-
ment) at the optimal. Consequently, the sign
of incentive which the expansion effect gives for
the input use depends on the type of technology
and the type of input (whether it is regressive
or non-regressive) at the optimal. Because the
total effect is the sum of pure-risk effect and ex-
pansion effect, the sign cannot be always deter-
mined. Therefore, this paper provides a theo-
retical explanation of the ambiguity of the effect
of risk on input utilization.

This paper starts the following sections from
the explanation of the setting of the analyses.
　

2. Setting

We consider farmers who produce products
of M kinds using inputs of N kinds. The farm-
ers face states of nature of S kinds, which affect
productivity and price of the products (e.g., pre-
cipitation, incidence of pests, depression, and
etc.). A vector x ∈ RN

+ denotes the bundle
of inputs committed before the realization of
a state of nature. Therefore, the states of na-
ture represent the production and price uncer-
tainty. A SCT transforms x into a matrix of
state-contingent outputs z ∈ RM×S

+ of which
each column vector zi ∈ RM

+ shows the out-
puts that would be produced if state of nature
i (1 ≤ i ≤ S) were to occur. Consequently,
z represents the potential output the farmer
might obtain through her management. From
Chambers and Quiggin [3], the SCT is defined
by the input set:
　X(z) = {x ∈ RN

+ : x can produce z ∈ RM×S
+ }.

We denote the matrix of the product prices
by q ∈ RM×S

++ . Each column vector qi ∈ RM
++

shows the bundle of product prices that would
be realized if state of nature i were to occur.
The state-contingent revenue vector r ∈ RS

+

can be defined as the diagonal elements of q′z.
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The element ri of r shows the revenue that the
farmer would obtain if state of nature i were to
occur. We assume that the prices of all inputs
w ∈ RN

++ are given before the farmer decides
her management. In a multi-products case, the
concept of state-contingent revenue r reduces
the dimension of state-contingent outputs z (i.e.
RM×S

+ to RS
+). The concept allows us to treat

simultaneously the production uncertainty and
the price uncertainty.

Chambers and Quiggin [3] showed that if
the input set satisfies some properties (X(z)
is closed for all z ∈ RM×S

+ , 0N /∈ X(z) for
z ≥ 0M and z �= 0M , and X(0M ) = RN

+ ) then
duality between the output side and input
side exists. If so, the revenue-cost function,
which is consistent with preference of the risk-
averse farmer, can be drawn (Chambers and
Quiggin[3, pp.143 145 and pp.165 166]).1) The
revenue-cost function under the SCT is defined
as
　 C(w, r,q) = min

{
w′x : x ∈ X(z), q′

izi

≥ ri for all 1 ≤ i ≤ S
}

.

Because the revenue-cost function has similar
properties to a multi-products cost function un-
der certainty such as convexity in r, the details
are omitted (see Chambers and Quiggin[3, p.
166]). However, we emphasize the fact that free
disposability of outputs (i.e. zo ≥ z ⇒ X(z) ⊆
X(zo) ) is necessary to assure the marginal cost
of all state-contingent revenues be nonnegative
(i.e. r′ ≥ r ⇒ C(w, r′,q) ≥ C(w, r,q)) (As-
sumption 1). Also, we assume that C(w, r,q)
is smoothly differentiable in all state-contingent
revenues (Assumption 2).

We compare the input utilization between
farmers who differ in their degrees of risk aver-
sion. We consider farmer A and farmer B: both
are risk-averse, but farmer B is more risk-averse
than farmer A. The preferences of farmer A
and B are respectively represented by U(y) and
W (y), where y denotes the profit the farmer
gets. We assume that U(y) and W (y) are
von Neumann-Morgenstern type utility func-
tions (Assumption 3): both functions are posi-
tive, non-decreasing, and concave (U ′(y) ≥ 0 ≥
U ′′(y) and W ′(y) ≥ 0 ≥ W ′′(y)). Therefore,
this paper relies on the expected utility the-
ory. From Mas-Colell, Whinston, and Green [9]
(Proposition 6.C.2), the utility function W (y) is
more risk-averse than U(y), if and only if there
exists a positive, concave, and non-decreasing

translation function V [·] that satisfies W (y) =
V [U(y)]. We assume that such a function V [·]
exists (Assumption 4).

The expected utility theory is restrictive be-
cause the preference does not allow the de-
pendency of welfare between states of nature
(Chambers and Quiggin [3]). Indeed, Cham-
bers and Quiggin [4] assumed the generalized
Schur-concave preference which allows the de-
pendency. Recently, Chambers and Quiggin
[5] presented some measures of degree of risk-
aversion under the generalized preference struc-
tures. However, any useful properties of the
preference such as the transformation function
V [·] under expected utility, which globally as-
sure that farmer B is more risk-averse than
farmer A, could not be derived. Because of
this, this paper relies on the expected utility.
However, when we consider risk-averse vs. risk-
neutral, all discussions in this paper are main-
tained even if the generalized Schur-concave
preference is assumed.

We assume that both farmers have the same
subjective probability of the realization of each
state of nature, as denoted by pi (Assumption
5). Then, both farmers calculate the expected
value of the risky profile (utility, profit, and rev-
enue) based on the same probability.

The optimal revenue profile and optimal
profit profile of farmer A are denoted re-
spectively as rA = (rA

1 , . . . , rA
S )′ and yA =

(yA
1 , . . . , yA

S )′. Similarly, rB = (rB
1 , . . . , rB

S )′ and
yB = (yB

1 , . . . , yB
S )′ denote the optimal revenue

profile and optimal profit profile of farmer B, re-
spectively. We assume that both farmers have
equal recognition of the goodness or badness of
the state of nature (Assumption 6). If so, the
states of nature can be ordered consistently ac-
cording to their badness. Therefore, we limit
the analyses in the case that ri ≤ rj and yi ≤ yj

for all i < j ≤ S are satisfied, unless otherwise
noted.2) The optimal revenue profile of farmer
A is given by solving the following problem:
　

max
r

E[U(y)] =

S∑
i=1

piU (ri − C(w, r,q)) ,（1）

where E[·] denotes the operator of expectation.
Consequently, if the problem described above
has interior solutions, the first-order conditions
are written as
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piU

′(yA
i ) − ∂C(w, rA,q)

∂ri

S∑
j=1

pjU
′(yA

j )

= 0, for all 1 ≤ i ≤ S. （2）

By summing up the first-order conditions for all
i, we obtain
　

1 −
S∑

i=1

∂C(w, rA,q)

∂ri
= 0. （3）

The left-hand side of this equation shows the
marginal change of her profit by adding identi-
cal and small amounts of revenue to all elements
of rA. Consequently, eq.(3) shows that a risk-
averse farmer has no possibility of expanding
her expected profit with certainty. For that rea-
son, Chambers and Quiggin [3] referred to eq.(3)
as an arbitrage condition. Apparently, farmer B
should also satisfy the arbitrage condition at her
optimal output profile (substitute rA with rB

in eq.(3)). The arbitrage condition includes no
terms that directly express the preference struc-
ture of the risk-averse farmer (i.e., U(y) and
W (y)). Therefore, all risk-averse farmers are
assumed to have similar criteria for efficiency of
revenue-cost. Indeed, all risk-averse farmers are
as efficient in this sense as a risk-neutral farmer
(see Chambers and Quiggin[3, p. 167]).
　

3. Analyses

1) Decomposition of the difference of
revenue and profit profiles

The revenue-cost function under SCT satisfies
Shephard’s lemma (Chambers and Quiggin[3, p.
166]). Therefore, the factor demand function
for input k to produce revenue profile r at min-
imized cost is given as
　

x∗
k(w, r,q) =

∂C(w, r,q)

∂wk
.

The factor demand x∗
k(w, r,q) depends only on

the revenue vector r if all factor and product
prices remain constant. Then, the difference of
factor demand for input k between farmer B
and farmer A, x∗

k(w, rB ,q) − x∗
k(w, rA,q), will

be determined by the form of factor demand
function and the difference of the optimal rev-
enue vector between them.

When farmer A and farmer B differ in the de-
gree of risk aversion, their optimal profit (rev-
enue) profiles will differ in degree of riskiness.
As described in Rothschild and Stiglitz [15],
the degree of riskiness of a risky profile is ap-

propriately defined by comparison to another
risky profile with the same expected value. The
optimal production plans of farmer A and B,
however, generally result in different levels of
expected revenue and profit as well as the de-
gree of riskiness. Therefore, we cannot directly
compare the degree of riskiness of their optimal
profit profiles or revenue profiles.

Chambers and Quiggin [4] suggested that,
by introducing an appropriate revenue vector r̃
that has the same expected value as the optimal
revenue vector of farmer B and which reflects
the degree of riskiness of the optimal revenue
vector of farmer A, we decompose the difference
of the optimal revenue vectors between them,
rB − rA, to two parts: r̃ − rA and rB − r̃. Be-
cause rB and r̃ have the same expected value,
if r̃ correctly reflects the degree of riskiness of
rA, the part rB − r̃ may purely represent how
the optimal revenue profiles of farmer A and B
differ in the degree of riskiness. Chambers and
Quiggin [4] referred to rB − r̃ as the pure-risk
effect. On the other hand, the part r̃− rA may
represent the difference of expected values of the
optimal revenue profiles. Chambers and Quig-
gin [4] referred to r̃−rA as the expansion effect.
As described above, because the factor demand
depends only on the revenue vector, we get
　

x∗
k(w, rB,q) − x∗

k(w, rA,q)

=
{

x∗
k(w, rB ,q) − x∗

k(w, r̃,q)
}

+
{

x∗
k(w, r̃,q) − x∗

k(w, rA,q)
}

. （4）

The difference of input uses between farmer A
and B can also be decomposed to the part asso-
ciated with the pure-risk effect, x∗

k(w, rB,q) −
x∗

k(w, r̃,q), and the part associated with the ex-
pansion effect, x∗

k(w, r̃,q)−x∗
k(w, rA,q). When

each part has the same sign, each part gives the
same incentive for input utilization, and we can
determine which farmer uses more input, farmer
A or farmer B.

The remaining problem is what revenue vec-
tor should be defined as r̃. Chambers and Quig-
gin [4] presented two candidates, although they
suggested that there are infinite methods of de-
composition. The left-hand-side of Fig.1 illus-
trates the two candidates in the case of two
states of nature, where a revenue vector on the
bisector gives the same revenue to all states of
nature, a revenue vector on the fair-odds line
has the same expected value as a reference rev-
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Figure 1. Decomposition in revenue and profit space

enue vector (e.g. rB), and a revenue vector on
the radial expansion path is a proportional ex-
pansion or a contradiction of a reference vector
(e.g. rA). The first candidate is the intersection
point (denoted by r̃C) of the radial expansion
path from rA, with the fair odds line for rB .
The second candidate is the intersection point
(denoted by r̃B) of the line which is parallel to
the bisector and passes through rA, with the fair
odds line for rB. Let ΔrB = (ΔrB

1 , . . . , ΔrB
S )′

denote the difference of the optimal revenue vec-
tor between farmer A and farmer B (rB − rA =
ΔrB). Each intersection point r̃C and r̃B can
be written as
　

r̃C = rA +
rA

E[rA]
E[ΔrB ], and （5）

r̃B = rA + E[ΔrB ]1S, （6）

where E[ΔrB ] =
∑S

i=1 piΔrB
i and E[rA] =∑S

i=1 pir
A
i , and where 1S denotes S dimensional

vector with all elements equal to unity.
Chambers and Quiggin [4] adopted the first

candidate for additional analyses, because they
thought the first candiate would be most
familiar to most economists. Note that∑S

i=1 pir
A
i /E[rA] = 1. Hence, eq.(5) says that

rA
i /E[rA] can be interpreted as the weight of

each state of nature to obtain the intersection
point of the first candidate. The first candi-
date requires weighting each state of nature de-
pending on the optimal revenue profile of farmer
A. In contrast, the weight to obtain the inter-
section point of the second candidate depends

only on the probability of each state of nature
(i.e. the weight is independent of the behavior
of farmer A). This property of the second candi-
date eases the following analyses. Furthermore,
the second candidate can be easily applied to
the comparative statics that are familiar in the
SPF literature (e.g. Loehman and Nelson [7]
and Ramaswami [13]).3) For these reasons, this
paper uses the second candidate for additional
analyses.

Chambers and Quiggin [4] defined only the
decomposition in revenue space. The difference
of optimal revenue profiles between farmer A
and B originates from their difference of prefer-
ence on profit profiles. To clarify the difference
of revenue profiles between farmer A and B, at
first, it is useful to examine the difference of op-
timal profit profiles between them. In addition
to the decomposition in revenue space, we define
ỹB as the intersection point of the line which is
parallel to the bisector and passes through yA,
with the fair odds line for yB. Then, we de-
compose the difference of profit profiles between
farmer A and B, yB − yA, to the pure-risk ef-
fect in profit space, yB − ỹB , and the expansion
effect in profit space, ỹB − yA. The right side
of Fig.1 illustrates this decomposition in profit
space in the case of two states of nature. Let
define ΔyB = yB − yA. From the definition of
ỹB, we obtain
　 ỹB = yA + E[ΔyB ]1S . （7）
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2) Properties of the pure-risk effect
and the expansion effect in profit
space

Before the analyses of the pure-risk effect and
expansion effect in revenue space, the state-
ments on the properties of the expansion ef-
fect and the pure-risk effect in profit space are
presented. The properties play an important
role in analyzing the pure-risk effect and ex-
pansion effect in revenue space. Let �π de-
note risk ordering in the sense of Rothschild
and Stiglitz [15].4) Consequently, risk ordering
yo �π y′ means that yo is less risky than y′,
where yo and y′ have the same expected value.
In addition, yo �π y′ is defined if and only if
E[U(yo)] ≥ E[U(y′)] is satisfied for all concave
and non-decreasing expected utility functions.
Under Assumption 1 to 6, we can derive the
properties of the expansion effect in profit space,
ỹB−yA, and the pure-risk effect in profit space,
yB − ỹB.
Proposition 1 Under Assumption 1 to 6, the
expansion effect in profit space is non-positive:
　 ỹB − yA = E[ΔyB ]1M ≤ 0M .

Proof See Appendix.
Proposition 2 Under Assumption 1 to 6, the
degree of riskiness of the profit profile yB is
lower than that of the profit profile ỹB:
　 yB �π ỹB .

Proof Proposition 1 and free disposability
of outputs assure that the profit profile ỹB

is always producible by disposing equivalent
amount of revenue to −E[ΔyB ] from all ele-
ments of yA. Farmer B maximizes her ex-
pected utility E[W (y)]. Then, the expected
utility at her optimal profit profile yB is ex-
pected to be higher than that of ỹB, that is,
E[W (yB)] ≥ E[W (ỹB)]. Furthermore, by the
definition of ỹB, yB and ỹB have the same ex-
pected value.�

3) Properties of the pure-risk effect
and the expansion effect in revenue
space

Here, we examine the pure-risk effect and the
expansion effect in revenue space. The differ-
ence of optimal profit profile between farmer B
and farmer A is given by
　

ΔyB = (rB − rA)

−
{

C(w, rB ,q) − C(w, rA,q)
}

1S .

Therefore, from eq.(6) and (7), ỹB is expressible
as
　 ỹB = r̃B − C(w, rB ,q)1S.

Using this equation, the property of the pure-
risk effect in profit space (Proposition 2) is
rewritten as
　rB − C(w, rB,q)1S �π r̃B − C(w, rB ,q)1S.

Because the risk-ordering �π has translation in-
variance and positive homogeneity (Artzner et
al. [1]), we can clarify the pure-risk effect in rev-
enue space, i.e.,
　 rB �π r̃B . （8）

The pure-risk effect in revenue space has the
same property as the pure-risk effect in profit
space: rB is less risky than r̃B. This means
that a more risk-averse farmer always has an
incentive to decrease the riskiness of the opti-
mal revenue profile of a less risk-averse farmer.
Chambers and Quiggin [4] proved this property
by comparing risk-averse and risk-neutral farm-
ers and by assuming CAR and CRR. We can
derive the same properties by comparing farm-
ers with different degrees of risk aversion. This
property is maintained regardless of the struc-
ture of technology, if both farmers have equal
recognition of the badness of the state of na-
ture (Assumption 6).

Next, we consider the expansion effect in rev-
enue space. Proposition 1 says that the ex-
pansion effect in profit space, ỹB − yA, is non-
positive. From this property, however, nothing
can be inferred about the property of the expan-
sion effect in revenue space. Nor did Chambers
and Quiggin [4] give any conditions of SCT to
identify the sign of the expansion effect in rev-
enue space.

Recall that all farmers under
SCT satisfy the arbitrage condition,
1 − ∑S

i=1 ∂C(w, r,q)/∂ri = 0 by their op-
timum production plans. By defining a
function D(w, r,q) =

∑S
i=1 ∂C(w, r,q)/∂ri,

we get
　 D(w, rB,q) − D(w, rA,q) = 0. （9）

The function D(w, r,q) refers to the marginal
revenue-cost when all revenues equally increase
(i.e., a revenue the farmer gets is incremented
certainly regardless of the realized state of na-
ture). Therefore, this paper calls D(w, r,q)
a marginal revenue-cost function. However,
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please note that the function is not the marginal
revenue-cost with respect to an increase of rev-
enue corresponding to one state of nature. By
using this method to decompose the difference
of the optimal revenue profiles to the pure-risk
effect and the expansion effect, eq.(9) can also
be decomposed to
　

{
D(w, rB,q) − D(w, r̃B,q)

}

+
{

D(w, r̃B ,q) − D(w, rA,q)
}

= 0.（10）

This equation states that the change of
marginal-revenue cost associated with expan-
sion effect in revenue space (D(w, r̃B ,q) −
D(w, rA,q)) is expected to be balanced out
by the change of marginal revenue-cost associ-
ated with the pure-risk effect in revenue space
(D(w, rB ,q)−D(w, r̃B ,q)). Here, we introduce
a definition of risk substitute and risk comple-
ment technologies based on the properties of
marginal revenue-cost function.
Definition 1 For an ordering of riskiness �π,
marginal revenue-cost function is a risk sub-
stitute (complement) at ro if ro �π r′ ⇒
D(w, r′,q) ≤ D(w, ro,q) (D(w, r′,q) ≥
D(w, ro,q)).

If revenue-cost function is twice differentiable,
the following lemma can be derived.5)

Lemma 1 marginal revenue-cost function is a
risk substitute at ro only if
　 1

pi

∂D(w, r,q)

∂ri
− 1

pj

∂D(w, r,q)

∂rj

≥ 0 for all i < j ≤ S.

Lemma 2 marginal revenue-cost function is a
risk complement at ro only if
　 1

pi

∂D(w, r,q)

∂ri
− 1

pj

∂D(w, r,q)

∂rj

≤ 0 for all i < j ≤ S.

Suppose that a farmer plans to move from a
high risk revenue profile to a less risky one. The
farmer will increase the revenues in bad states of
nature as well as decrease the revenues in good
states of nature, while keeping the expected rev-
enue constant. By doing so, the farmer re-
ceives higher (lower) marginal revenue-cost, if
the marginal revenue-cost function satisfies the
risk substitute (complement). In this sense, the
property of marginal revenue-cost function de-
fines the relation between the technology and
uncertainty. Lemma 1 and 2 say that if the re-
sponse of marginal revenue-cost to an increase

of the revenue in a relatively bad state of na-
ture divided by the probability of the state is
always larger (smaller) than the response in rel-
atively good state of nature, such technology
is a risk substitute (complement). The risk
substitute (complement) technology in Defini-
tion 1 requires that the sum of the increases of
marginal revenue-cost with the increased rev-
enues in bad states is larger (smaller) than sum
of the decreases of it with the decreased rev-
enues in good states (i.e. the marginal revenue-
cost function is elastic in bad (good) states of
nature, but inelastic in good (bad) states of
nature). This requirement for the risk substi-
tute (complement) technology will be satisfied
if Lemma 1 (Lemma 2) is satisfied.

Combining eq.(10) and Definition 1, we can
derive the property of the expansion effect in
revenue space.
Proposition 3 Under Assumption 1 to 6, the
expansion effect in revenue space is non-positive
(non-negative) if marginal revenue-cost function
is a risk substitute (a risk complement) at rB.

Proof Because the pure-risk effect in rev-
enue space satisfies rB �π r̃B , Definition 1 says
that D(w, rB ,q) − D(w, r̃B,q) is non-positive
(non-negative) if D(w, r,q) is a risk comple-
ment (risk substitute) at rB. From eq.(10), we
can see that D(w, r̃B,q) − D(w, rA,q) is non-
negative (non-positive) if D(w, r,q) is a risk
complement (risk substitute) at rB. Recall that
revenue vector r̃B is derived by adding E[ΔrB ]
to all elements of rA (eq.(6)) and that D(w, r,q)
shows the marginal change of revenue-cost when
the same marginal revenue is added to all ele-
ments of the revenue profile. The expansion ef-
fect in revenue space, r̃B−rA, has the same sign
as D(w, r̃B ,q) − D(w, rA,q) because, if not,
farmer A would be able to expand her profit
by producing the revenue profile r̃B.�

Propositions 1 and 2 say that a more risk-
averse farmer always decreases the expected
profit of a less risk-averse farmer in order to de-
crease the riskiness of the profit profile. There-
fore, a more risk-averse farmer always confronts
the tradeoff between the expected profit and the
degree of riskiness. Eq.(8) and Proposition 3
say that, in the case of the pure-risk effect and
the expansion effect in revenue space, she might
not confront such a tradeoff. Therefore, she
might expand expected revenue together with
a decreased degree of riskiness. Such a possi-
bility disappears (appears with certainty) if the
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Figure 2. Restoration of arbitrage condition

marginal revenue-cost function is a risk substi-
tute (complement) near the optimum.

The CAR technology assures the negative ex-
pansion effect in the global space of revenue
(Chambers and Quiggin [4]). Proposition 3
says that, when CAR restriction is relaxed,
the sign of expansion effect in revenue space
is determined by the structure of technology
(marginal revenue-cost function) near the op-
timum. Farmer B always has an incentive to
decrease the riskiness of the revenue profile of
farmer A. To do so, however, the arbitrage
condition is violated (i.e. the farmer loses cost
efficiency). If the marginal revenue-cost func-
tion is a risk substitute (complement), a de-
crease in the riskiness of the revenue profile in-
creases (decreases) the value of the marginal
revenue-cost function. To keep the arbitrage
condition, farmer B should decrease (increase)
the expected revenue. Hence, the expansion
effect in revenue space becomes non-positive
(non-negative). Fig.2 illustrates this process of
restoration of the arbitrage condition by farmer
B. In other words, if the marginal revenue-
cost function is a risk substitute (complement),
farmer B has an incentive to decrease (increase)
the expected revenue in order to decrease the
riskiness of the revenue profile.

Because Chambers and Quiggin [4] did not
analyze the property of expansion effect in lo-
cal space, they required CAR restriction on the
technology. In contrast, Definition 1 is given in
the local space of revenue. The sign of the ex-
pansion effect in revenue space can be examined
by testing whether the SCT satisfies Lemma 1

or Lemma 2 near the optimum. Because of this,
we can analyze the effect of risk-aversion on in-
put use, even if the sign of expansion effect is
not defined in global space.

4) Effect of degree of risk-aversion on
input utilization

Now, we can analyze the effect of the degree
of risk-aversion on the input utilization. First,
we discuss the incentives for the input utiliza-
tion which the pure-risk effect and the expan-
sion effect in revenue space give to a more risk-
averse farmer. Then, by combining the results,
the effect of degree of risk-aversion on the input
utilization is examined.

We start from the discussion about the incen-
tives that the pure-risk effect gives. Because the
property of the pure-risk effect in revenue space
is equivalent to Chambers and Quiggin [4] re-
gardless to the structure of technology, the in-
centives that the pure-risk effect gives can be
also examined by using their result. Cham-
bers and Quiggin[3,4] defined a risk complement
(risk substitute) input by comparing factor de-
mand for input k to produce ro and r′, the risk-
iness of which is ordered by ro �π r′.
Definition 2(Chambers and Quiggin [3],
Definition 4.1) For an ordering of riskiness
�π, input k is a risk complement (risk sub-
stitute) at ro if ro �π r′ ⇒ x∗

k(w, r′,q) ≥
x∗

k(w, ro,q) (x∗
k(w, r′,q) ≤ x∗

k(w, ro,q)).
An increase of the riskiness of the revenue

profile increases (decreases) factor demand of
input k, if the input is a risk complement (sub-
stitute). In other words, by using more risk
complement (substitute) input, the riskiness of
the revenue profile increases (decreases). Be-
cause a more risk-averse farmer decreases the
riskiness of the revenue profile of a less risk-
averse farmer, the more risk-averse farmer uses
less (more) input for which the demand de-
creases (increases) with a decrease of the risk-
iness of the revenue profile. From eq.(8) and
Definition 2, we can derive the following result.
Result 1 Under Assumption 1 to 6, the pure-
risk effect in revenue space gives a more risk-
averse farmer an incentive to decrease (increase)
the optimal input utilization of a less risk-averse
farmer, if input k is a risk complement (risk
substitute) at rB.

Next, we examine the difference of input uti-
lization associated with the expansion effect
in revenue space. When the technology does
not define the sign of expansion effect in the
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global space of revenue, the sign depends on the
structure of technology (i.e. marginal revenue-
cost function) near the optimum. First, sup-
pose that marginal revenue-cost function is a
risk substitute near the optimum. In this case,
the expansion effect in revenue space is non-
positive (Proposition 3). Therefore, a more risk-
averse farmer decreases the expected revenue of
a less risk-averse farmer. If the demand of in-
put decreases (increases) with a decrease of ex-
pected revenue, the more risk-averse farmer de-
creases (increases) the input utilization. In con-
trast, suppose that marginal revenue-cost func-
tion is a risk complement near the optimum. In
this case, the expansion effect in revenue space
is non-negative (Proposition 3). Therefore, a
more risk-averse farmer increases the expected
revenue of a less risk-averse farmer. If the de-
mand of input increases (decreases) with an in-
crease of expected revenue, the more risk-averse
farmer increases (decreases) the input utiliza-
tion.

In order to justify the above conjecture, we
introduce a definition of input, which is modi-
fied from Chambers and Quiggin [4] according
to the decomposition in a direction parallel to
the bisector.6)

Definition 3 Input k is non-regressive (re-
gressive) in a direction parallel to the bisector if
factor demand for input k increases (decreases)
in response to an expansion of r in a direction
parallel to the bisector and decreases (increases)
in response to a contraction of r in a direction
parallel to the bisector.

Note that a non-regressive input can exist in
a non-limited space of revenue. In contrast, a
regressive input is a special case of technology
because farmers would always be able to ex-
pand their revenue by decreasing the utilization
of such an input if a regressive input can exist
in a non-limited space of revenue.

From Proposition 3, the sign of expansion ef-
fect in revenue space can be tested. If the sign
is determined, Definition 3 derives the following
results.
Result 2 Suppose that the marginal revenue-
cost function is a risk substitute at rB under
Assumption 1 to 6. The expansion effect in
revenue space gives a more risk-averse farmer
an incentive to decrease (increase) the optimal
input utilization of a less risk-averse farmer if
the input is non-regressive (regressive).
Result 3 Suppose that the marginal revenue-

cost function is a risk complement at rB under
Assumption 1 to 6. The expansion effect in rev-
enue space gives a more risk-averse farmer an
incentive to increase (decrease) the optimal in-
put utilization of a less risk-averse farmer if the
input is non-regressive (regressive).

By combining Result 1 to 3, we can exam-
ine the effect of the degree of risk-aversion on
the input utilization. Eq.(4) says that, if the
pure-risk effect and the expansion effect in rev-
enue space give the same incentives to a more
risk-averse farmer, we can assure that she uses
less or more input than a less risk-averse farmer.
Result 2 and 3 suggest that the incentive the ex-
pansion effect gives depends on the sign of ex-
pansion effect. Even if we know the properties
of input (risk complement or substitute and non
regressive or regressive), the effect of a degree
of risk-aversion on the input utilization is am-
biguous unless the sign of expansion effect can
be determined. The sign depends on the whole
structure of technology near the optimum (i.e.
marginal revenue-cost function). Therefore, it
is necessary to examine the structure of tech-
nology before inquiring about the properties of
input.

First, suppose that the marginal revenue-cost
function is a risk substitute near the optimum.
Then, the expansion effect in revenue space is
non-positive (Proposition 3). In this case, we
can apply Result 1 to the incentive the pure-risk
effect gives and Result 2 to the incentive the ex-
pansion effect gives. As summarized in Case I
of Table 1, four possibilities exist for the struc-
ture of incentives. We can find two cases (Case
I-1 and Case I-2) in which each effect gives the
same incentives.
Corollary 1 Suppose that marginal revenue-
cost function is a risk substitute at rB under
Assumption 1 to 6. A more risk-averse farmer
uses less (more) input k than a less risk-averse
farmer if input k is a risk complement (substi-
tute) and is also non-regressive (regressive) at
rA.

Next, suppose that marginal revenue-cost
function is a risk complement. Then, the ex-
pansion effect in revenue space is non-negative
(Proposition 3). In this case, as summarized in
Case II of Table 1, we can apply Result 1 and
Result 3. We can find two cases (Case II-1 and
Case II-2) in which each effect gives the same
incentives.
Corollary 2 Suppose that the marginal
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Table 1. The incentives for the input utilization that each effect in rev-

enue space gives a more risk-averse farmer and the effect of an

increase of risk-aversion on the input utilization

　 Pure-risk effect Expansion effect Effect of

an increase of

risk-aversion5)Property of input1) sign2) Property of input3) sign4)

Case I: Marginal revenue-cost function is risk substitute

Case I-1 Complement − Non-regressive − −
Case I-2 Substitute + Regressive + +

Case I-3 Complement − Regressive + ?

Case I-4 Substitute + Non-regressive − ?

Case II: Marginal revenue-cost function is risk complement

Case II-1 Complement − Regressive − −
Case II-2 Substitute + Non-regressive + +

Case II-3 Complement − Non-regressive + ?

Case II-4 Substitute + Regressive − ?

Notes: 1) The column shows whether the input is a risk complement or a risk substitute.
2) The column shows the sign of the incentive the pure-risk effect gives a more risk-averse

farmer.

3) The column shows whether the input is non-regressive or regressive.
4) The column shows the sign of the incentive the expansion effect gives a more risk-averse

farmer.

5) The column shows the sign of the effect of an increase of risk-aversion on the input
utilization.

revenue-cost function is a risk complement
at rB under Assumption 1 to 6. A more
risk-averse farmer uses less (more) input k than
a less risk-averse farmer if input k is a risk
complement (substitute) and is also regressive
(non-regressive) at rA.

In total, we have eight combinations for
the structure of incentives which each effect
gives.7) Chambers and Quiggin [4] showed the
possibilities of these eight combinations when
the technology exhibits CRR. However, because
they did not examine the condition of technol-
ogy to determine the sign of the expansion ef-
fect in revenue space, Result 2 and 3 could not
be derived. Consequently, Corollary 1 and 2
could not. In contrast, this paper does not
rely on the assumption of CRR to derive these
eight combinations. Moreover, this paper pro-
vided the formal method (Proposition 3) to di-
vide these eight combinations into the cases in
which the expansion effect in revenue space is
non-positive (Case I) and the cases in which it
is non-negative (Case II). Because of this, we
can derive Corollary 1 and 2.

　
4. Conclusion

This paper presented an examination of opti-
mal input utilization of risk-averse farmers un-
der SCT based on the approach presented by
Chambers and Quiggin [4]. Unlike Chambers
and Quiggin [4], this paper considered the ef-
fect of the degree of risk-aversion on the input
utilization. The decomposition of the revenue
profile to the pure-risk effect and the expansion
effect worked well. This paper also relaxed the
restrictions on the technology such as CAR and
CRR. Definitions of technology sufficient to de-
termine the sign of expansion effect near the
optimum were presented. The definitions allow
us to examine the effect of the degree of risk-
aversion on the input utilization, even if the sign
of expansion effect is not defined in the global
space of revenue.

As suggested in Chambers and Quiggin [4],
the difficulty of analyzing the optimal input uti-
lization under uncertainty mainly comes from
ambiguity of the sign of expansion effect in rev-
enue space. This paper provided a theoretical
explanation of this ambiguity: The sign of ex-
pansion effect depends on whether the marginal
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revenue-cost function is a risk substitute or
complement near the optimum. Therefore, the
effect of the degree of risk-aversion on the input
use depends on the whole structure of technol-
ogy as well as the type of input. This conclusion
provides a theoretical basis for the mixed results
in empirical studies, and also implies that em-
pirical analyses on the type of input will not be
enough to consider this issue empirically.

Two important theoretical questions remain.
First, the expected utility was assumed in this
paper. In order to consider the effect of the
degree of risk-aversion under generalized pref-
erences, the properties of the preferences which
globally assure the difference of degree of risk-
aversion should be developed. Second, this pa-
per assumed that all farmers have the same
recognition of the badness of the state of nature.
If this assumption is removed, the decomposi-
tion of the difference of revenue profiles does
not work well. Other approaches are necessary
to analyze the difference of input utilization un-
der the condition that farmers may have differ-
ent recognition of the badness of the state of
nature.

1) The state-contingent revenue is an indirect
representation of SCT. Hence, the conditions of
SCT required to derive the revenue-cost func-
tion come from the conditions to derive the cost
function defined on the state-contingent output
space. See chapter 4 of Chambers and Quiggin
[3] for more details. Under the SPF, a cost func-
tion that has consistency with all expected util-
ity functions does not exist unless some strict as-
sumptions are imposed on the production func-
tion structure. See Chambers and Quiggin [2]
and Pope and Chavas [12] for more details.

2) When both farmers have the same probabil-
ity pi, whether both farmers have equal recogni-
tion of the badness of the states of nature or not
depends on the structure of production technol-
ogy and the range of revenue considered (Cham-
bers and Quiggin[3, pp.147 149]). Mathemat-
ically, (∂C(w, r,q)/∂ri)/(∂C(w, r,q)/∂rj) ≥
pi/pj for all 1 ≤ i ≤ S is necessary. If technol-
ogy exhibits CAR or CRR, both farmers have
same recognition of the badness of the states of
nature in a non-limited space of revenue (Cham-
bers and Quiggin[3, pp.153 154]).

3) Consider a farmer with constant absolute risk
aversion. The degree of absolute risk aversion
is denoted by η. The marginal change of input
utilization with a marginal increase of η can be
decomposed to

　 ∂x∗
k(w, r∗,q)

∂η

= cov

[
1

pi

∂x∗
k(w, r∗,q)

∂ri

,
∂r∗

i

∂η

]

+ E

[
1

pi

∂x∗
k(w, r∗,q)

∂ri

]
E

[
∂r∗

i

∂η

]
,

where r∗ denotes the optimal revenue profile of
the farmer. Loehman and Nelson [7] decom-
posed the marginal certainty equivalent with re-
spect to η in the same manner. E[∂r∗

i /∂η] shows
the marginal change of expected revenues in a
direction parallel to the bisector, which corre-
sponds to the expansion effect of the second can-
didate. Then, the second term shows the change
of input utilization associated with the expan-
sion effect. After some manipulations, we can
see that the first term shows the change of input
utilization associated with the pure-risk effect of
the second candidate.

4) The notation �π followed Chambers and
Quiggin [3].

5) The proof is omitted because it might be read-
ily apparent using a similar method for the proof
of property of a risk complement (risk substi-
tute) input. See Chambers and Quiggin[3, p.
139].

6) Chambers and Quiggin [4] defined non-
regressive (regressive) input in a direction of ra-
dial expansion path from rA because they de-
fined the expansion effect in revenue space in a
direction of radial expansion path from rA.

7) More precisely, more possibilities exist because
input k might be neither a risk complement nor
a risk substitute. Additionally, it is possible that
input k is neither non-regressive nor regressive,
and that marginal revenue-cost function is nei-
ther a risk complement nor a risk substitute. In
these cases, we cannot assess the effect of the
degree of risk-aversion on the input utilization.
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Appendix

Assume that E[ΔyB ] > 0. Then, the expan-
sion effect in profit space, ỹB − yA is positive
(see eq.(7)). Here, we consider a profit vector
yU = (yU

1 , . . . , yU
S )′ that satisfies E[y] = E[yB ]

and E[U(y)] = E[U(yA)] and a profit vector
yW = (yW

1 , . . . , yW
S )′ that satisfies E[y] = E[yB ]

and E[W (y)] = E[W (yA)]. If yA and yB are
the optimal profit profiles of farmer A and B,
respectively, the following inequalities are ex-
pected to be satisfied:
　 E[U(yB)] ≤ E[U(yU )] = E[U(yA)], and

E[W (yB)] ≥ E[W (yW )] = E[W (yA)].

Therefore, we obtain the following risk ordering:
　 yB �π yW and yU �π yB.

Furthermore, from the transitivity of risk order-
ing (Rothschild and Stiglitz [15]), we obtain
　 yU �π yW . （A1）

We define ΔyW as yW −yA. We assume that
ΔyW is reasonably small, and that the change
of expected utility of W (y) associated with the
change of profit profile from yA to yW can be
approximated by E[W ′(yA)ΔyW ]. Because of
Assumption 6, we obtain the following equation
from the definition of yW :
　 S∑

i=1

piW
′(yA

i )ΔyW
i

= cov(W ′(yA
i ), ΔyW

i )

+E[W ′(yA)]E[ΔyW ] = 0. （A2）

From the definition of ΔyW , E[ΔyW ] =
E[ΔyB ] > 0. Moreover, E[W ′(yA)] is positive
because of the non-decreasing of W (y). Hence,
the covariance terms of eq.(A2) is expected to
be negative. This condition is apparently sat-
isfied if ΔyW

i monotonically increases as the
state of nature i increases, because the utility
function W (y) is concave and yA

i ≤ yA
j for all

i < j ≤ S.
Recall that there exists a positive and concave

function V (·) which satisfies W (y) = V [U(y)].
Hence, eq.(A2) can be decomposed alternatively
as follows:
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　 S∑
i=1

piV
′(U(yA

i ))U ′(yA
i )ΔyW

i

= cov(V ′(U(yA
i )), U ′(yA

i )ΔyW
i )

+E[V ′(U(yA))]E[U ′(yA)ΔyW ] = 0.

（A3）

The term E[U ′(yA)ΔyW ] shows the change of
expected utility of U(y) associated with the
change of profit profile from yA to yW . Be-
cause eq.(A1) implies E[U(yA)] = E[U(yU )] ≥
E[U(yW )], E[U ′(yA)ΔyW ] is expected to be
negative. In addition, E[V ′(U(yA))] is posi-
tive because of the non-decreasing of V (U(y)).
Hence, the covariance term of eq.(A3) is ex-
pected to be positive. The covariance term can
be rewritten as
　

cov(V ′(U(yA
i )), U ′(yA

i )ΔyW
i )

=
S∑

i=1

piV
′(U(yA

i ))
{

U ′(yA
i )ΔyW

i

−E[U ′(yA)ΔyW )]
}

=
S−1∑
i=1

[
V ′(U(yA

i )) − V ′(U(yA
i+1))

]

i∑
j=1

pj

{
U ′(yA

j )ΔyW
j − E[U ′(yA)ΔyW )]

}
.

（A4）

Suppose that ΔyW
i monotonically increases as

the state of nature i increases, and that eq.(A2)
is satisfied. If ΔyW

i ≥ 0 for all i, eq.(A2) cannot
be satisfied. Hence, there exists one state of na-
ture s̄ that satisfies ΔyW

i ≤ 0 for all i ≤ s̄ and
ΔyW

i ≥ 0 for all i ≥ s̄ + 1. Here, we show that
the term U ′(yA

i )ΔyW
i −E[U ′(yA)ΔyW )] changes

the sign from negative to positive only one time
as the state of nature increases and does not
change the sign any more. Because U ′(yA

i ) is
positive and decreasing as the state of nature i
increases, U ′(yA

i )ΔyW
i is negative and increas-

ing in the state of nature until i ≤ s̄. Further-
more, E[U ′(yA)ΔyW )] is negative. Hence, there
exists one state of nature s (≤ s̄) that satisfies
U ′(yA

i )ΔyW
i −E[U ′(yA)ΔyW )] ≤ 0 for all i ≤ s

and U ′(yA
i )ΔyW

i − E[U ′(yA)ΔyW )] ≥ 0 for all
s + 1 ≤ i ≤ s̄. Because U ′(yA

i )ΔyW
i is positive

for all i ≥ s̄ + 1, U ′(yA
i )ΔyW

i −E[U ′(yA)ΔyW )]
cannot be negative for all i ≥ s̄ + 1. There-
fore, U ′(yA

i )ΔyW
i − E[U ′(yA)ΔyW )] ≥ 0 for all

i ≥ s + 1.
Because U ′(yA

i )ΔyW
i −E[U ′(yA)ΔyW )] is neg-

ative for all i ≤ s, clearly
∑i

j=1 pj{U ′(yA
j )ΔyW

j

−E[U ′(yA)ΔyW )]} ≤ 0 for any i ≤ s.
Now suppose that

∑i
j=1 pj{U ′(yA

j )ΔyW
j −

E[U ′(yA)ΔyW )]}>0 for some i ≥ s + 1. If
so, U ′(yA

i )ΔyW
i −E[U ′(yA)ΔyW )] must be

negative for some i ≥ s + 1 because
∑S

j=1

pj{U ′(yA
j )ΔyW

j − E[U ′(yA)ΔyW )]} = 0. But,
this contradicts the fact that U ′(yA

i )ΔyW
i

−E[U ′(yA)ΔyW )] ≥ 0 for all i ≥ s + 1.
Clearly

∑i
j=1 pj{U ′(yA

j )ΔyW
j −E[U ′(yA)ΔyW )]}

≤ 0 for all i ≤ S (also see Ramaswami [13],
Proposition 2). Hence, from eq.(A4) and con-
cavity of V (U(yA

i )) in the state of nature,
we see that cov(V ′(U(yA

i )), U ′(yA
i )ΔyW

i ) is
negative. However, this statement contra-
dicts the statement of eq.(A3). Therefore,
the assumption E[ΔyB ] > 0 is an incorrect
assumption.�

The scalar transformation function V [·] under
the expected utility is critical for this proof (see
eq.(A3)). Under the generalized preferences,
intuitively, the dependency of welfare between
states of nature might require vector transfor-
mation functions even if such functions can be
derived. Therefore, Proposition 1 might not
be satisfied under the generalized preferences.
In order to precisely discuss this issue, the
properties of the generalized preferences which
globally assure the difference of degree of risk-
aversion should be developed.
　


