
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 

 
 
 
 
 
 

The Royal Veterinary and Agricultural University 
Food and Resource Economic Institute 

 
Information Based Estimators for the 
Non-Stationary Transition Probability 
Matrix: An Application to the Danish 
Pork Industry. 
 
 
 
 
 
 
Kostas Karantininis 

U
ni

t o
f E

co
no

m
ic

s W
or

ki
ng

 P
ap

er
s 2

00
1/

1 



Information Based Estimators for the Non–stationary Transition Probability Matrix: 
An Application to the Danish Pork Industry 

 

Kostas Karantininis* 

Department of Economics and Natural Resources 

The Royal Agricultural University of Copenhagen (KVL) 

 

 

Abstract 
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Information Based Estimators for the Non–stationary Transition Probability Matrix: 
An Application to the Danish Pork Industry 

Kostas Karantininis 
Department of Economics and Natural Resources 

The Royal Agricultural University of Copenhagen (KVL) 
 

1. Introduction 

 The decline in the number of firms in industries and the consequent increase in the average firm size 

has occupied the economics literature for a very long time.  Also the question of what determines the size 

distribution of firms is a key feature in industrial economic analysis and policy.  This becomes increasingly 

important in the agro–food industry, where farm numbers have been declining drastically over the past 

decades, whereas farm size increases1.  Many of the studies on growth and size distribution of firms rely on 

a very simple stochastic model, which is usually a variant of the well known Gibrat’s Law, i.e. firm growth is 

independent of firm size2 – although others develop more deterministic models of firm growth (such as 

Lucas(1978) and Jovanovic 1987, for example).  The Markov process in discrete time has been used often 

as an appropriate tool to describe the movement of economic variables over time3.  This model has been 

proven particularly useful given that researchers have very rarely the luxury of longitudinal time–ordered 

micro data describing movement of individuals between different states.  Instead, aggregated data of finite 

size categories (Markov states) for given time periods are available. 

 In most of the early applications a purely stochastic Markov process is assumed, and the transition 

probability matrix (TPM) is assumed to be constant over time – usually referred to as “Stationary Markov 

Model”4.  The transition probabilities may vary over time, however, resulting in so–called non–stationary 

transition probability matrix (NSTPM), adding in this way a deterministic element in the Markov process in the 

form of a systematic relation with a set of exogenous variables (Telser (1963); and Hallberg (1969) were the 

first such attempts5). 

 Most studies that use a NSTPM use very strong parametric distributional assumptions, and other 

restrictions.  Traditional estimation techniques fail, or require strong restrictions, because the estimated 

                                                 
1 Evans, 1987b, and the accompanying papers at the symposium on “Empirical analysis of size distribution of farms” 
2 See for example Evans, 1987a for a review 
3 Lee et al. (1977) provide a partial literature list for general Markov studies; Zepeda (1995a&b) also provide a more 
recent list of mainly agriculture related Markov studies. 
4 See for example Adelman 1958; Padberg 1962; Lee et al., 1977, Oustapassidis, 1986. 
5  See for example Lee, et al., 1977; Disney, et al., 1988; Massow, et al., 1992; Zepeda, 1996a,b, and their cited 
references. 
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parameters must satisfy probability assumptions (non–negative, adding up to one)6.  Most approaches, 

suffer from the dimensionality problem, and the researcher is restricted in their choice of covariates to be 

used.  A lot of missing data points are also very common due to re−definitions of size categories by the data 

collectors. 

 In this paper we use the generalised maximum entropy (ME) formalism, which stems originally out of 

the Shanon’s (1948) information theory and Jaynes (1957a,b).  We employ the generalised cross entropy 

(GCE) formalism by Golan et al. (1996), and we further extend the applications of Golan and Vogel (2000); 

and Courchane et al., (2000).  We use GCE formalism to recover coefficients of the effects of exogenous 

variables on individual transition probabilities, when a specific functional form (linear) of the relationship is 

imposed, and decompose the two error terms in this relationship.  The developments in this paper are used 

to recover an NSTPM for the pork industry in Denmark.  First, the missing data points that result by re–

definitions of size categories are recovered.  We use GCE to recover an instrumental variables estimator 

which is a less restrictive in recovering the NSTPM, and evaluating the impacts of various covariates on 

transition probabilities.  This method allows the use of an extensive set of covariates, their significance is 

tested with an asymptotic test, and the impact of each covariate on the individual probabilities and size 

categories is evaluated in the form of elasticities.  Prior information on the TPM is introduced using the GCE 

formalism.  The recovered NSTPM is further used to assess Gibrat’s law.   

 In the next Section, we develop the GCE estimator for the stationary Markov model and introduce non-

stationarity in Section 2.2.  In Section 3 the instrumental variables GCE estimator is derived.  In Section 4 we 

show how to handle problems of re-definition of categories.  The application on the Danish pork industry is 

presented in Section 5.  Some concluding remarks are discussed in Section 6. 

 

2. Recovering Markov Transition Probabilities 

2.1 An Ill–Posed Problem of Industry Structure: The Stationary Markov Model 

 The attempt to recover the transition probability matrix, from a set of limited macro data on firm size 

distribution, is a classic case of an ill-posed problem.  As an illustration, the case examined in this study 
                                                 
6 Telser (1963); and Hallberg (1969)), use OLS estimators, which require strong equality restrictions on the parameters; 
Lee et al., (1977) impose inequality restrictions; MacRae (1977) suggested a Logit transformation, which automatically 
satisfies the probabilistic constraints (see Zepeda, 1995a,b for applications). 
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consists of fifteen census years (i.e. fourteen transitions) for eighteen size groups of pork farms in Denmark 

– a total of 252 data points.  We are attempting to estimate (recover) a transition probability matrix of 18×18 

= 324 elements (or 361 elements if we consider entry and exit with an artificial 19th category in a 19x19 

transition probability matrix).  The ill–posed problem becomes even more pronounced if one considers that a 

lot of these data points are missing due to re–definition of data groups.  The ME formalism is valuable in 

tackling this problem.  In the next Sections we are presenting a non–stationary Markov model.  However, it is 

useful to proceed with a stationary model before.   

 A stationary TPM using GCE is developed by Lee and Judge (1996), and Golan, et al., (1996).  The 

transition between time t and t+1 in the stationary model can be formulated as follows: 

 y(t+1) = x′(t)P + u(t) (1) 

where y(t+1) is a K×1 vector of proportions falling in each of the K Markov states at time t+1, and x(t) are 

the sample proportions at time t.  The TPM is P=(p1   p2 � pK) with each vector )p,,p ,(p Kk2k1k K=′kp .  

Finally, u(t) is a vector of disturbances with zero mean bounded within a specified support vector v.  For T 

transitions, the model can be written more compactly: 

 yT = (IK⊗ XT) p+uT (2) 

 (TK×1)=(TK×K2) (K2×1)+ (TK×1) 

where the TPM is now written as a vector: ),,,( K21 pppp ′′′= K , IK is a K×K identity matrix and ⊗  denotes 

Kronecker product.  Each element of the uT is parameterised as ∑= M
m itmmit wvu , where w is an M–

dimensional vector of weights (in the form of probabilities) for each uit, v is an M–dimensional vector of 

supports.  The support vector can be set to: [ ] ′−= TKTK /1/1 ,,0,, KKv  (Courchane et. al., 2000).  

By using GCE, any prior information about P can be incorporated in the form of a matrix of priors Q.  Prior 

information about the disturbance uT, call it ow itm , can be incorporated as well and are assumed to be 

uniformly symmetric about zero.  Let H(·) be the measure of cross entropy, then the GCE is: 
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subject to the following three sets of constraints: 

(a) The K×T data consistency constraints (Equations (2));  (b) The normalization constraints for both the 

transition probabilities (K constraints) and the error weights (K×T constraints): 1pK
j ij =∑ , 1w itm =∑M

m ; 

and  (c) the K2 non−negativity constraints for P and the K×T×M constraints for w: P≥0, and w≥0.  The 

solution to the above system of equations is derived elsewhere and we see no need to repeat the process 

here (see for example, Golan, et. al., 1996). 

 

2.2 Non–Stationarity 

 The simplest form of non−stationarity is to assume that P is varying over time, without any further 

assumptions on functional relationships with other variables.  In other words, the objective is to estimate a 

different TPM for each transition7.  It is more interesting, however, to examine what actually makes the TPM 

vary over time.  In this case, the NSTPM can be expressed as: 

 pij(t)=fij(zij(t), βij) + eij(t) (4) 

where fij(�) is a function relating each element pij(t) of the NSTPM to a vector of explanatory variables zij(t).  

The βij are parameters of the fij(�), and eij(t) is the disturbance term.  The Markov process can now be 

expressed as: 

 y(t+1) = x′(t)[β z(t) + e(t)] + u(t) (5) 

 MacRae (1977) points out that in most estimation methods, each row of transition probabilities must 

be formulated to depend on the exact same set of exogenous variables.  Furthermore, Lee, et al., 1977; and 

MacRae, 1977, develop the statistical properties of the disturbance terms e and u in (5).  We show bellow, 

that with the use of GCE formalism the disturbances e and u can be recovered separately. 

                                                 
7 Lee et. al. (1977) illustrate such a model and develop a weighted least squares estimator with non–equality restrictions.  
Lee and Judge (1996) develop a GCE estimator 
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 We can parameterise each βijn and each eijt over a discrete finite support space: ∑= S
s sijnsijn θdβ , 

and ∑= H
h hijthijt φge , where φ, θ are support vectors of size S and H respectively, and d and g are the 

corresponding probabilities to be recovered.  The Markov process in (5) now becomes: 

 ∑∑ ∑∑ ∑ +






 +
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jtmm

i

H

h
hijth

N

n
nt

s
sijnsitjt wvφgzθdxy

ij

 (6) 

where Nij is the number of covariates in the (ij)th cell.  Applying GCE we can recover the β, e, and u 

through the recovered values of d, g, and w respectively.  There are alternative ways to impose the standard 

normalisation and non–negativity constraints on transition probabilities.  One can impose additional 

constraints on the d (either in the form suggested by Lee, et al. 1977; or by Halberg, 1969).  Alternatively, 

one can assume a multinomial Logit transformation, which satisfies both the normalisation and the non–

negativity constraints automatically (MacRae, 1977; Golan et al., 1997). 

 

3. Instrumental Variables Generalised Cross–Entropy Estimator 

 We show here the generalised cross–entropy (GCE) estimator for the NSTPM similar to (Golan and 

Vogel, 2000).  Let Ztn be a TxN matrix of N covariates in the T time periods.  We can incorporate this 

information into the GCE model by multiplying with Ztn both sides of the data consistency constraint (2): 

 N,1,nK,1,j,wvzpxzyz
t m

jtmmtn
t i

ijittn
t

tjtn KK ==∀−= ∑∑∑∑∑  (7) 

Priors are introduced in the objective function (3) in the form of matrices Q (corresponding to the transition 

probabilities P) and Wo (for the disturbance probabilities W).  The objective is therefore to recover the pij 

that are closest as possible to to qij and satisfy the data.  The priors ow itm  are assumed uniformly distributed 

around zero, hence they add no additional information to the model.  The solution to this problem is: 
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where ijp~  and nj
~λ  are the recovered probabilities and Lagrange multipliers respectively.  The following 

“probability elasticities” (Zepeda, 1995b) show the effect of each ztn on pij: 
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Where P
ijtnE  measures the percentage change of the nth covariate on the transition probability between 

states i and j at time t. 

Similarly, the following elasticity measures the effect of each exogenous variable on the number of farms: 

 ∑ ∑ 
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evaluated at the means. 

 

4. Re–Definition of Categories and Missing Data Points 

 It is very common that statistical authorities change the definition of categories when they aggregate 

industry data.  For example, categories 13–18 in Table 1, are given as aggregates in category 13 (1000+) for 

the years 1984–1994; the definition changes in 1995 where categories 13 and 14 are aggregated as 

category 13 (1000−1999), whereas categories 15 to 18 are aggregated as category 15 (2000+); the next 

year and the years since 1996 the farms over 1000 pigs are disaggregated in the six categories shown in 

Table 1.  An opposite aggregation occurs in the smaller size categories: the smaller size categories are 

collected into 11 categories until 1994 and they are aggregated into four categories since 1996.  Given these 

circumstances, the researcher can either aggregate further in order to have a consistent set throughout, i.e. 

aggregate categories 1−11 for all years until 1995 into the four current categories, and aggregate categories 

13−18 for all years 1995−1998 into one category (category 13) that was in place until 1994.  This is however 
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a very inefficient approach because it ignores a lot of important information.  Alternatively, one can recover 

the missing data by treating them as unknown parameters in the ME framework. 

 Define the missing data points (categories) as ∑
=

=
M

1m
mitmit ηrx , where ritm are probabilities to be 

recovered, and ηm are corresponding supports.  Consider that categories ε to ζ (1≤ε<ζ≤K) are given as 

aggregates in category ε for the periods γ to δ (1≤γ≤δ≤T).  The data consistency constraint (2) can be 

modified as follows8: 

 






 +
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 (11) 

In addition, the information about the sums of the aggregated categories xε(t) must also be satisfied: 

 δtγ    (t)xηrx ε

ζ

εi

M

1m
mitm

ζ

εi
it ≤≤∀==∑ ∑∑

= ==
 (12) 

The usual normalisation and non–negativity constraints for the probabilities ritm are added.  Natural bound 

for the support vector is the largest of the aggregated categories xε(t): 

 { } { } δtγ(t)xmax,,0,,(t)xmaxη εtεt
≤≤∀



 +−= KK  (13) 

The recovered missing data are then given by: 

 ζiεδ,tγ    ηr�(t)x�
M

1m
mitmi ≤≤≤≤∀= ∑

=
 (14) 

 

5. Structural Changes in the Danish Pork Industry 

 We use aggregate data on size distribution of pork farms in Denmark between 1984 – 1998 (Table 1)9.  

The pork farm distribution typifies similar trends in pork industry elsewhere (Massow, et al., 1992; Disney, et 
                                                 
8 The parameterised errors vmwjtm are omitted for notational simplicity 
9 Before 1984 category definitions were even more severely different and the data base would have been simply 
unmanageable unless they were aggregated to an extend that all detailed information would have been lost. 
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al., 1988), as well as the general trend in the farm sector (Evans, 1988b).  The total number of farms has 

decreased from 46,094 to 17,689 between 1984-1998 (a 61.2% decrease).  While small farms (less than 49 

animals) decreased from 19,483 to 3,693, large farms (more than 1000 animals) increased from 1,207 to 

3,956, during the study period.  Detailed data for the larger categories do not exist for the entire period, it is 

however evident that these farms increase constantly at least for the three years that data are available on 

farms larger than 1,500 animals. 

<TABLE 1 about here> 

 It is hypothesised that pork prices affect pork supply through entry, exit and expansion of pork farms.  

Similarly, pork feed prices are expected to have a negative effect on pork supply by affecting the 

restructuring of pork farms, as captured by the NSTPM.  Input and output prices of other livestock are 

expected to affect structural changes: (a) prices of milk, beef, eggs and poultry meat; and (b) input prices: 

pig composite feeds, poultry and cattle feeds, fertilizer prices (as a proxy of energy costs) and interest rate.  

These are also expected to affect the decision to expand or contract pork production, and even entry or exit, 

because they constitute alternative sources of income for pork farmers10.  

 The data are available from series of government publications (Landbrugs–Statistik, various issues), 

and are all converted to 1980–based indices.  Data on the distribution of pork farms were also taken from the 

same series.  All numbers for farms were normalised by division with the maximum number in the series. 

 Several variations of the methods presented above have been tried here11.  First, the missing data 

were recovered, and the models that follow were using the completed data set as they were recovered by 

the two–step procedure described in Section 3 above.  In all cases, an artificial 19th category was introduced 

to account for entry and exit. 

 Using the recovered complete data, the simple stationary transition probabilities were recovered, as a 

benchmark situation.  The recovered probabilities were very uniform – an indication that the data did not 

contain sufficient information to pull the probabilities away from the “prior” uniform distribution.  The overall 

                                                 
10 This is only a subset of exogenous variables that might affect the transition probabilities.  There exists a plethora of 
hypotheses concerning factors affecting farm size growth and distribution (see Zepeda (1995 for a review and refernces). 
11 Detailed results of this study can be found in the working paper with the same title at the author’s Institute.  Data and 
GAMS code are also available upon request. 
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performance of the model was very low12:  A very high normalised entropy, S(P)=0.93; a pseudo−R2 = 0.07; 

and X2 = 7.7. 

 The Non–Stationary model was tried next.  With all the covariates discussed previously, namely input 

and output prices of pork and other related livestock products.  All the exogenous variables are lagged one 

period.  The instrumental variables model and the ME formalism was applied to recover the NSTPM.  The 

S(P) for this matrix is 0.73, the pseudo−R2 = 0.26; and X2 = 30.13.  The test for non–stationarity gives an 

ER=22.4, which is significant at the 99% level. 

 Transition probabilities at the lower left off–diagonal were mostly non–zero, a fact showing that large 

farms are likely to reduce in size.  Instead of forcing these values to be zero, this information is introduced as 

priors13.  By using the Cross–Entropy formalism, the model is allowed to select how close the recovered 

probabilities are to the prior knowledge (Table 2).  We construct the matrix of priors using the following 

process:  First construct a matrix of uniform probabilities equal to 1/19.  Then, set to zero the elements pij for 

any j≥i+5 or ≤i�5 for i,j≠19 .  Increase the value of the diagonal elements to: jip1 j ij ≠∀∑− .  This 

process reflects the belief that farms do not grow more than certain rate (maximum five size categories) each 

time, and secondly, that it is more likely that a farm will remain in the same category than otherwise. 

<TABLE 2 about here> 

 The recovered NSTPM has an S(P)=0.505, a corresponding pseudo−R2 = 0.49 and a X2=55.4.  This 

is a remarkable improvement compared to both its stationary and non–stationary counterparts.  Notice also 

that the recovered NSTPM in Table 2 preserves much of the structure of the matrix of the priors implying that 

these prior beliefs are supported by the data (Golan, et al. 1996). 

 How does the farms’ birth, grow and death, relate to this analysis?  Consider entry first.  Note that as 

indicated by the last row of the NSTPM entry is most likely to occur in medium size categories (10–12, or 

400–999 animals), and somewhat less into the smallest category, and even lesser into the large size 

                                                 
12 The measures of performance used here are the “normalised cross entropy” (Golan, et al., 1996); McFadens’ 
pseudo−R2 (McFaden, 1974); and the “Entropy Ratio” (ER) which is distributed as X2

K−1 (Courchane et al., 2000). 
13 Restricting lower and upper off−diagonal elements to zero is common practice in many similar studies (Disney, et al., 
1988; Zepeda, 1996a) 
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categories14.  We must note, however, that although the recovered probability of entry into the large 

categories is very small (0.001 to 0.003, for the categories 14 to 17, i.e. for farms having more than 1500 

animals) the impact is more significant given that the number of farms in these categories is very small 

compared to the rest15.   

 At a first glance, there is no apparent relationship between firm exit and size (Figure 1).  Some 

conclusions however can still be drawn.  Take for instance the size categories up to 1–1500 animals 

(categories 1–12).  During the last five–six years their absolute size is relatively uniform among these 

categories, roughly 1000–1500 farms (Table 1).  As we see from the last column, the probability of exit 

among these categories is larger for categories 7–12 (ranging from 0.12–0.22), whereas it is below 0.1 for all 

size categories with less than 150 animals (categories 1–6).  This probably reflects the fact that the smaller 

farms are more likely to sustain losses during harsh times than larger ones, and is important, for policy 

makers, to take notice that although small farms decrease in numbers, they do not disappear16. 

<FIGURE 1 about here> 

 Farm growth is clearly related to farm size, as shown in Figure 2, however not proportionally.  Given 

that size categories are quite arbitrary, one can not make an immediate connection of this result to Gibrat’s 

law.  To do so, we need to consider proportional changes, given the limitations of the aggregation of 

categories.  We calculate the medians of each size category and take the transition probabilities (from Table 

2) to the category that has approximately double or triple median size (i.e. a proportional growth).  These 

probabilities are plotted in Figure 3.  No significant correlation is fount between median farm size and the 

transition probabilities to double or triple in size.  This is in accordance to Gibrat’s Law of proportional 

growth, although this can not be viewed as a formal test of the Gibrat hypothesis. 

<FIGURE 2 about here> 

<FIGURE 3 about here> 

 The impact of the covariates on the transition probabilities and the distribution of farms is given by 

                                                 
14 Probabilities on entry and exit must be interpreted with caution, because the 19th category is really artificial, and the 
actual probabilities do not need to mean anything, except for their relative size which allows comparison between 
different categories. 
15 To see this consider that the artificial 19th category was normalised to 1, which when brought back to actual numbers 
is 8729.  A probability 0.001 means that 8.7 farms are entering category 17, which is 6.4% of the existing farms in 1998, 
and is approximately one third of the farms (27 farms) entering category 17 that year (Table 1). 
16   Disney et al. (1988), came to similar conclusion for the pork farms in Southern U.S., whereas Massow, et al. (1992), 
came to different conclusion for the Ontario pork industry. 
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calculating the elasticities in 9 and 10 above.  The elasticities of transition probabilities for pig prices 

evaluated at the means are shown in Table 3 (negative values are highlighted)17.  The pig prices have a 

negative effect on all transition probabilities to categories 13 and 14, a negative effect on most of transition 

probabilities to categories 7, 8 and 9, and 1,2,3, and 4.  Most of the elasticities for pig prices are positive in 

most of the upper off–diagonals (except for categories 3, 7, 8, 13 and 14) and negative in most of the lower 

off–diagonal elements.  This is an expected result, indicating that increases in pig prices reduce the 

probability of firms downsizing, and increase the probability of them increasing in size.  Interestingly enough, 

most of the elements at the left in the last row are also negative indicating that as pork prices increase, entry 

to the small categories decreases.  However, the elasticities for entry in the large categories (15, 16, and 17) 

are positive and large, indicating a strong influence of pork prices on entry in large categories.  Increases in 

pork prices have a negative effect on exit from large categories, whereas they increase exit for most of the 

smaller categories, as indicated by the numbers of the last column of Table 3.  Notice however that most of 

the elasticities for the exit category are small. 

<TABLE 3 about here> 

 The cumulated effects of the covariates on the number of farms in each category are given by the 

category elasticities (Equation 10).  These elasticities evaluated at the means are shown in Table 4.  As one 

would expect these numbers are simply a composite of those shown by the probability elasticities, since the 

category elasticities show the accumulated effect of the covariates over time.  Pig prices have a positive 

elasticity with respect to the size of the largest categories (15, 16, 17, 18).  The elasticities for pork prices are 

negative for categories 12–14, which is in accordance to the transition probability elasticities (Table 3) which 

are mostly negative for these categories.  Similar interpretation can be made for the rest of the size 

elasticities.  The interest rate size elasticities are positive for categories 15–17 and negative for the largest 

category 18.  One possible explanation that Massow et al. (1992) give for a similar result, is that the largest 

farms may downsize due to high interest rates, which increases the sizes of the immediately lower 

categories 15–17. 

<TABLE 4 about here> 

                                                 
17 Note that although transition probabilities are zero, transition elasticities do not need to be so.  As we see in (9), if 
pij=0, the elasticity is then simply : njtnit

P
ijtn λ~zxE = , which is non–zero as long as the lambdas are non–zero. 
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6. Concluding Remarks 

 In this article we have shown several estimators for the non–stationary transition probabilities of 

Markov process, using generalised cross entropy formalism.  An instrumental variables approach was 

developed and generalised cross entropy estimators for the non–stationary transition probability matrix were 

derived.  The GCE estimator is more efficient and overcomes many of the problems of traditional techniques, 

such as the OLS and multinomial Logit, especially the problem of dimensionality.   

 We used the instrumental variables estimator to recover a NSTPM for the Danish pork industry, 

considering the transitions of 18 size categories of farms over 1984–1998.  With GCE formalism we were 

able to recover data points, missing due to redefinitions of the size categories over time, and thus avoided 

aggregation of the data.  Along the NSTPM we were able to calculate in the form of elasticities, the effects of 

a number of covariates on transition probabilities and numbers of farms in each category 

 Overall, this technique is useful when one is faced with such ill–posed problems, with large TPM, and 

missing data points.  It is also a natural tool for allowing the researcher to incorporate efficiently any prior 

knowledge, in a non–restrictive way. 

 A major limitation of the instrumental variable technique presented here is that it does not allow for the 

application of different covariates for each transition probability, which is certainly permissible in the linear 

model of Section 2.2.  The instrumental variable model permits however the application of many covariates, 

and the calculation of the effect of each of these covariates on each element of the TPM. 
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FIgure 1. Probability to Exit by Size Category

0
0.1
0.2
0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Category

Pr
ob

ab
ili

ty
 to

 E
xi

t



 

 

 

Figure 2.  Probability to Grow to Any Size
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Figure 3. Probability to Double and Probability to Triple in Size
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Table 1.  Number of Pigs in Denmark by Size Category 
 

  1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
1 1-9 5720 4527 4012 3417 3088 2772 2546 2147 1958 1899 1631 55402 51382 44172 36932

2 10-29 8729 7508 6267 5699 4993 4372 3783 3558 3279 3167 2570    
3 30-49 5034 5089 4761 4008 3654 2967 2809 2503 2179 2169 1582    
4 50-74 4329 4328 4191 3509 2992 2663 2608 2266 2344 1996 1596 23933 44836 41326 35276

5 75-99 3246 3137 2980 2575 2191 1927 1887 1754 1476 1527 1310    
6 100-149 4102 4127 3914 3471 2876 2718 2511 2387 2345 2338 1657 1556   
7 150-199 2599 2690 2561 2372 2306 1891 1884 1818 1728 1535 1378 1194   
8 200-299 3518 3556 3465 3145 2874 2674 2559 2604 2517 2240 1816 1664 27597 25647 15077

9 300-399 2293 2429 2344 2313 2083 2049 2036 1905 1826 1680 1411 1264   
10 400-499 1601 1688 1739 1666 1533 1442 1408 1300 1286 1316 1059 1044 24288 23478 35788

11 500-699 2155 2196 2224 2154 2173 2005 1973 1925 1959 1901 1795 1674   
12 700-999 1561 1552 1648 1655 1694 1701 1645 1760 1682 1774 1685 1679 1595 1605 1428
13 1000-1499 12071 13951 15201 17061 18651 20241 22531 24131 28131 33171 32261 23604 1524 1719 1616
14 1500-1999        817 841 892
15 2000-2999       10505 627 719 844
16 3000-4999        328 362 452
17 5000-9999        110 107 134
18 10000+        12 15 18

 TOTAL 46094 44222 41626 37690 34322 31205 29902 28340 27392 26859 22716 21418 19821 18828 17689
 

1. 1000+ for years 1984-1994 
2. 1-49 for years 1995-1998 
3. 50-99 for year 1995 
4. 1000-1999 for year 1995 
5. 2000+ for year 1995 
6. 50-199 for years 1996-1998 
7. 200-399 for years 1996-1998 
8. 400-699 for years 1996-1998 

Source: Landbrugs-Statistik, various issues 
 



Table 2.  Transition Probability Matrix: Non-Stationary - Cross-Entropy 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
1 0.511 0.076 0.135 0.112 0.061 0.067 0 0 0 0 0 0 0 0 0 0 0 0 0.037 
 (0.086) (0.083) (0.085) (0.084) (0.082) (0.082) (--) (--) (--) (--) (--) (--) (--) (--) (--) (--) (--) (--) (0.079) 

2 0.037 0.572 0.139 0.092 0.050 0.068 0.023 0 0 0 0 0 0 0 0 0 0 0 0.017 
 (0.079) (0.086) (0.084) (0.083) (0.081) (0.082) (0.075) (--) (--) (--) (--) (--) (--) (--) (--) (--) (--) (--) (0.072) 

3 0.080 0.104 0.464 0.051 0.050 0.047 0.043 0.064 0 0 0 0 0 0 0 0 0 0 0.097 
 (0.075) (0.075) (0.077) (0.073) (0.073) (0.073) (0.073) (0.074) (--) (--) (--) (--) (--) (--) (--) (--) (--) (--) (0.075) 

4 0.063 0.113 0.045 0.428 0.054 0.067 0.046 0.049 0.044 0 0 0 0 0 0 0 0 0 0.090 
 (0.080) (0.082) (0.078) (0.083) (0.079) (0.080) (0.078) (0.079) (0.078) (--) (--) (--) (--) (--) (--) (--) (--) (--) (0.081) 

5 0.059 0.083 0.048 0.050 0.386 0.061 0.062 0.086 0.071 0.017 0 0 0 0 0 0 0 0 0.077 
 (0.081) (0.083) (0.080) (0.080) (0.085) (0.081) (0.081) (0.083) (0.082) (0.072) (--) (--) (--) (--) (--) (--) (--) (--) (0.082) 

6 0.069 0.083 0.022 0.032 0.049 0.437 0.047 0.057 0.057 0.012 0.036 0 0 0 0 0 0 0 0.098 
 (0.080) (0.081) (0.073) (0.076) (0.079) (0.083) (0.078) (0.079) (0.079) (0.066) (0.077) (--) (--) (--) (--) (--) (--) (--) (0.081) 

7 0 0.075 0.026 0.045 0.032 0.044 0.418 0.079 0.069 0.022 0.047 0.023 0 0 0 0 0 0 0.120 
 (--) (0.083) (0.077) (0.081) (0.079) (0.081) (0.087) (0.084) (0.083) (0.075) (0.081) (0.076) (--) (--) (--) (--) (--) (--) (0.085) 

8 0 0 0.016 0.041 0.030 0.043 0.046 0.491 0.044 0.027 0.073 0.021 0 0 0 0 0 0 0.167 
 (--) (--) (0.068) (0.075) (0.073) (0.076) (0.076) (0.081) (0.076) (0.073) (0.078) (0.071) (--) (--) (--) (--) (--) (--) (0.080) 

9 0 0 0 0.039 0.027 0.045 0.053 0.079 0.503 0.017 0.067 0.036 0 0.002 0 0 0 0 0.130 
 (--) (--) (--) (0.078) (0.075) (0.079) (0.080) (0.081) (0.084) (0.071) (0.081) (0.077) (--) (0.035) (--) (--) (--) (--) (0.082) 

10 0 0 0 0 0.020 0.020 0.032 0.024 0.023 0.572 0.103 0.048 0.006 0.008 0.022 0 0 0 0.122 
 (--) (--) (--) (--) (0.067) (0.066) (0.069) (0.067) (0.067) (0.075) (0.073) (0.071) (0.055) (0.058) (0.067) (--) (--) (--) (0.073) 

11 0 0 0 0 0 0.024 0.048 0.077 0.063 0.015 0.415 0.076 0.008 0.009 0.011 0.033 0 0 0.221 
 (--) (--) (--) (--) (--) (0.072) (0.077) (0.078) (0.078) (0.068) (0.081) (0.078) (0.060) (0.062) (0.064) (0.074) (--) (--) (0.080) 

12 0 0 0 0 0 0 0.015 0.014 0.010 0.033 0.054 0.566 0.046 0.036 0.034 0.036 0.036 0 0.122 
 (--) (--) (--) (--) (--) (--) (0.072) (0.071) (0.066) (0.080) (0.083) (0.088) (0.082) (0.080) (0.080) (0.080) (0.080) (--) (0.086) 

13 0 0 0 0 0 0 0 0 0 0.085 0.010 0.010 0.768 0.046 0.059 0.010 0.001 0.001 0.010 
 (--) (--) (--) (--) (--) (--) (--) (--) (--) (0.079) (0.064) (0.064) (0.082) (0.077) (0.078) (0.064) (0.033) (0.029) (0.063) 

14 0 0 0 0 0 0 0 0 0.004 0.043 0.012 0.028 0.154 0.637 0.067 0.022 0.006 0.005 0.023 
 (--) (--) (--) (--) (--) (--) (--) (--) (0.049) (0.077) (0.066) (0.074) (0.081) (0.082) (0.079) (0.072) (0.057) (0.053) (0.073) 

15 0 0 0 0 0 0 0 0 0 0.079 0.080 0.039 0.069 0.074 0.537 0.037 0.023 0.022 0.041 
 (--) (--) (--) (--) (--) (--) (--) (--) (--) (0.083) (0.083) (0.079) (0.082) (0.083) (0.086) (0.079) (0.075) (0.075) (0.080) 

16 0 0 0 0 0 0 0 0 0 0 0.072 0.062 0.070 0.078 0.044 0.515 0.047 0.049 0.062 
 (--) (--) (--) (--) (--) (--) (--) (--) (--) (--) (0.083) (0.083) (0.083) (0.084) (0.081) (0.087) (0.081) (0.082) (0.083) 

17 0 0 0 0 0 0 0 0 0 0 0 0.063 0.059 0.059 0.031 0.041 0.633 0.055 0.059 
 (--) (--) (--) (--) (--) (--) (--) (--) (--) (--) (--) (0.083) (0.083) (0.083) (0.079) (0.081) (0.087) (0.082) (0.083) 

18 0 0 0 0 0 0 0 0 0 0 0 0 0.061 0.061 0.027 0.038 0.052 0.703 0.057 
 (--) (--) (--) (--) (--) (--) (--) (--) (--) (--) (--) (--) (0.082) (0.082) (0.077) (0.080) (0.081) (0.087) (0.082) 

19 0.018 0 0 0 0 0 0 0 0 0.025 0.035 0.031 0.003 0.001 0.002 0.001 0.001 0.003 0.880 
 (0.074) (--) (--) (--) (--) (--) (--) (--) (--) (0.078) (0.080) (0.079) (0.046) (0.033) (0.038) (0.035) (0.033) (0.046) (0.089) 

 
(Values in parentheses are asymptotic standard deviations calculated as the negative inverse of the Hessian) 
Source: Estimated



Table 3.  Mean Probability Elasticities for Pig Prices 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
1 0.8 3.2 -19.6 2.5 18.3 6.7 -0.4 -2.5 -0.3 16.8 13.5 2.2 -32.1 -33 19.8 24.5 18.2 20 3.8 
2 0 3.8 -32.1 2.6 27.4 9.3 -1.9 -5.3 -1.7 25 19.9 2.1 -51.7 -53 29.8 37.1 27.2 30.1 4.7 
3 8.6 11.3 -13.6 10.4 27.6 15 7.3 5 7.4 25.9 22.4 10.1 -27.1 -28 29.2 34.3 27.4 29.5 11.9 
4 -1.4 1 -21.2 0.2 15.5 4.3 -2.5 -4.6 -2.4 14.1 10.9 -0.1 -33.2 -34 17 21.5 15.4 17.2 1.6 
5 -4.5 -2.8 -18.8 -3.4 7.7 -0.4 -5.3 -6.8 -5.3 6.6 4.4 -3.6 -27.5 -28.1 8.7 12 7.6 8.9 -2.4 
6 -3.7 -1.4 -23.1 -2.1 12.9 1.9 -4.8 -6.9 -4.7 11.4 8.4 -2.4 -35 -35.8 14.3 18.8 12.8 14.5 -0.8 
7 -0.7 0.9 -14.6 0.4 11.2 3.3 -1.5 -3 -1.4 10.1 7.9 0.2 -23.1 -23.7 12.2 15.4 11.1 12.3 1.3 
8 -0.6 1.7 -19.8 0.9 15.7 4.9 -1.7 -3.8 -1.6 14.3 11.3 0.7 -31.5 -32.3 17.1 21.5 15.6 17.4 2.2 
9 -1 0.7 -14.8 0.1 10.8 3 -1.8 -3.2 -1.7 9.8 7.6 0 -23.2 -23.8 11.9 15 10.8 12 1.1 
10 -5.6 -4.4 -16.1 -4.8 3.2 -2.6 -6.3 -7.4 -6.2 2.5 0.8 -5 -22.4 -22.8 4 6.4 3.2 4.1 -4.1 
11 -4.5 -2.8 -18.8 -3.4 7.7 -0.4 -5.3 -6.8 -5.3 6.6 4.3 -3.6 -27.5 -28 8.7 12 7.6 8.9 -2.4 
12 -1 0.5 -13.5 0 9.6 2.6 -1.7 -3 -1.7 8.7 6.7 -0.2 -21.1 -21.6 10.5 13.4 9.6 10.7 0.8 
13 6.8 7.5 1 7.3 11.8 8.5 6.5 5.9 6.5 11.4 10.4 7.2 -2.6 -2.8 12.2 13.6 11.8 12.3 7.7 
14 3.7 4 0.5 3.9 6.4 4.6 3.5 3.1 3.5 6.1 5.6 3.9 -1.4 -1.6 6.6 7.3 6.3 6.6 4.1 
15 -1.3 -1 -4.1 -1.1 1.1 -0.5 -1.5 -1.8 -1.5 0.9 0.4 -1.1 -5.8 -5.9 1.3 1.9 1.1 1.3 -0.9 
16 -1.3 -1.1 -3.8 -1.1 0.8 -0.6 -1.5 -1.8 -1.5 0.6 0.2 -1.2 -5.4 -5.5 1 1.5 0.8 1 -1 
17 -1.1 -0.8 -3.3 -0.9 0.8 -0.4 -1.2 -1.4 -1.2 0.7 0.3 -0.9 -4.6 -4.7 1 1.5 0.8 1 -0.7 
18 -1.1 -0.9 -3 -1 0.5 -0.6 -1.2 -1.4 -1.2 0.4 0.1 -1 -4.2 -4.3 0.7 1.1 0.5 0.7 -0.8 
19 -11.3 -3.6 -76.8 -6.1 44.5 7.6 -15.2 -22.1 -14.8 39.7 29.3 -7 -117 -120 49.4 64.4 44.2 50.1 -1.7 

 
Source: Estimated 
 



Table 4.  Size Elasticities (Cross-Entropy) 
 
 

      PRICES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
Pig Meat  0 3.1 -17.6 1.2 13.1 3.8 -1.7 -3.4 -2.4 10.5 9.3 -1.7 -9.4 -10.5 7.2 8.6 4.5 6.4 -1 
Milk  -8.6 -0.5 -4.9 1.6 -1.1 -1.1 6.2 -5.3 -3.8 -11.4 17.8 1.3 3.8 8 -2.1 -4.2 -2.5 -2.1 3.1 
Egg  5.7 -3.1 5.4 3.2 -0.7 1.2 -6.2 -6.7 -4.3 28.6 15.8 -3.9 -1.7 -1.6 -2.1 -0.4 0.6 0.4 -6 
Cattle Meat  3.2 7.6 -9.7 -0.1 -18.4 -7.8 2.6 23.1 12.1 -17.9 -34.2 6.4 0.9 -6.6 5.4 3.2 -0.3 -0.3 4 
Poultry  10.4 -3.6 -36.8 -0.6 -3 -31.2 20.1 4.4 8.8 -76.3 -19.1 6.2 16.1 21.4 -13.3 -15.4 -7.9 -11.4 28.1 
Pig feed 3.1 -30.1 115.1 2.2 -19 72.4 -31.3 -35 -24.9 84.3 110.6 -9.6 -7.5 0.9 -35.9 -15 13.6 22.4 -55.2 
Cattle Feeds -7.5 -6.5 9.3 15.6 -3.3 3.7 -2.6 11.2 -5.5 10.9 -13.3 2.1 1.6 -1.5 4.4 1.7 -2.3 -3.4 -3.6 
Poultry Feeds -18 34.9 -82.3 -21.4 29.9 -49.9 25.6 8.8 20.7 -53.5 -59 -2.6 1.8 4.2 23.4 8.8 -9.1 -15.6 39.7 
Fertilizers 1.4 0.6 29.7 -5.9 -4.1 13.1 -10.9 -7.2 -4.8 32.7 3.8 -0.1 -2.6 -6.3 2.2 4.2 2.6 3.6 -12.5 
Interest Rate 9.9 -1.1 -6.5 2.5 8.5 -3 -3.3 9.7 4.2 -4.2 -33.6 1.6 -3.3 -8.8 10.9 9.1 1 0.1 2.4 

 
Source: Estimated 
 
 
 




