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Abstract

This article discusses models in data envelopment analysis (DEA) relaxing

the standard convexity assumptions. The basic model treats mutually in-

comparable pairs of sets to be generated by a procedure proposed earlier.

Each pair consists of a consumption set and a production set of feasible

input-output combinations. Two fundamental operations by the procedure

are based on intersection and convex hull generation in the input-output

space. A polarity analysis is performed which, subject to the usual assump-

tions about free disposability and nonnegativity, appears fruitful to do in

the framework of blocking and antiblocking sets. It is shown how this leads

to an interchange of the above operations extending some classical results

from convex analysis. The last part of the paper presents a pair of lin-

ear programming models calculating a Farrell productivity index based on

a preceeding application of the procedure. This is a generalization of the

classical linear programming models in DEA subject to standard assump-

tions about convexity.

Keywords: Data envelopment analysis, polarity.



1 Introduction

The models considered in Data Envelopment Analysis compares the per-

formance of decision making units subject to some assumptions about the

possibility space of input-output vectors. The comparison is done under

various assumptions, in particular about convexity and free disposability.

The original models by Banker [2] and Banker, Charnes and Cooper [3]

operates with free disposability and convexity of the entire production pos-

sibility space. They have been widely applied. The model proposed by

Tulkens [19] operates only with free disposabiblity, such that comparison is

only possible by domination. Petersen proposed in [13] a relaxation requir-

ing convexity of the projections into input and output space, respectively.

Further work along this line has been done by Bogetoft [6]. Consider the

set of mutually non-dominating input-output vectors. For any subset cre-

ate the convex polytope spanned by the subset, but keep only polytopes

that do not dominate any input-output vector. Kuosmanen [12] constructs

the smallest (usually nonconvex) polyhedron containing all remaining poly-

topes and adds a cone to ensure free disposability. Post [14] considers a

convex transformation of a non-convex possibility set by means of so-called

transconvex functions.

Bogetoft et al. [7] propose a method which subject to free disposability

constructs the smallest possibility set having convex projections in input

and output space. It operates with a selection of pairs of input-output

vectors such that any vector of a pair constitutes a feasible input-output

combination. The pairs are formed by a sequence of alternating intersection

and convex hull operations. For a given input vector the convex projection

in the output space is obtained as the largest output part from all pairs con-

taining the input vector. By construction it is the production set consisting

of all outputs that may be obtained by the given input. Symmetrically one

may also construct the consumption set consisting of all inputs from which

a given output vector may be reached.

The present analysis gives a dual description of the production and con-

sumption sets. The blocking and antiblocking theory, originally developed

by Fulkerson [10] for the analysis of certain problems in extremal combi-

natorics, appears to o�er an appropriate framework. This is due to the

assumptions about nonnegativity and free disposability which imply that a

consumption set undertakes the form of a blocking polyhedron and a pro-

duction set the form of an antiblocking polyhedron. This establishes an

involutory polarity which gives additional exibility by enabling an inter-

change of the above intersection and convex hull operations. The method

generates pairs of convex polyhedra. However, the duality analysis to be
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carried out here considers not just polyhedra but investigates the larger class

of convex sets. This is in agreement with the setting selected in previous

similar studies on aureoled sets of Ruys and Weddepohl [16] and Wedde-

pohl [20] and on generalized blockers and antiblockers by Tind [18]. In this

context we should also mention the book by F�are and Primont [9] in which

a basic duality theory is discussed for convex production models which do

not necessarily have a polyhedral structure. The main distinction between

the present and previous work is the particular analysis performed here as

a result of the assumption about nonnegativity together with free dispos-

ability.

In DEA the eÆciency of a speci�c decision making unit may be measured

by a productivity index which subject to the usual convexity assumptions is

calculated by linear programming. An extended linear programming model

is proposed for the calculation of a productivity index subject to the present

relaxed convexity assumptions. It is �nally demonstrated how a classical

calculation of an index may be derived as a special case of the model together

with a presentation of a simple linear programming model for calculation

of the index suggested by Tulkens [19].

The next section gives an introduction to the method generating convex

consumption and production sets. Section 3 discusses the polarity theory

for antiblocking and blocking sets and is subsequently applied in a DEA

context in Section 4. Section 5 formulates the linear programming model

for the calculation of the productivity index under the relaxed convexity

assumptions.

2 Convexity in DEA

Consider a set U of decision making units, DMU's, and for each i 2 U

let xi denote the nonnegative input vector and yi the nonnegative output

vector of the i'th DMU. This means that xi can produce yi, or in other

words that the input-output pair (xi; yi) represents a feasible input-output

combination. Let x and y denote arbitrary elements of the input- and

output space, respectively. Additional combinations (x; y) may naturally

be feasible, dependent on some classical assumptions to be discussed below.

Let Li = fx j x � xig and Pi = fy � 0 j y � yig for i 2 U . So,

geometrically Li is a translation of the nonnegative orthant of the input

space. In the output space Pi is a box, which has full dimension if and only

if all elements in yi are strictly positive. See Figure 1 for an illustration.

DEA models usually assume free disposability. With the current notation

this may be expressed by requiring all points (x; y) 2 (Li; Pi) to be feasible

2
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Figure 1: Feasible input-output combinations for i'th DMU.

input-output combinations.

Let T denote the production possibility set which by de�nition consists

of all feasible input-output combinations. If free disposability is the only

assumption made we are dealing with the so-called FDH (free disposable

hull) model introduced by Tulkens [19]. For the FDH model we get

T = [i2U (Li; Pi): (1)

The classical DEA models additionally introduce some convexity conditions.

If

T = conv f[i2U (Li; Pi)g (2)

we get the varying return to scale (vrs) model developed in Banker [2] and

Banker, Charnes and Cooper [3].

Let L0 be the non-negative orthant of the input space and let P0 be

the zero vector in the output space. If this pair (L0; P0) is included, i. e.

0 2 U we implicitly say that any input may produce no output. In that case

condition (2) gives us the decreasing return to scale (drs) model considered

by the same authors.

For an arbitrary set S let cone S denote the convex cone generated by

conv S, i. e. cone S = f�s j s 2 conv S and � 2 IR+g: If

T = cone f[i2U(Li; Pi)g (3)

we get the constant return to scale (crs) model proposed by Charnes, Cooper

and Rhodes [5].

We shall next consider the projections of the possibility set into the

input and output space, respectively. For a given input vector x de�ne the

production set by P (x) = fy j (x; y) 2 Tg i. e. P (x) consists of all possible

outputs for the input vector x. Similarly, for a given output vector y let

L(y) denote the consumption set de�ned by L(y) = fx j (x; y) 2 Tg:

If T is convex, which is the case for the models satisfying (2) and (3),

then the projections P (x) and L(y) are also convex. However, if T is non-

convex as in the FDH-model from (1) then P (x) and L(y) are generally

non-convex too.

3



A basic question is: What is the minimal possibility set T satisfying

free disposability such that the production set P (x) and the consumption

set L(y) are convex for all (x; y) 2 T ? To emphasize the symmetry of the

framework let ] denote the convex hull opration and de�ne the following

two pairs of sets for arbitrary indices i; j 2 U :

(Ln; Pn) = (Li \ Lj; Pi ] Pj) (4)

and

(Lm; Pm) = (Li ] Lj; Pi \ Pj): (5)

Due to free diposability any x 2 Li\Lj and y 2 Pi[Pj constitute a feasible

input-output combination. Since the the production set P (x) is required to

be convex this is also true for any pair (x; y) 2 (Ln; Pn). Similarly any pair

(x; y) 2 (Lm; Pm) is a feasible combination, since the consumption set L(y)

is convex.

Hence, (4) and (5) generate pairs of sets consisting of feasible input-

output combinations in addition to the original pairs (Li; Pi) for i 2 U .

This approach is continued in an iterative procedure to be outlined below.

Next introduce the concept of dominance. If Li � Lj and Pi � Pj for

some i; j 2 U then the pair (Lj; Pj) is said to dominate the pair (Li; Pi). In

this case all input-output combinations of the i' th pair are included in the

j'th pair and index j may be removed.

This may be formalised by the following

Procedure

Start: Let N1 = U and l = 1.

Step 1: Create by (4) and (5) all new pairs (Ln; Pn) and (Lm; Pm) based on

existing pairs with indices i; j 2 Nl.

Step 2: Let Nl+1 consist of all pairs in Nl together with the new ones created

in Step 1.

Step 3: Remove from Nl+1 any pair which is dominated by another pair in

Nl+1.

Step 3: If Nl+1 = Nl no more non-dominated pairs can be generated and

the procedure terminates. Otherwise let l := l + 1 and go to Step 1.

The procedure creates a series of indices. This series to be denoted by N

may be �nite or in�nite dependent on possible ful�llment of the termination

criterion in Step 3. Consider the possibility set T de�ned by

T = f(x; y) j 9i 2 N such that (x; y) 2 (Li; Pi)g:

By construction this is the smallest possible possibility set satisfying the

desired properties: It contains the input-output points of the DMU's, sat-

is�es free disposability and has convex projections. More details including
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conditions for �niteness of the procedure may be found in Bogetoft et al.

[7].

3 Non-negative polarity

The previous section concentrated on the development of pairs of feasible

input-output combinations of a polyhedral structure. In this section, how-

ever, we generalize to sets that are not necessarily polyhedral to conform

with the standard assumptions for production and consumptions sets dis-

cussed in microeconomic theory. We treat those sets in a duality perspective

in which the input and output space are going to be considered indepen-

dently. First let us consider polarity properties of the output space.

3.1 Antiblockers

Let p denote the dimension of the output space and introduce a set P 2 IRp

satisfying

[(cl conv P )� IRp
+] \ IRp

+ = P: (6)

Any output part Pi of an input-output combination generated by the pre-

vious procedure is a polyhedron satisfying this property. By (6) it follows

directly that P is convex and nonnegative. Moreover 0 2 P unless P is

empty. Hence we assume that P is nonempty. The next proposition to-

gether with (6) immediately shows that P is also closed.

Proposition 1 (cl conv P )� IRp
+ is closed.

Proof: The proof is based on a result stated in Rockafellar [15, Theorem

20.3] about the addition of a closed convex set C1 and a polyhedral convex

set C2. The result says that C1+C2 is closed provided that every direction

of recession of C1 whose opposite is a direction of recession of C2 is actually

a direction in which C2 is linear. Therefore our proposition is valid if these

properties hold for C1 = cl conv P and C2 = �IRp
+. Let d be a direction of

recession of cl conv P . Then d 2 IRp
+ since cl conv P is nonnegative. Hence

d is the opposite of a direction of recession in �IRp
+. So the proof is �nished

if we can show that d recedes in a direction in which cl conv P is linear.

Consider the subspace of IRp
+ correponding to the positive components of

d. By (6) the nonnegative orthant of this subspace is contained in P and

hence in cl conv P . This means that the projection of cl conv P into

the subspace is equal to the nonnegative orthant which is linear in any

nonnegative direction. Hence the projection of d is a direction in which the
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projection of cl conv P is linear. Since cl conv P in nonnegative and contains

0 2 IRp
+ we get that d itself is a direction in which the entire cl conv P is

linear.

The above analysis can be summarized into the statement that condition

(6) holds if and only if P satis�es the following properties:

� P is a non-negative, closed and convex.

� P satis�es free disposability in the output space, i. e. 0 � ~y � y and

y 2 P imply ~y 2 P:

These properties are assumptions commonly made in the classical liter-

ature on microeconomics, see e. g. Debreu [8].

From a dual perspective a set satisfying (6) is naturally studied in the

framework of so-called antiblockers. This framework was introduced for

polyhedra by Fulkerson [11] for the investigation of polarity properties of

some problems in extremal combinatorics. Here we shall see that the basic

concept appears useful for an investigation of similar properties in data

envelopment analysis.

Antiblockers are similar to the notion of polar sets, see Rockafellar [15],

except that all elements to be considered are nonnegative, which is the case

in the DEA framework too. The familiarity with polar sets means that the

following propositions may be derived from similar propositions for polar

sets while taking appropriate consideration to nonnegativity. However to

keep the paper selfcontained and in order to establish the connection to

blockers to be considered in Section 3.2 we include direct proofs:

Formally an antiblocker of P is de�ned by

A(P ) = fy� 2 IRp
+ j y

�y � 1 for all y 2 Pg: (7)

Note �rst that A(P ) is nonempty and that it by replacing P satis�es condi-

tion (6). Introduce an additional nonempty set O satisfying (6) and consider

the following

Proposition 2 A(P ]O) = A(P ) \ A(O):

Proof: Since P ] O � P we have that A(P ] O) � A(P ). Similarly we

obtain that A(P ] O) � A(O) showing that

A(P ] O) � A(P ) \ A(O):

To prove the converse inclusion let y� 2 A(P )\A(O). Then y�y � 1 for all

y 2 P and similarly y�y � 1 for all y 2 O. This shows that y�y � 1 for all

6



y 2 P [O and hence also for all convex combinations of elements in P [O.

Thus y�y � 1 for all y 2 P ] O or equivalently y� 2 A(P ] O).

The next proposition states the involutory property for antiblockers.

This was stated by Fulkerson [10] for polyhedra. A generalized version

appears in Tind [18]. We give a direct proof here under the present as-

sumptions.

Proposition 3 A(A(P )) = P .

Proof: Obviously A(A(P )) � P . By (6) and Proposition 1 P � IRp
+ con-

tains 0 and is closed. Moreover, the recession cone of P � IRp
+ includes the

nonpositive orthant IRp
�
. Hence P � IRp

+ may be described as the intersec-

tion of closed halfspaces of the form fy 2 R
p
+ j y�y � 1g, where y� 2 IRp

+.

Assume that y 2 IRp
+ and y 62 P . Then by (6) also y 62 P � IRp

+. Hence by

the theorem of separating hyperplanes a nonnegative normal y� exists such

that y�y � 1 for all y 2 P � IRp
+, implying that y� 2 A(P ), while y�y > 1.

This shows that y 62 A(A(P )).

As a counterpartner to Proposition 2 we shall state the following dual

version.

Proposition 4 A(P \O) = cl (A(P ) ] A(O)):

Proof: SinceA(P ) andA(O) satisfy condition (6) we may use Proposition 2

to obtain

A(A(P ) ] A(O)) = A(A(P )) \ A(A(O)):

By Proposition 3 we get

A(A(P ) ] A(O)) = P \O

and further

A(A(A(P ) ] A(O))) = A(P \O):

For any set Y 2 IRp we have that A(Y ) = A(cl (Y )). This implies that

A(A(cl (A(P ) ] A(O)))) = A(P \O):

Since the set cl (A(P )]A(O)) satis�es condition (6) additional application

of Proposition 3 implies the requested result.

The following example shows the neccessity of the closure operation cl

in proposition 4 in general.
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Example 1

Consider in the two dimensional output space the two polyhedra P =

conv [(0; 0); (0; 0:5); (0:5; 0)] and O = conv [(0; 0); (1; 0)]: They each have a

form that could be the output part of a feasible input-output pair. However

O has no output in the �rst component. Now A(P ) = f(y�1; y
�

2) j (0; 0) �

(y�1; y
�

2) � (2; 2)g and A(O) = f(y�1; y
�

2) j 0 � y�1 � 1 and y�2 � 0g: In this

case A(P ) ] A(O) is not closed. See Figure 2.

�
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������
������
������
������
������

A(O) ] A(P )

A(O)

A(P )

y�1

y�2

Figure 2: A(O) ] A(P ) is not closed.

The trouble in the above example is the lower dimension of O. Indeed,

the closure operation can be removed if A(P ) and A(O) have the same

recession cone, see Rockafellar [15, Corollary 9.8.1]. This occurs if the cones

generated by P and O have full dimension p in the output space, in which

case A(P ) and A(O) are bounded. These observations can be summarized

into the following

Corollary 1 If the output sets P and O are both full dimensional then

A(P \O) = A(P ) ] A(O):

The above results make it possible to interchange the role of intersection

and convex union as summarized in

Proposition 5

P \ O = A(A(P ) ] A(O)) (8)

and cl (P ] O) = A(A(P ) \ A(O)): (9)
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Proof: A(P ) and A(O) satisfy property (6). Hence by Proposition 2 we get

A(A(P )]A(O)) = AA(P )\AA(O). Finally, application of Proposition 3

on the last terms implies (8). (9) follows by Propositions 3 and 4.

3.2 Blockers

We shall here study the input sets in the framework of blockers. Let r denote

the dimension of the input space and consider a nonempty set L 2 IRr. In

this framework the condition (6) valid for antiblockers changes to

[(cl conv L) + IRr
+] \ IRr

+ = L: (10)

Since by (10) L and IRr
+ have the same recession cone IRr

+ it follows in this

case by Rockafeller [15, Corollary 9.8.1] that (cl conv L) +IRr
+ is closed.

Hence also L is closed. In parallel with the description of antiblockers we

thus here get that L satis�es condition (10) if and only if

� L is nonnegative, closed, convex and 0 62 L.

� L satis�es free disposability in the input space, i. e. x � ~x and x 2 L

imply ~x 2 L.

The input sets Lj generated by the procedure in section 2 satisfy equa-

tion (10).

The de�nition of a blocker is similar to the de�nition (7) of an an-

tiblocker, however with the inequality reversed. So, the the blocker B(L) of

L is going to be de�ned by

B(L) = fx� 2 IRr
+ j x

�x � 1 for all x 2 Lg: (11)

The blocker is nonempty as 0 62 L and satis�es (10) replacing L. Sets of

similar structure have been studied as socalled aureoled sets by Weddepohl

[20] and Ruys and Weddepohl [16] and as socalled reverse polar sets by Tind

[18]. However, here we transfer the proofs from Section 3.1 while indicating

some slight changes.

Introduce an additional set K satisfying (10). Similar to Proposition 2

we get

Proposition 6 B(L ]K) = B(L) \ B(K).

Proof: This is similar to the proof of proposition 4, however with inequal-

ities reversed.

With a similar proof as for Proposition 3 we have

9



Proposition 7 B(B(L)) = L:

We also get

Proposition 8 B(L \K) = B(L) ] B(K):

Proof: The proof is similar to the proof of Proposition 4 together with the

observation that the closure operation is not needed since B(L) and B(K)

have the same recession cone IRr
+.

In analogue with Proposition 5 we may similarly state and prove

Proposition 9

L \K = B(B(L) ] B(K))

and L ]K = B(B(L) \ B(K)):

4 Polarity in DEA

Proposition 5 and Proposition 9 make it possible to substitute the convex

union operation in (4) and (5) in the original spaces by an intersection op-

eration in the dual spaces, respectively. Similarly the intersection operation

in (4) and (5) may be substituted by a convex union operation in the dual

spaces. In particular if the original output sets Pi for i 2 U are full di-

mensional then also all subsequent output sets generated by (4) and (5)

become full dimensional. In this case we may use Corollary 1 and dismiss

the closure operation in Proposition 5.

Example 2

Consider in the two dimensional output space two DMU's indexed by 1

and 2 and with output vectors (5; 4) and (6; 1), respectively. We thus have

P1 = f(y1; y2) j (0; 0) � (y1; y2) � (5; 4)g

= f(y1; y2) � (0; 0) j 1

5
y1 � 1; 1

4
y2 � 1g and

P2 = f(y1; y2) j (0; 0) � (y1; y2) � (6; 1)g

= f(y1; y2) � (0; 0) j 1

6
y1 � 1; y2 � 1g:

These sets are incicated on Figure 3. We obtain that

A(P1) = f(y�1; y
�

2) � (0; 0) j 5y�1 + 4y�2 � 1g

and A(P2) = f(y�1; y
�

2) � (0; 0) j 6y�1 + 1y�2 � 1g:

Those sets are also indicated on Figure 3.

Then A(P1)\A(P2) = f(y�1; y
�

2) � (0; 0) j 5y�1 +4y�2 � 1 and 6y�1 +1y�2 � 1g

implying that

10



A(A(P1) \ A(P2))

= f(y1; y2) � (0; 0) j 3

19
y1 +

1

19
y2 � 1; 1

6
y1 � 1 and 1

4
y2 � 1g

= P1 ] P2:

This shows that the antiblocker of A(P1) \ A(P2) is equal to P1 ] P2 il-

lustrating (9). The two sets are shown on Figure 3 by thick borderlines.
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; 1

19
)
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1

6

1

4

1

5

Figure 3: Example.

By de�nition we have for any y� 2 A(P ) that fy j yy� � 1g � P .

In other words for �xed y� 2 A(P ) then yy� � 1 is a valid inequality for

P . The inequality has nonnegative coeÆcients and a positive right hand

side, normalized to one. The inequality may be interpreted as a resource

constraint in a usual fashion. The coeÆcient vector y� may be interpreted as

a consumption rate of the resource per unit of the output components. We

have of course special interest in the binding constraints as they dominate all

other constraints with coeÆcients in A(P ). This set is �nite and constitutes

together with possible facets of the nonnegative orthant all facets of the

polyhedron A(P ). A similar discussion may be done also for blockers. More

discussion about the polyhedral structure of the sets generated is done in

the next Section 5.

5 Productivity index

This section discusses how a productivity index may be introduced under

relaxed convexity.
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The input sets Li indexed by N may be partially ordered with respect

to inclusion. Similarly for the output sets Pi. If the procedure described in

Section 2 has �nite termination then the order of the sets in the input space

and the order of the corresponding sets in the output sets are mutually

reverse. The two orderings constitute a pair of dual lattices with respect to

intersection and convex union. For details see Bogetoft et al. [6]

In this context it is possible to introduce an eÆciency score of a particu-

lar DMU with respect to all DMU's. Let (x; y) 2 IRr�p be an input-output

vector of the selected DMU. Consider a pair (Li; Pi) with i 2 N . In accor-

dance with the tradition we say that a point x 2 Li is eÆcient in Li if no

other point x̂ 2 Li exists with x̂ � x and x 6= x̂. Similarly, a point y 2 Pi

is eÆcient in Pi if no other point ŷ 2 Pi exists with ŷ � y and y 6= ŷ.

Assume that the procedure in Section 2 has terminated after a �nite

number of steps. If a common index i 2 N exists such that x0 is eÆcient in

Li and y0 eÆcient in Pi we then say that the DMU with the input-output

vector (x0; y0) is eÆcient with respect to all DMUs. Otherwise, components

of x0 may be diminished or components of y0 increased. This question shall

be examined through possible scaling. Traditionally DEA operates with

an input oriented eÆciency score as well as an output oriented eÆciency

score by means of a Farrell index. In the current setting the input oriented

eÆciency score is the optimal value of the program

minf� j 9i 2 N where (�x0; y0) 2 (Li; Pi)g: (12)

Due to the lattice structure the calculations in (12) select in the input space

the largest set Li such that (x0; y0) 2 (Li; Pi). Alternatively, due to the dual

lattice structure the same pair of sets is found by selecting the smallest set

Pi such that (x0; y0) 2 (Li; Pi).

All sets generated by the procedure are polyhedral. By the blocking

theory developed in Section 3.2 we may therefore rewrite an input set Li as

Li = fx � 0 j Bix � 1g (13)

where Bi is a nonnegative matrix and 1 is a vector of ones of conformable

dimensions. Similarly by Section 3.1 we have

Pi = fy � 0 j Aiy � 1g (14)

where Ai is a nonnegative matrix and 1 is a vector of ones of conformable

dimensions.

For a given index i such that y0 2 Pi the program (12) can be trans-

formed into the following linear programming problem.

min
�

�

s.t. Bix0� � 1:
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The objective is to select an index i giving the minimal value of the above

program. This can be formulated as a disjunctive programming problem

leading further to a linear programming formulation, see Balas [1]. Using

this technique we introduce the additional variables zi 2 IR+ and �i 2 IR

for i 2 N and consider the linear programming problem.

min
�i;zi

X

i2N

�i

s.t. Bix0�i � zi1 � 0 for all i 2 N

(Aiy0 � 1)zi � 0 for all i 2 N
X

i2N

zi = 1

zi � 0:

This program is linearly homogeneous in the the zi variables, 0 � zi � 1.

Hence an optimal solution may be found by putting a single variable zi equal

to 1 and the remaining ones to 0. The selected value will correspond to the

input-output pair (Li; Pi) in (12) giving the minimal value of �. It should

be remarked however, that some work is required for the determination of

the matrices Ai and Bi, in particular if the index set N is large. This size

depends on the termination performance of the procedure for the considered

instance. Perhaps a premature interruption gives a suÆcient approximation

of the possibility set for the determination of an eÆciency score.

As an alternative to the closed halfspace characterization used in (13)

and (14) the input and output sets may be characterized by their extreme

points. For this purpose let Si denote the index set of all extreme points of

the input set Li and let eij denote an extreme point, j 2 Si. Similarly, for

the corresponding output set Pi let fij denote an extreme point together

with the index set Ti. In the case of output sets some extreme points may

be removed as they may be dominated by other extreme points with larger

elements. This is due to free disposability in the output space where domi-

nated extreme points may occur on the axes of coordinates. By introduction

of the variables �ij and �ij we have

Li = fx � 0 j x �
X

j2Si

eij�ij;
X

j2Si

�ij = 1; �ij � 0g and

Pi = fy � 0 j y �
X

j2Ti

fij�ij;
X

j2Si

�ij = 1; �ij � 0g:

(Strictly speaking the non-negativity condition in Li is not required as all

extreme points eij are nonnegative in our case). In this framework the

Farrell index in (12) may be calculated by the following linear program.

min
X

i2N

�i
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s.t.
X

j2Si

�ijeij � x0�i for all i

X

j2Tij

�ijfij � y0zi for all i

X

j2Sij

�ij = zi for all i

X

j2Tij

�ij = zi for all i

X

i2N

zi = 1

�ij; �ij � 0 for all i; j

zi � 0 for all i:

It should be noted that the extreme points of Li are all non-negative nor-

mals of facets for the antiblocker A(Li). By the involutory correspondence

stated in Proposition 3 we symmetrically have that the extreme points of

A(Li) correspond to the non-negative facets of Li, which again is the mini-

mal set of rows in Bi required to de�ne Li by (14). For details see Fulkerson

[10].

We shall see that the above linear programming model is a generalization

of some classical models as well.

With only a single input-output pair, i. e. when jN j = 1, we may delete

index i and denote the single pair by (L; P ). Assume additionally that the

number of non-dominated extreme points are the same in the two sets L

and P . Denote this number by S. Furthermore, let the vector � be equal to

�. In this setting we get the classical varying return to scale model studied

in (2), in which the extreme points correspond to the decision making units.

With the current notation we obtain the usual standard form:

min �

s.t.
X

j2S

�jej � x0�

X

j2S

�jfj � y0

X

j2S

�j = 1

�j � 0:

If the input-output pairs (Li; Pi) are given by the original DMU's illus-

trated by Figure 1 then each set of the pair has only one non-dominated

extreme point. We may thus remove the index j and additionally assume
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that �i = �i = zi. In this setting the model reduces to the FDH model

studied in (1) and here stated as a linear programming problem,

min
X

i2N

�i

s.t. ziei � x0�i for all i

zifi � y0zi for all iX

i2N

zi = 1

zi � 0 for all i

in which N is the index set for the DMU's.

In all the above models we have for simplicity excluded the introduction

of slacks to indicate the cases in which an input-output vector is eÆcient

according to the index, i. e. � = 1, but nevertheless is dominated. Those

slacks may however easily be introduced in a traditional manner, see for

example Charnes et al. [4].

A similar analysis as above can be done in connection with the estab-

lishment an output oriented eÆciency score.

6 Conclusion

This paper is primarily concerned with two issues.

One issue is related to a procedure for the generation of the smallest

possibility set with convex projections, which is a relaxation of traditional

convexity assumptions in DEA. During the procedure corresponding pairs

of input and outputs sets are generated. The procedure is based on an

alternating sequence of intersections and convex hull generations so that

intersection of sets in the input space is performed together with generation

of the convex hull of the corresponding sets in the output space, and vice

versa. A polarity analysis has been performed allowing for an interchange

of intersection and convex hull operation where this may be appropriate.

This interchange is made via the dual space of the input and output space,

respectively.

The other issue deals with the calculation of a Farrell index under the

relaxed convexity conditions introduced. This leads to a linear programming

formulation that is based on a preceeding application of the procedure.

A crucial thing is how to generate all corresponding pairs. Addition of

new pairs may lead to an improvement of the productivity index for a

given input-output vector. However this improvement is believed to be

very little once a certain number of pairs have been generated. So for
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practical purposes a premature interuption of the procedure is expected to

have minor inuence for the calculation of a suÆciently accurate index.

Other relaxations are possible. For example one may in a similar way

analyze the free replicability model based on Tulkens [19]. This is an integer

programming model, for which the duality theory for integer programming

should be used, see for example Schrijver [17]. This implies that a polarity

analysis may be done in a dual space consisting of Chvatal functions. Indeed

the above analysis may be performed on any optimization model in DEA,

for which an appropriate duality theoriy exists with no duality gap.
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