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El Ni~no southern oscillation and its effects on
world vegetable oil prices: assessing asymmetries

using smooth transition models

David Ubilava and Matt Holt†

In this research, we examine the effects of El Ni~no southern oscillation (ENSO) on
market dynamics of major vegetable oil prices. We adopt a smooth transition vector
error correction modelling framework to analyse the impacts of ENSO events on the
vegetable oil prices and, more interestingly, to investigate the asymmetric nature of the
ENSO dynamics and price responses to ENSO shocks. The results confirm self-
exciting type nonlinearities in the ENSO dynamics, and presence of the so-called
transactions cost band in the system of vegetable oil prices. These nonlinearities yield
the history-specific asymmetries in the vegetable oil price dynamics, wherein effects of
ENSO shocks on the ENSO dynamics and the vegetable oil prices vary considerably
between different ENSO regimes. In general, positive deviations, El Ni~no events,
result in the vegetable oil price increase, while negative deviations, La Ni~na events,
result in decrease in the prices. We illustrate these effects using generalised impulse-
response functions and the derived asymmetry measures.

Key words: El Ni~no southern oscillation, smooth transition vector error correction,
vegetable oil prices.

1. Introduction

Weather and agriculture are intrinsically linked. Of course, this statement is
hardly controversial: crop yields in particular have long been observed to be
closely tied to growing conditions. The corollary is also true: market prices
for many agricultural products will necessarily be sensitive to weather shocks.
There is substantial evidence of linkages between weather anomalies,
agricultural production and commodity prices throughout the recorded
history. For example, Temin (2002) observed that prices for barley and
mustard in ancient Babylon tended to move together in a manner consistent
with changing growing conditions. As well, Lamb (1995) provides evidence of
extreme price spikes for cereal grains in Europe during the worst years of the
Little Ice Age. And more recently, various authors have examined the role of
weather events and climate change on crop yields, land prices and
profitability (see Ker and McGowan 2000; Schlenker and Roberts 2006,
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2009, for examples of comprehensive empirical work on the (nonlinear)
effects of weather and climate anomalies on crop yields).
Aside from the obvious connections between rainfall and temperature on

crop yields, and hence prices, there is budding interest in the effects of large-
scale medium-frequency climatic anomalies on various economic variables
including those linked to agricultural commodity production and pricing. In
part, this interest stems from a growing recognition that even local weather
conditions may be linked to the medium-frequency climatic events. In recent
years, attention has focussed on a particular climatic phenomenon in the
Pacific Ocean. During normal conditions, equatorial trade winds blow from
east to west across the tropical Pacific. However, during the so-called El Ni~no
events, the trade winds weaken leading to a depression of the thermocline in
the eastern Pacific and a corresponding elevation in the west. The result is
warmer-than-normal sea surface temperatures (SSTs) in the eastern and
central Pacific. These warmer SSTs in turn interact with the atmosphere, the
result being that trade winds are weakened even further. Typical conse-
quences of El Ni~no events are increased rainfall across the southern United
States and in Peru and drought in the western Pacific region, especially in
Indonesia and Australia. The counterpart to El Ni~no is La Ni~na, which is
associated with intensified trade winds and colder-than-normal SSTs in the
eastern equatorial Pacific. In general, La Ni~na episodes result in weather
anomalies opposite to those for El Ni~nos. El Ni~no and La Ni~na events
usually alternate and tend to reoccur approximately every 3–7 years; the
result being the so-called El Ni~no–La Ni~na cycle or the El Ni~no southern
oscillation (ENSO). These effects were first identified in the early 1920s by Sir
Gilbert Thomas Walker (Walker 1923), who eventually coined the phrase
‘Southern Oscillation.’
While ENSO events take place in the tropical Pacific, they have

consequences for global weather conditions and hence for agricultural
commodity production and pricing. To this end, several studies have found
statistically significant correlations between ENSO events and economic
behaviour. In a series of papers, Paul Handler (e.g. Handler and Handler
1983; Handler 1984, 1990) provides evidence that deviations in Midwest corn
yields from long-term trends are often linked to SST anomalies in the
equatorial Pacific Ocean. Keppenne (1995) examined the relationship
between monthly soybean futures price movements and ENSO events by
using spectral analysis: a 48 month cycle in soybean futures prices related to
the frequency of ENSO events was identified. The results also indicated that
soybean futures were more closely linked with La Ni~nas, presumably due to
drought conditions in the Midwest. In a related study, Letson and
McCullough (2001) examined the relationship between monthly soybean
cash prices and ENSO events by performing Granger causality tests; no
meaningful connection between the two series was found. Finally, Debelle
and Stevens (1995), Brunner (2002), and Berry and Okulicz-Kozaryn (2008)
have examined the possibility that central Pacific Ocean SST anomalies affect
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macroeconomic performance including measures of inflation and output. For
example, Brunner (2002) has assessed linkages between ENSO events and
various commodity prices along with a measure of inflation and GDP growth
for G7 countries; he found that ENSO events apparently have considerable
explanatory power for commodity price movements in many instances.
While several of the foregoing studies provide enticing evidence about

possible relationships between ENSO events and commodity price move-
ments, more work is required. To begin, there is mounting evidence that the
ENSO cycle is not adequately described by linear dynamics, and therefore,
linear time series methods may not be appropriate. For example, Hall et al.
(2001) find evidence that the autocorrelations in ENSO anomalies are
different in El Ni~no versus La Ni~na regimes. An (2009) provides a current
review of research on nonlinearities in the ENSO cycle in the climatology
literature and makes special note of observed El Ni~no–La Ni~na asymmetries.
As well, there is mounting evidence that time series observations for many
commodity prices may be more adequately characterised by nonlinear
dynamic relationships. For example, Shahwan and Odening (2007) and Ahti
(2009) show that nonlinear models based on artificial neural networks and
smooth transition autoregressions (STAR) can yield improved commodity
price forecasts relative to linear ones.
Additionally, Balagtas and Holt (2009) find evidence that a number of

commodity prices behave in a manner consistent with regime-dependent
nonlinearity. There are several reasons for this. First, it is due to the very
nature of the production–distribution cycle: while agricultural crops are
usually harvested on an annual basis, given the demand shock they can be
disposed promptly, thus suggesting possibilities for asymmetric price
dynamics (Holt and Craig 2006; Ubilava 2012). Second, in the system of
closely related (substitute) products, an additional source of nonlinear
behaviour arises due to pretense of the so-called transactions cost band: when
prices are in disequilibrium, a price shock to one or several commodities will
typically result in prompt and adequate adjustments by economic agents,
resulting in a closer co-movement of prices; while when prices are such that
they are within the transactions cost band, economic agents may be reluctant
to react to small variations in one or more of the prices, thereby potentially
mitigating co-movement due to the substitution effects on the related
commodities (Balke and Fomby 1997).
What the foregoing discussion makes clear is that while there may be

evidence of nonlinear dynamics in ENSO events and, as well, in commodity
price movements, to date the two have not been considered together. That is
our focus here. Specifically, in this paper, we examine the effects of ENSO
events on market dynamics of world vegetable oil prices. There is evidence
that ENSO events have significant impacts on the production and prices for
vegetable oils, most notably for palm oil, which is produced primarily in
South-East Asia (see, e.g. Brunner 2002). We also conjecture that responses
to ENSO shocks are asymmetric—a strong El Ni~no event may result in price
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dynamics for vegetable oils that are very different than those associated with
a strong La Ni~na event. This later observation suggests that standard linear
models including vector autoregression (VAR) or vector error correction
models (VECMs)—models of the sort employed, for example, by In and
Inder (1997) and Owen et al. (1997)—may not be appropriate for examining
relationships between ENSO events and vegetable oil prices. As noted
recently by Ismail (2011), models for related vegetable oil prices should allow
for the possibility of asymmetric or nonlinear adjustments irrespective of the
role of ENSO events.
A central contribution of this paper is therefore to combine all of the

aforementioned features in a comprehensive modelling framework, and by so
doing to report on the most thorough analysis to date of the impacts of an
important climatic anomaly—ENSO—on interrelated commodity prices.
Specifically, we use the STAR modelling framework of Ter€asvirta (1994) to
examine the potential for nonlinear dynamics in the ENSO cycle as well as
within a system of vegetable oil prices. To do so a multivariate version of the
STAR model—the smooth transition vector error correction model
(STVECM) similar to that of Rothman et al. (2001)—is used to model a
system of interrelated vegetable oil prices. Smooth transition framework is a
generalisation of a more restricted threshold autoregressive (TAR) models of
Tsay (1989); Tong (1990). Additionally, it embeds elements of other complex
time series models, such as Markov switching (e.g. Hamilton 1989), and
artificial neural network (e.g. Kuan and White 1994) models. An attractive
feature of the STAR-type models is that they allow for a possibility of a
continuum of switching points between the regimes. This could be crucial
when considering behaviour of potentially heterogeneous agents, for exam-
ple. Additionally, because the growing and harvesting seasons of the
considered crops differ depending on the country of origin, the aforemen-
tioned nonlinearities associated with supply and distribution dynamics could
be mitigated, and thus, a smooth transition between the regimes could be a
more appropriate nonlinear modelling technique.
In what follows, we will first present a brief overview of the vegetable oils

industry. We will then outline the modelling framework of this research,
followed by the empirical analysis, where we describe data used in the
research and present main findings of this study. We will illustrate the effects
of various ENSO shocks by implementing generalised impulse-response
functions (GIRFs).

2. Vegetable oils: a brief overview

The fats and oils industry is important in international trade, consumption
and pricing and therefore has long been of interest to economists. In the
literature, particular attention has been paid to substitutability amongst
different oils (see, e.g. Labys 1977; In and Inder 1997; Owen et al. 1997;
Ismail 2011). These and related studies have established that even though
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vegetable oils are similar in terms of chemical composition and end-use, they
are by no means perfect substitutes. Nonetheless, several subgroups of fats
and oils share many of the same properties and characteristics and thus are
considered to be truly close substitutes. Specifically, the most prevalent of
these, both from production and consumption standpoints, is a group
consisting of four major vegetable oils: palm, soybean, rapeseed and
sunflowerseed (see, e.g. Schmidt and Weidema 2008). These oils constitute
approximately 85 per cent of world vegetable oil production and about 90 per
cent of world vegetable oil trade (see Figure 1). They also share many
common end-uses including food preparation, soap production and manu-
facturing of paints and medicines. Additionally, each is currently used in
biodiesel production (e.g. Demirbas 2008), thereby further strengthening
price linkages amongst the oils in this group. Indeed, the reasonably high
degree of substitutability between palm, soybean, rapeseed and sunflowerseed
oils suggests their prices are likely to co-move (In and Inder 1997).
Due to increased global demand, there has been considerable growth in the

production of all major oils over the past several decades. Even so, palm oil
production has increased most dramatically, and currently, it is the most
produced and exported oil in the world (PSD Online 2011). Of particular
interest is that over 85 per cent of palm oil is produced in two countries:
Indonesia and Malaysia. Moreover, in these countries, production growth
has resulted largely from the expansion of area planted to palm trees rather
than from yield increases (e.g. Carter et al. 2007).
Unlike palm oil, production of the remaining oils is not as tightly

concentrated geographically. For example, soybean oil, the second largest
vegetable oil in terms of production and trade, is produced in different
regions of North and South America, Europe and Asia; however, the top
three soybean oil–exporting countries are the United States, Brazil, and
Argentina. Likewise, rapeseed oil is produced in different parts of the world,
with Canada being the largest exporter. And finally, sunflowerseed oil is

Figure 1 Major vegetable oil production and exports. Note: Values represent Million Metric
Tons.
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produced largely by European countries, with Ukraine being the largest
exporter of this oil (PSD Online 2011).
While it is apparent that the vegetable oil production takes place in

different parts of the world, it is nontrivial that production of the world’s
most exported (60% of total vegetable oil exports) oil, that is, palm oil, is
concentrated in Indonesia and Malaysia. The implication is that extreme
weather conditions in a given year will have a negative impact on palm oil
production in these countries and therefore will have implications for palm oil
price. As well, given that palm, soybean, rapeseed and sunflowerseed oils are
apparently close substitutes in consumption, it seems likely that any such
shock to palm oil production and hence price will likely have spillover effects
on the prices for these other oils as well (again, see In and Inder 1997).
What, then, might underlie a palm oil production shock? Aside from

changes in area (once brought into production palm trees typically produce
oil for upwards of 25 years), weather conditions can have important
implications for palm oil production (see, e.g. Casson 1999). In particular,
extreme drought reduces yields several months or more into future.
Incidentally, El Ni~no impacts in particular can be quite severe throughout
South-East Asia, including Malaysia and Indonesia: strong El Ni~no events in
this region are typically associated with correspondingly strong drought
conditions (see, e.g. Enfield 2003). The relationship between El Ni~no and
palm oil production in particular has also been noted in the popular press and
in a series of technical reports. For example, during the most recent El Ni~no
event, that is, from late 2009 through early 2010, a spate of articles appeared
linking El Ni~no events to price spikes in palm oil (see for example Berthelsen
2009; Bromokusumo and Meylinah 2009).
What has received virtually no attention are the potential spillover or

secondary effects that these events likely have on prices for closely related fats
and oils. Earlier work by Brunner (2002) provides some tantalising evidence
in this regard—he reports that El Ni~no events have a significant impact on
palm, soybean, groundnut and coconut oils. But his results were not obtained
by allowing for dynamic feedbacks amongst the various oil prices, that is,
substitutability amongst prices was not considered. Moreover, and as
previously noted, he assumed that the dynamics governing the evolution of
ENSO were linear. We now turn to a discussion of a modelling framework
that incorporates these various features.

3. The modelling framework

In this section, we outline the econometric approach used to investigate
nonlinear dynamic relationships between ENSO and vegetable oil prices.
We begin by reviewing standard linear modelling techniques for a single
equation, followed by a discussion of STAR-type models. We then
describe a general econometric framework for specifying smooth transition
VECMs.
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3.1. Smooth transition autoregressive models

Linear autoregressive models are the basic building block of the STAR
modelling framework. An autoregressive model of order p, an AR(p), in first
difference form is written as

Dyt ¼ /0xt þ et; ð1Þ
where D is a first-difference operator; yt is a dependent variable of interest;
xt ¼ ð1;Dyt�1; . . .;Dyt�pþ 1; yt�1; z1;t; . . .; zm;tÞ0 is a vector of right-hand-side
variables; zj;t, j = 1,…,m are exogenous variables including seasonal indicator
variables; / ¼ ða;b1; . . .;bp�1; b0; d1; . . .; dmÞ0 is a vector of parameters to be
estimated; and finally, et� iidð0;r2Þ is an additive error process. Note that if
yt follows a unit root process b0 ¼ 0; otherwise, we expect that b0\ 0.
The linear model in (1) is easily generalised to allow for nonlinearities in a

manner consistent with Ter€asvirta’s (1994) STAR framework. Specifically,
consider

Dyt ¼ /0
1xt½1� Gðst; c; cÞ� þ /0

2xtGðst; c; cÞ þ et; ð2Þ

or, alternatively,

Dyt ¼ u0
1xt þ u0

2xtGðst; c; cÞ þ et; ð3Þ

where in (3) u1 ¼ /1 and u1 ¼ /2 � /1. In either case, Gðst; c; cÞ is a
transition function that is strictly bounded between zero and one. The
transition function in turn varies with st, the transition variable, which is
often specified to be some function of lagged values of yt. Alternatively, st
might be specified to be a function of time, resulting in the class of time-
varying autoregressions, or TVARs, pioneered by Lin and Ter€asvirta (1994).
The other determinants of G(.) are the parameters c and c, where c, the speed-
of-adjustment parameter, determines how rapidly shifts from one regime to
another occur and where c, a set of centrality parameters, determines the
value(s) of st around which regime changes are centred.
There are several choices for the specification of the transition function.

The most popular is the logistic function, which can be written in general
form as

G st; c; cð Þ ¼ 1þ exp � c
rkst

 !Yk
j¼1

st � cj
� �( )" #�1

; c > 0; c1 � . . .� ck; ð4Þ

and where c ¼ ðc1; . . .; ckÞ is a vector of centrality parameters. In practice,
most analysts choose either k = 1 or k = 2 (Lin and Ter€asvirta 1994). When
k = 1 and when (4) is combined with (2), the resulting model is a member of
the logistic STAR, or LSTAR family, and is useful in situations where
asymmetry in dynamic responses to st exists. Likewise, when k = 2, the
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resulting model is a member of the quadratic STAR, or QSTAR family
(Jansen and Ter€asvirta 1996), and is useful for situations where nonlinearity
is linked to the absolute value of st.
The transition function may also be specified by using an exponential

representation, expressed as

Gðst; c; cÞ ¼ 1� exp � c
r2st

 !
st � cð Þ2

( )
; c > 0; ð5Þ

where parameters and variables are as defined previously. The exponential
and quadratic functions have similar properties in that both are useful for
modelling changing dynamics associated with the magnitude of the absolute
value of the transition variable. Finally, in (4) and (5), the parameter c is
normalised by rkst , where rst is the standard deviation of the transition
variable, st. Doing so effectively renders c unit free. Figure 2 illustrates
hypothetical representations for the LSTAR, QSTAR and ESTAR transition
functions for different values of c (c = 0 for LSTAR and ESTAR, and
c = (�1, 1) for QSTAR) and c, the speed-of-adjustment parameter (c = (0.5,
2, 10)).

3.2. Smooth transition vector error correction models

The smooth transition autoregressive framework can be extended to a
multivariate framework. One specific case of interest is the STVECM
considered first by Rothman et al. (2001), and specified as follows:

Dxt ¼ a1êt�1 þ
Xp�1

j¼1

C1;jDxt�j þW1zt

þ a2êt�1 þ
Xp�1

j¼1

C2;jDxt�j þW2zt

 !
iGðst; c; cÞ þ tt

ð6Þ

where xt ¼ ðy1;t; . . .; yn;tÞ0 is a n 9 1 vector of dependent variables; zt is a
m 9 1 vector of exogenous variables and/or seasonal dummies. Likewise,

Figure 2 Representative LSTAR, QSTAR and ESTAR transition functions.

© 2013 Australian Agricultural and Resource Economics Society Inc. and Wiley Publishing Asia Pty Ltd

280 D. Ubilava and M. Holt



êt�1 ¼ b0ðx0t�1; 1Þ is a vector of estimated error correction terms, such that
Pk ¼ akb

0 is a matrix of parameters defining the long-term dynamics
between the variables in the system, where b is a matrix of cointegrating
vectors, such that b0xt is a stationary process (even though xt itself is not);
and ak, k = 1,2, is a matrix of speed-of-adjustment parameters. As well, Ck;j

and Wk, k = 1,2 and j = 1,…,p�1, are matrices (vectors) of parameters to be
estimated. iGðst; c; cÞ is a vector of transition functions, where ι is an
n-dimensional unit vector restricting the transition function to be common
across the equations—a restriction that has been imposed in most prior
research investigating STVECMs (see for example Rothman et al. 2001;
Milas and Legrenzi 2006; Milas and Rothman 2008; Goodwin et al.
2011). Finally, tt�N 0;Rtð Þ, where Rt is a n9n positive definite covariance
matrix.

4. Data

We employ monthly data for the ENSO anomaly and for vegetable oil prices
covering the period between January 1972 through December 2010. The
ENSO variable is constructed as SST anomalies for the Ni~no 3.4 region of the
central Pacific, and is derived from an index tabulated by NOAA’s Climate
Prediction Center. Specifically, this index measures the difference in SSTs in
the area of the Pacific Ocean between 5�N-5�S and 170�W-120�W and is thus
a strong indicator of ENSO activity. As well, the monthly measure is an
average of daily values interpolated from weekly measures, which in turn are
obtained from both satellites and buoys. The anomaly is the deviation of the
Ni~no 3.4 monthly measure from the historic average for the same month for
the 1971–2000 period.
Vegetable oil price data are for palm, soybean, rapeseed and sunflower-

seed oils and were obtained from ISTA Mielke GmbH, better known as the
Oil World. All vegetable oil prices are in U.S. dollars per tonne and are
either Free on Board (FOB) or Cost, Insurance, and Freight (CIF). All
prices are deflated by using the Producer Price Index for commodities,
obtained from the U.S. Bureau of Labor Statistics. Further, real prices were
transformed by taking natural logarithms, so that changes are expressed in
percentage terms. Hereafter, any reference to a vegetable oil price implies
the real price in natural logarithmic form, unless stated otherwise. Figure 3
shows a plot of vegetable oil prices over the sample period. It is clear
from this figure that prices have a strong tendency to move together
(co-movement).

5. Estimation

For estimation purposes, we treat ENSO as a strictly exogenous variable.
That is, vegetable oil prices are contemporaneously correlated with ENSO
and are affected by lagged levels of ENSO, but not the other way around.
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This assumption is hardly counterintuitive in that climatic events are unlikely
to be affected by commodity prices or other economic variables, at least in the
short or intermediate run. This assumption is, moreover, supported by the
findings in earlier studies (e.g. Brunner 2002). Therefore, we first estimate
the ENSO equation independently as a univariate process. We then estimate
the system of vegetable oil price equations, where ENSO enters as an
exogenous forcing variable.

5.1. The ENSO equation

We begin with a linear AR model for the ENSO series. Based on Akaike
Information Criterion (AIC), a lag length of p = 5 was chosen. Further, unit
root tests (i.e. augmented Dickey–Fuller tests) indicated that the null
hypothesis of a unit root could be rejected for this series at a = 0.01
significance level. We therefore proceed by modelling the ENSO variable as in
(1), that is, with a lagged level values for the ENSO variable included as a
right-hand-side variable (such a specification is preferred to a more
straightforward autoregression in levels, because it allows for the possibility
of a unit root in one of several regimes in a regime-dependent autoregressive
set-up).
To identify regime-dependent nonlinearities, we adopt a testing framework

of Luukkonen et al. (1988), where an auxiliary regression approach is

Figure 3 El Ni~no southern oscillation (ENSO) sea surface temperatures (SST) anomaly and
major vegetable oil prices: 1972–2010. Note: SST Anomaly is expressed in �C; prices represent
natural logarithms of the vegetable oil prices expressed in 2010 U.S. Dollars.
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proposed to circumvent the nuisance parameters identification problem, also
known as the Davies’ problem ( Davies 1977, , 1987). Two sets of transition
variables were examined initially: lagged levels of ENSO, ENSOt�d, where
d = 1,…,12, and, moving averages of ENSO, 1

�d

P�d
i¼ 1 ENSOt�i, where

�d ¼ 1,…,12. Test results for the moving average transition variable are
presented in Table 1. A more thorough outline of the testing procedure and a
complete set of nonlinearity test results are reported in the Technical
Appendix (D. Ubilava and M. Holt, unpubl. data, 2012). STAR models were
then estimated by using the consecutive candidate transition variables, the
one with the lowest p-value in the nonlinearity test being considered first. The
final selection is made such that the estimated STAR model has an improved
fit relative to the linear model, based on AIC; the two regimes are seemingly
identified, and evidence of remaining nonlinearities is minimised. See the
Technical Appendix (D. Ubilava and M. Holt 2012, unpubl. data, 2012) for a
set of remaining nonlinearity test results. Based on these criteria, as well as
the results of additional diagnostic tests (i.e. tests for no remaining parameter
nonconstancy and for no remaining residual autocorrelation), we selected
1
3

P3
i¼ 1 ENSOt�i as the most suitable transition variable. We therefore define

an empirical version of the STAR model for ENSO as follows:

DENSOt ¼ a1 þ b1ENSOt�1 þ
X4
j¼1

/j;1DENSOt�j þ d01Dt

 !

þ a2 þ b2ENSOt�1 þ
X4
j¼1

/j;2DENSOt�j þ d02Dt

 !
G ŝt�3; c; cð Þ þ et

ð7Þ

where Dt is a vector of monthly dummy variables; other variables and
parameters are as defined in (1) and (3).

5.2. The system for vegetable oil prices

Let xt ¼ ðPPLM
t ;PSOY

t ;PRAP
t ;PSUN

t Þ0 be a vector of observations at time t for
vegetable oil prices. Based on standard ADF tests, reported in the Technical
Appendix (D. Ubilava and M. Holt 2012, unpubl. data, 2012), all vegetable
oil prices apparently contain a unit root. However, given the close
substitutability between the vegetable oils, and apparent co-movement of
prices, one or more linear combinations of these prices are likely to be
stationary, that is, cointegrated. In this event, the system of equations can of
course be modelled in vector error correction form. Indeed, Johansen test
results support the hypothesis of cointegration with two unique cointegrating
vectors being identified. Details are available in the Technical Appendix
(D. Ubilava and M. Holt, unpubl. data, 2012). Based on the AIC, the lag
length for the endogenous variables in the system was set to four.
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Additionally, we incorporate the current and up to and including two lags of
the ENSO variable in each equation of the system, wherein the ENSO lags
also selected based on AIC. Finally, we include monthly binary variables to
account for possible seasonal effects.
The next step is to test for nonlinearity in the system and, if identified, to

specify a suitable transition function. We adopt a testing framework
proposed by Camacho (2004) to assess potential nonlinearities in the system.
See the Technical Appendix (D. Ubilava and M. Holt 2012, unpubl. data,
2012) for the details. The candidate transition variables are lags of a simple
average of the two error correction terms, �̂et�d, where d = 1,…,12. Thus, we
intend to examine nonlinearities in vegetable oil price dynamics in relation to
the long-run equilibrium between the prices. The intuition is that adjustments
to long-run equilibrium may occur at differing rates depending on a direction
or a magnitude of the deviation from equilibrium. The nonlinearity test
results are presented in Table 2. Preliminary results revealed that there is little
evidence of nonlinearities in seasonal effects, although is substantial evidence
of nonlinearities in the system’s autoregressive components. Further, the
evidence reported in Table 2 points firmly in the direction of model a
transactions cost band, that is, either an exponential or a quadratic
STVECM. We therefore proceed by fitting exponential and quadratic
STVECMs using the candidate transition variables identified in Table 2,
while restricting the parameters associated with the seasonal indicator
variables to enter the system in linear form. The selection criteria are similar

Table 1 Nonlinearity test results for the El Ni~no southern oscillation (ENSO) equation

Transition variable H0
0 H04 H03 H02 Model

st�1 3.00E-06 4.90E-01 8.00E-01 7.40E-11 LSTAR
st�2 8.10E-07 5.30E-01 5.50E-01 3.90E-11 LSTAR
st�3 8.70E-08 4.70E-01 2.90E-01 1.20E-11 LSTAR

st�4 7.10E-08 6.20E-01 2.20E-01 7.00E-12 LSTAR
st�5 2.00E-08 4.50E-01 1.90E-01 4.80E-12 LSTAR
st�6 2.30E-08 4.20E-01 1.50E-01 1.10E-11 LSTAR
st�7 2.30E-08 3.30E-01 8.10E-02 6.40E-11 LSTAR
st�8 1.80E-08 1.60E-01 4.80E-02 5.70E-10 LSTAR
st�9 6.60E-09 3.50E-02 3.10E-02 4.50E-09 LSTAR
st�10 5.30E-09 1.20E-02 2.20E-02 3.00E-08 LSTAR
st�11 1.60E-08 9.40E-03 1.80E-02 2.30E-07 LSTAR
st�12 1.60E-07 1.10E-02 2.40E-02 2.30E-06 LSTAR
FRN 3.80E-01 6.80E-01 3.80E-01 1.90E-01
Fs 4.90E-01 9.40E-01 6.30E-01 4.60E-02
FAC 1.20E-01

Note: the values in the table represent probability values of the hypotheses being tested; the values in bold
represent the selected transition variable and the associated transition function. The column headed with
H0

0 corresponds with the null hypothesis of linearity; the columns headed with H04 and H02 correspond
with the embedded test against logistic nonlinearity, while the column headed with H03 corresponds with
the test against exponential/quadratic nonlinearity; the appropriate models are presented in the column
headed with Model. Further, st�d ¼ 1

�d

P�d
i¼ 1 ENSOt�i, where d = 1,…,12 and �d ¼ 1; . . .; 12. Finally, FRN,

Fs and FAC denote tests against remaining nonlinearity (with respect to the transition variable of choice,
i.e. st�3), parameter nonconstancy and residual autocorrelation, respectively.
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to those used in the case of ENSO equation. The result is that we selected �̂et�7

as the most suitable transition variable when combined with an exponential
transition function. Based on the system AIC, the estimated STVECM
improves overall model fit. The empirical version of the STVECM of the
vegetable oil prices is therefore specified as

Dxt ¼ a1êt�1 þ
X3
j¼1

Cj;1Dxt�j þW1ENSOþWDDt

 !

þ a2êt�1 þ
X3
j¼1

Cj;2Dxt�j þW2ENSO

 !
iGð�̂et�7; c; cÞ þ tt;

ð8Þ

where ENSO ¼ ðENSOt;ENSOt�1;ENSOt�2Þ0 is a vector of current and
lagged values of the ENSO variable; Dt is a vector of monthly dummy
variables; other variables and parameters are as defined in (6).

5.3. The estimated transition functions

The estimated transition functions for the ENSO forcing variable and for the
system of vegetable oil prices are, respectively,

Ĝðst; ĉ; ĉÞ ¼ 1þ exp � 2:133
ð1:036Þ

=re
1

3

X3
i¼1

ENSOt�i þ 0:018
ð0:244Þ

 !" #( )�1

ð9Þ

and

Ĝ st; ĉ; ĉ1; ĉ2ð Þ ¼ 1� exp �ð1:325Þ
0:435

=r2s
�̂et�7 þ ð0:086Þ

0:020

� �2
" #

ð10Þ

where re ¼ 0:895 and rs ¼ 0:293 and where values in parentheses are
asymptotic standard errors. The estimated c values in (9) and (10) imply that
regime transitions in both instances should be relatively smooth and, indeed,
as reported in Figures 4 and 5, this is apparently the case. Specifically, the
transition function for the ENSO equation is centred approximately around
zero, with the two extreme regimes defining strong La Ni~na and El Ni~no
phases, respectively. Regarding the STVECM for vegetable oil prices, the
estimated exponential transition function implies that the transactions cost
band is not defined solely by two discrete threshold points, but rather by a
continuum of points (locations) connecting the two regimes. The model’s
dynamics associated with small deviations from long-run equilibrium are
defined by the estimated parameters in the first regime, while dynamics
associated with the large deviations are defined by incorporating the
estimated parameters from both regimes. The observed smooth transition
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between the regimes reveals interesting features of market participants’
behaviour in the sense that they are apparently heterogeneous, and perhaps
face differing costs for transport, insurance and so forth.

6. ENSO shocks: simulation results

To illustrate the nonlinear effects of ENSO shocks on vegetable oil price
dynamics, we adopt the GIRFs approach of Koop et al. (1996). GIRFs are

Table 2 Nonlinearity test results for the system of vegetable price equations

Transition variable H00
0 HE HL Model

st�1 5.70E-03 2.30E-01 1.20E-02 LSTVEC
st�2 3.00E-01 9.40E-01 4.80E-02
st�3 1.40E-01 8.40E-01 2.60E-02
st�4 1.00E-01 6.10E-01 5.80E-02
st�5 6.10E-10 4.70E-06 5.50E-04 ESTVEC
st�6 5.50E-07 8.30E-06 4.90E-02 ESTVEC
st�7 8.60E-07 2.00E-07 3.30E-01 ESTVEC

st�8 2.10E-06 1.40E-05 8.60E-02 ESTVEC
st�9 6.70E-03 7.70E-04 7.30E-01 ESTVEC
st�10 9.70E-02 4.30E-01 1.10E-01
st�11 2.10E-01 1.90E-01 5.80E-01
st�12 3.10E-01 1.50E-01 8.10E-01
FRN 1.4E-05 7.7E-03 2.7E-03
Fs 9.1E-10 3.6E-04 1.1E-05
FAC 5.8E-01

Note: The values in the table represent probability values of the hypotheses being tested; the values in bold
represent the selected transition variable and the associated transition function. The tests are performed on
autoregressive components of the system, while seasonal components are omitted from the testing
framework. The column headed with H00

0 corresponds with the null hypothesis of linearity; the column
headed with HE corresponds with the embedded test against exponential/quadratic nonlinearity, while the
column headed with HL corresponds with the test against logistic nonlinearity; the appropriate models are
presented in the column headed with Model. Further, st�d ¼ �̂et�d, where �d ¼ 1; . . .; 12, and where �̂et�d is a
simple average of the two estimated error correction terms. Finally, FRN, Fs and FAC denote tests against
remaining nonlinearity (with respect to the transition variable of choice, i.e. st�3), parameter nonconstancy
and residual autocorrelation, respectively.

Figure 4 Estimated transition function for the El Ni~no southern oscillation (ENSO) equation.
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especially revelatory when analysing the dynamics of nonlinear models,
which, unlike linear models, are not invariant to initial conditions—the
histories preceding the shocks, the sign and size of the shock, as well
idiosyncratic shocks that may occur throughout the forecast horizon. To
explore the extent to which there are asymmetries in response to ENSO
shocks, and to compare ENSO and vegetable oil price GIRFs for different
histories and shocks, we first generate GIRFs by averaging across a subset of
initial conditions. Additionally, we select histories corresponding to extreme
positive and extreme negative SST anomalies as well as ones that correspond
to an effectively neutral regime. These histories are indicated in Figure 3 with
vertical lines/stripes. The selected La Ni~na regime is specified by four
consecutive observations (months) beginning with October of 1988 and
represents the strongest La Ni~na episode of the past several decades. The El
Ni~no regime, which we specify by four consecutive observations beginning
with October of 1997, represents one of the strongest El Ni~no episodes in
recent history. Finally, from a relatively large number of the candidate
histories representing a neutral regime, we select four observations in order to
draw comparisons with each of the extreme regimes.
A GIRFs for a particular shock, m, and a subset of histories, =, is defined as

GIRFðh; m;=Þ ¼ Eðytþhjm;xt�1 2 =Þ � Eðytþhjxt�1 2 =Þ ð11Þ

where xt�1 is a particular history (month) within the subset of histories
(regime). To numerically evaluate the expected realizations of the GIRFs, we
perform 500 bootstrap simulations for each history and shock. The general
procedure is outlined in the Technical Appendix (D. Ubilava and M. Holt
2012, unpubl. data, 2012). Under the assumption of strict exogeneity for the
ENSO variable, for each iteration we first obtain ENSO forecasts both with
and without the initial shock, and by using randomly sampled innovations
from the pool of residuals from the estimated ENSO STAR model. In the
next stage, the forecasts for the ENSO variable are used to extrapolate

Figure 5 Estimated transition function for the system of price equations.
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vegetable oil prices from the STVECM, where equation-specific innovations
are sampled from the orthogonalised pool of residuals associated with the
estimated STVECM. The aforementioned procedure is performed for each
selected initial condition and for both positive and negative ENSO shocks.
Moreover, we consider shock sizes equal to 1.5 and 3 standard deviations of
the estimated ENSO residuals. To obtain a general picture of ENSO effects
on vegetable oil prices, we draw 50 histories without replacement, thereby
yielding a total of 25,000 GIRF vectors over a 48 month horizon. This
process is repeated for each shock sign and size. Additionally, for each
history-specific regime, we obtain 2000 bootstrapped vectors of GIRFs, again
for each shock sign and size. Mean responses are obtained by averaging the
realised GIRFs across the bootstrap iterations and selected histories.
Furthermore, the bootstrap resampling procedure allows us to generate an
empirical distribution around the expected GIRFs at each point in the
forecast horizon.
Following Potter (1995) and van Dijk et al. (2002), we use asymmetry

measures, ASYs, derived from GIRFs to analyse the nonlinear effects of
ENSO shocks on vegetable oil prices. In particular, we are interested in sign-,
size- and history-specific asymmetries, which are respectively defined as
follows:

ASY�ðh; m;xt�1Þ ¼ GIRFðh; mþ;xt�1Þ þGIRFðh; m�;xt�1Þ ð12Þ

ASYmðh; m;xt�1Þ ¼ kGIRFðh; m;xt�1Þ �GIRFðh; km;xt�1Þ ð13Þ

ASY=ðh; m;xt�1Þ ¼ GIRFðh; m;xt�1 2 =þÞ �GIRFðh; m;xt�1 2 =�Þ; ð14Þ

where mþ and m� are, respectively, positive and negative shocks of the same
magnitude; k is a scaler; and finally, =þ and =� are subsets of two different
regimes from which the histories are selected. It follows, then, that shocks
result in symmetric responses if ASYs are symmetrically distributed around
zero (van Dijk et al. 2002).
First, we consider the expected GIRFs obtained by averaging over 50

histories. These are illustrated in Figure 6, where we also identify 90 per cent
confidence intervals of the expected GIRFs. Note that GIRFs associated with
negative shocks are multiplied by negative one in order to facilitate
comparisons between the shocks of the opposing signs. A number of
interesting features are revealed from these graphs. First, ENSO shocks
appear to have a statistically significant impact on vegetable oil prices. In
particular, a three standard deviation ENSO shock, which corresponds to
approximately a 0.7�C SST anomaly, is responsible for about a 6–10 per cent
change in vegetable oil prices. As well, El Ni~no shocks (i.e. a positive shock to
the SST anomaly) result in increased prices and La Ni~na shocks (i.e. a
negative shock to the SST anomaly) in decreased prices.
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Figure 6 Generalised impulse-response function(GIRFs) of El Nino and La Nina shocks
(averaged across 50 histories). Note: Dots denote empirical significance of GIRFs at a = 0.10
level; GIRFs associated with negative El Ni~no southern oscillation (ENSO) shocks are
inverted by multiplying realizations by negative one in order to facilitate comparisons between
positive and negative shock effects.
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Also, of interest are the observed asymmetries in the ENSO as well as the
vegetable oil price impulse-response functions. In particular, while the ENSO
STAR model implied a mean-reverting process, positive, or El Ni~no shocks,
are more amplified within the first several months as compared with negative,
or La Ni~na shocks. On the other hand, La Ni~na shocks tend to have a more
prolonged effect on ENSO dynamics as compared with El Ni~no shocks. These
results seem to reasonably characterise the ENSO cycle: El Ni~no phases,
while acute, tend to last for shorter periods, often followed with La Ni~na
events, which, in turn, may last for longer periods of time. Additionally, the
asymmetries are especially apparent after large ENSO shocks, which also
manifest themselves in asymmetric dynamics in vegetable oil prices dynamics.
The implication is that a relatively large ENSO shock (either positive or
negative) will likely cause a regime switch, resulting in different dynamics as
compared to a ‘no shock’ scenario. In the case of smaller shocks, however,
asymmetries are less vivid, partly due to the smooth transition between
regimes (both for ENSO and for vegetable oil prices).
To further illuminate the effects of extreme ENSO events, we obtain

history-specific GIRFs; see Figure 7. The histories represent extreme ENSO
events and are compared to normal conditions, as specified above. Focussing
first on the response of the ENSO variable, history-specific asymmetries are
readily apparent. While all ENSO GIRFs stabilise by the end of the 3-year
horizon, the observed short- and intermediate-term paths vary widely. For
example, in the El Ni~no phase, the shock effects are more amplified in the
beginning but also dissipate relatively more quickly as compared with the
impulse responses associated with La Ni~na episodes. Finally, shock signs
coupled with initial conditions apparently impact vegetable oil prices
differently, thereby inducing ENSO-related asymmetries in price responses
as well.
History-specific GIRFs are also used to obtain asymmetry measures, that

is, ASYs, as proposed in (12)–(14). As in the case of GIRFs, here too we
identify 90 per cent confidence intervals of the expected ASYs with dots of
different shape. Sign- and size-specific asymmetries, while on average different
from zero, do not reveal statistical significance (figures are available upon
request). History-specific asymmetries, however, show statistically significant
deviations from zero in the short and intermediate run, wherein the
asymmetry measures are derived from the extreme regimes relative to the
neutral regime (see Figure 8). The implications are, for example, that a
negative (positive) shock during an El Ni~no (La Ni~na) event results in a more
apparent movement towards La Ni~na (El Ni~no) regime than a similar shock
that occurs during normal conditions. These effects manifest themselves in
history-specific asymmetries of vegetable oil prices as well. For example, in
response to the ENSO asymmetries, vegetable oil prices tend to decrease more
after ENSO shocks during extreme regimes as compared with a neutral
regime.
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Figure 7 Generalised impulse-response functions (GIRFs) of El Nino shocks in different El
Ni~no southern oscillation (ENSO) regimes. Note: Dots denote empirical significance of GIRFs
at a = 0.10 level.
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Figure 8 History-specific asymmetries in generalised impulse-response functions of El Ni~no
southern oscillation (ENSO) shocks. Note: Dots denote empirical significance of ASYs at
a = 0.10 level; ASYs associated with negative shocks are inverted by multiplying realizations
by negative one in order to facilitate comparisons between positive and negative shock effects.
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Additionally, we assess sign-, size- and history-specific asymmetries by
illustrating the empirical distributions of the realised GIRFs at different
horizons. In Figure 9, we present Kernel density function estimates of GIRFs
at the 12-step-ahead horizon (a more complete set of the distributions are
available upon request). These plots further confirm the previously stated
findings: there are considerable history-specific asymmetries in ENSO and, to
some extent, vegetable oil price dynamics, but there is little evidence for sign-
and size-specific asymmetries in the system.
Overall, positive ENSO shocks are followed by increased vegetable oil

prices, and the opposite is true for negative ENSO shocks. Therefore, whether
or not oilseed producers and consumers are directly affected by an ENSO
event, the strong substitutability between these oils results in price co-
movements. Negative ENSO shocks tend to have more persistent effects on
vegetable oil prices compared to positive ENSO shocks. Again, see Figure 6.
This outcome is most likely driven by the relatively prolonged nature of La
Ni~na episodes as compared with the relatively more abrupt nature of El Ni~no
episodes. Interesting patterns are observed across different histories. For
example, when initial conditions are in La Ni~na regime, ENSO shocks (both
positive and negative) result in more persistent impulse responses for
vegetable oil prices, as compared to the neutral and El Ni~no regimes.

7. Conclusions

In this paper, we have explored potential nonlinearities in the El Ni~no–La
Ni~na cycle, and the associated impacts on vegetable oil price dynamics.
Consistent with prior research, the results reveal that ENSO dynamics are
characterised by self-exciting type nonlinearity. As well, an estimated system
of interrelated vegetable oil price equations was found to pose nonlinearity
related to the size of the departure from long-run equilibrium relationships.
These nonlinearities were further examined by using GIRFs and the derived
asymmetry measures. Palm oil, which is largely produced in Oceania and
South-East Asia, was found to be significantly impacted by ENSO events.
But as importantly, the other vegetable oils, such as soybean oil, sunflow-
erseed oil and rapeseed oil that are produced in other regions of the world,
and regions that are arguably not prone to major climate anomalies resulting
from ENSO events, were found to be significantly impacted by ENSO events.
This result is perhaps not surprising due to the very strong substitutability in
consumption between the oils examined here. Overall, our results reveal that
a negative three standard deviation from a normal ENSO regime—that is, a
La Ni~na event—while the corresponding positive results in reduced vegetable
oil prices, while the corresponding positive shock—that is, an El Ni~no event
—results in increased vegetable oil prices, and these effects have persistent
character.
The results of this research have interesting implications for researchers

and policy makers for a number of reasons. First, we model the system of
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Figure 9 Density distributions of 12-step-ahead generalised impulse-response functions of El
Ni~no southern oscillation (ENSO) shocks. Note: in the case of sign- and history-specific shocks
(SIGN and HIST, respectively), the densities are associated with 3 standard deviation ENSO
shocks; in the case of size-specific shocks (SIZE), densities are associated with positive ENSO
shocks; in the case of HIST, densities associated with negative shocks are inverted by
multiplying realizations by negative one in order to facilitate comparisons between positive
and negative shock effects; finally, l denotes mean, m denotes skewness, and j denotes kurtosis
of the associated distributions.
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vegetable oil prices using nonlinear time series econometric methods, which
improved the overall fit and, potentially, the predictive accuracy of the model.
Second, by using ENSO as an explanatory variable in the system, we
condition the short- and intermediate-term behaviour of the vegetable oil
prices on this exogenous variable—something that has not been done in past,
and which allows us to consider, and even predict different scenarios with
respect to the state of nature and directions of the ENSO anomaly. Future
research should therefore focus on the role of ENSO anomalies for prices of
other closely related commodities.
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