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Abstract

We consider how to organize the processing and marketing of an
agricultural product when farming costs are known only by the indi-
vidual farmers. We show that when marginal costs are un-correlated
and the market for final goods is competitive, the socially optimal pro-
duction levels may be sustained by a cooperative and a cooperative
only. We show also that the cooperative form is particularly useful
when the uncertainty is large and the net revenue product is small.

Keywords: Economics of Cooperatives, Asymmetric Informa-
tion, Incentives.

1 Introduction

A cooperative’s primary trading partners are the members which are also the
residual claimants. This suggests that a cooperative may have comparative
advantages in terms of incentive compatibility.

Staatz(1984) among others have argued that the risk of post-harvest
'hold-ups’ is a primary reason for cooperatives active presence in the mar-
keting of short lived products like fruits, vegetables and milk. On the other
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hand, it is well known also that ordinary hold-up problems can be handled
effectively by using long term contracts, cf. e.g. Tirole(1988). By negoti-
ating the transaction terms before production decisions are made, i.e. by
using ex-ante rather than ex-post negotiations, the production costs will be
honored and the producers will not be forced to under-produce. Hence, the
traditional hold up problem is solved by a cooperative - but not only by a
cooperative.

The aim of this paper is to show that certain incentive problems can be
handled effectively using a cooperative - and a cooperative only. We suggest
an economic rationale for cooperatives by providing a framework where a
cooperative is the unique optimal organization form.

The idea is simple. If farmers have private information about their pro-
duction costs, ex-ante negotiations may not be efficient. The more efficient
farmers will try to extract informational rents by imitating the less efficient
ones. The rational response of a buyer is to reduce transactions below the
first best level. This leads to an ex post in-efficient situation. As we shall
show, the only way to eliminate the associated economic loss is to have the
farmers integrate forward, i.e. take over the processing, and to do so on a
cooperative basis where the processing surplus is shared among farmers in
proportion to patronage.

The outline of the paper is as follows. We first present the set-up and
a. useful reformulation of the incentive compatibility constraints. In Section
3, we characterize the socially optimal production structure and the profit
sharing principles that may support it. The similarities with cooperative pro-
cessing is explored in Section 4, and the effects of investor owned processing
1s investigated in Section 5. Some examples are given in Section 6, extensions
are discussed in Section 7, and conclusions are given in Section 8.

2 The Model

We consider n farmers producing the same (homogenous) product. For
farmer < € I = {1,...,n}, we let ¢; be his production level, Ci(g;) := ¢; - ¢; his
production costs and gV his capacity. The farmers maximize expected profit.

We assume that information about production costs are asymmetric and
incomplete. The marginal cost ¢; at farmer i is known by him only. The other
farmers as well as the processor only hold beliefs about his cost. Specifically,
we assume that the costs are independent and that ¢; s density f;(c;)) =



0F{c:)/Oc; has support C; = [cF,c¥]. As a matter of notation, we let ¢ =
(e)iers €<i = (¢5) 34, C = Xe1C;, and C_; = x i#C;.

The farm output is processed and the processed product is sold at a mar-
ket. We assume that one unit of farm output leads to one unit of processed
product and that the market price of the processed product net of processing
costs is constant and equal to p. In the terminology from the economics of
cooperatives, p is the constant Net Average Revenue Product (NARP).

There are many possibilities to organize processing. Different owner-ship
structures are possible, price and quantity negotiations may be organized in
different ways, production rights may be allocated using different auction
mechanisms, and profits may be shared using a variety of sharing rules to
name just a few of the design variables available. Fortunately, by the rev-
elations principle, see e.g. Myerson(1979), we know that whatever can be
accomplished by a given organization can be accomplished also in a direct
revelation game in which the individual farmers have incentives to honestly
reveal their private costs and where production and compensation levels are
allowed to depend on the cost types reported. Therefore, letting

¢i(.): C — [0,¢7]
8,‘(.) . C — éRo

be the production and compensation plan for farmer i, i € I, we can formu-

late the organizational design problem as one of designing production and
payment schemes g(.) = (¢:(.))ies and s(.) = (8;(.))ics to solve (P)

max G(q, s)
q(c),5{c)
8.t. E3 (si(c) ~ci-qi(c)) > 0 Vi,
Ec (sile) —ci-ai(c)) 2 B2 (si(dyes) — - aui(dyes)) Vai,d,i
i=15i(C) < Lia P alc) Ve
0<glc) <gf Ve,

where EZ (.} is the conditional expectation with respect to c_; given ¢;. The
objective function of the design program is arbitrary at this point. The first
set of constrains are the individual rationality (IR) constraints. They ensure
that all farmers get at least their reservation utility, arbitrarily normed
to be 0. The second set of constraint are the incentive compatibility (IC)
constraints. They ensure that all farmers will reveal their true types. The
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third set of constraints are the budget balancing (BC) constraints. They say
that the farmers can not get more than what is earned at the market place.l

The incentive compatibility constraints induce considerable structure on
the production and payment plans. For an arbitrary production and payment
scheme for farmer i, g;(c) and s;(c), let §;(c;) and 5;(c;) be the corresponding
conditional expected production and payment when the types of the other
farmers have been integrated out, i.e.

gi(c) = EZ (aic,ci)) VQ
3i(ci) EZ . (sila,c)) V

We now have the following useful proposition.

Proposition 1 The production and payment schemes q(.) = (gi(.))icz and
s(.) = (8i(.))ier are incentive compatible if and only if

o &> = a(d) < &(d) Vi,d,d, and
o 5i(a) =kt &(e) + [ a(&) d& Vig

Proof. Initially, we note that by independence, the conditional expecta-
tion operator EZ (.) does not depend on the specific value of the costs ¢;.
Therefore, the incentive compatibility constraints are equivalent to

8i(e) — ¢ - @ile) 2 8ilc) — o - &le}) Vi, q, (1)

To show the two properties in the proposition, we consider a given i and note
that (1) for arbitrary ¢! and ¢! with ¢} > ¢/implies

Si(cr) — o @ile) 2 8:c) — ¢ - &ld)) = () — & - Giled) + (& ~ ()
si(e) — o - @ilc) = 5ild) — & - @ilcl) = &) — C’ @i(c;) + (¢ — ¢)ai(c))
or equivalently

_qi(c;r) < gi(cg) — C:, ’ Qt(c:)d—_(gdtfcf) — C:F ] q-t(cf)) < '“tfi(CE) (2)

'We assume that the incentive problem is related to the cost types only. The planned
production levels can be implemented without additional incentive problems eg because
the chosen production levels are directly verifiable such that deviations can be avoided
with infinitely harsh punishment treats. We therefore do not need to let s;(.) depend on
the actual production levels.



In particular, ¢; > ¢ = §(d)) < §(c!), as claimed in the proposition. By
gi(*) monotonously decreasing, it follows also that dgi(c})/dc, exists almost
everywhere (a.e.), cf. Laffont and Tirole(1993) p. 63.

Rewriting (2), we get that for all ¢} and ¢ with ¢ >cf

—(c; = & a@(c) < 5(c) - Si(c) +d @)~ @(c) < — (¢ ~ g(c)

or equivalently
ci(@(c) — @(c!)) < 5ile) — &(d) < Glag) — q(d))
¢ — ¢ g -d ¢ —cf

We see therefore that since dg;(c})/dc, exists (a.e.), so does d3;(c})/dc,. Fur-
thermore, going to the limit (¢! — ¢}) in (2), we get that

d (3i(c) — ¢ - Gi(c))

= —g;i{c;)) <0 a.e.

de;
This shows that the less efficient types earn less profit and it implies
cf
Si{c) = ki + ¢ - qi(c:) +/ G:(&:) dé;
Cy

which is the last property in the proposition.

We shall now show that the two properties in Proposition 1 implies in-
centive compatibility. Inserting the expression for 3;(.) into the incentive
compatibility constraint (1) we get

U

ki+ci qila) + / (&) dé — ¢ - @ilg) >
¢ .
ki + C:'@i(cé)“f'/ §i(¢;) dé; — ¢ - §;(c)) Vi, ¢, ¢
o

Reducing and rewriting, we get
& ‘ &
| a@aaz [Caa+ | a@)de vicid
Ci €, c;
which holds because ¢;(.) is weakly decreasing. m
According to Proposition 1, the less efficient types produce less. Also,
the expected payment is - up to an integration constant - determined en-

tirely from the production scheme. Proposition 1 makes it easy to analyze
alternative organizations as we shall see below.
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3 Central Planner’s Solution

We first characterize the set of production and payment plans that are socially
optimal. We shall talk about this as a central planner’s solution. What
defines the central planner (CP) is his objective - his aim is to maximize the
market value minus the production costs of all farmers, i.e. the integrated
profit from production and processing

GC%(q, s) ZEpclq;C) ZE(PC« %i(ci))

i=1 i=]1

The central planner is assumed to have no more information about the costs
of any farmer than does the other farmers or an investor-owned processor.
Therefore the general design problem from Section 2 is still relevant.

We see that the central planner’s objective - as the constraints - depends
only on average production and payments. Also, the objective as the con-
straints are effectively separable in n farmer specific problems.

To maximize the net benefits from production and processing, the central
planner would like to implement the following production plan

U .
CPr.y_ ) &% ifg <p -
¢ (@)= { 0 otherwise vi

Note that for the average production to be either the minimal or the maximal,
Oor qi U the specific production level for all possible cost values must be either
0 or ¢V ie. ¢FF(c) = g°F(¢;} Vi,c. This plan is the first best plan, i.e. the
optimal production plan with perfect cost information.

To show that this ideal solution is actually feasible, we must specify the
payment plan that make the production-payment plan satisfy the IR, IC and
BB constraints. However, this is easy. Using Proposition 1, we know that to
be incentive compatible, the expected payment must satisfy

n
-l
~—
n
L

|

k‘-+c1--tfp(a;)+/'i g (&)de;

ki+p-qf fa<p<dc
ki+c ¢ fa<dd <p Vi (3)
k, otherwise

To be individually rational, we furthermore need k; > 0.
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Let us consider now the case where p < ¢{ Vi. This is the case where the
informational asymmetry is non-trivial - it is not common knowledge a priori
what the socially optimal Production levels are. We can say also that this
represents a not too profitable market condition - the net average revenue
product p is not make it optimal to have all farmer types produce. From (3),
we get 577 (¢;) = ki +p- g¢ Vi. Using the budget balancing constraint, the
payment can be pined down even further. To fulfill BB, we need &; = 0 Vi.
This conclusion is summarized in Propaosition 2.

Proposition 2 When p < e/ Vi the soctally optimal (and first best) pro-
duction levels can be implemented if and only if the cost dependent payments
satisfy

U .
§le)=d P& fa<p .
Si(e) = { 0 otherwise Ve

The solution in Proposition 1 is strikingly simple. It effectively sends the
market signals directly to the farmers. One way to implement this market
oriented solution is to ignore the communication procedure of the revelation
game and offer the farmers to buy whatever they produce at the price p
per umt. As we shall emphasize below, this is also the cooperative solution.
Note that by the risk-neutrality of the farmers, the optimal payment schemes

+

can only be characterized in expected terms. The payment plan is defined
modula zero mean lotteries.

If p> ¢ for one or more tarmers, the above payment plan still works,
However, in this case, there are alternative arrangements, including some
which would result in a non-allocated surplus, e.g. a strictly positive profit
to a processor. The possible solutions in this case are all those with the
structure given in (3) and constants ki i € I satisfying

Yki< ¥ (p—cY)Y (4)

174 j:p}c?

The inequality (4) puts some constraint on the way the surplus can be al-
located to the farmers and the processor. It leaves a surplus Ej:pm}r_,- (p —

¢/ )87 — 3. ki to the non-farmers, e.g. the processor or the government.
We record this as a proposition as well.

Proposition 3 When P>, the socially optimal (and first best) production
levels can be implemented if and only if the ezpected cost dependent payments

satisfy (3) and (4).



The market oriented solution from Proposition 2 is not only attractive by
being simple and being the only solution that will work irrespectively of the
relationship between p and ¢!. It is also attractive from a point of view of
treating all farmers equally. Moreover, the equity property implies that the
mechanism is not vulnerable to side trading - no group of farmers can profit
from trading the product among themselves before it is processed.

4 Cooperative Processor

There are some obvious links between the central planner’s solutions in the
last section and the cooperative arrangements that have be used so exten-
sively, in particular within agriculture.

Image that processing is undertaken by a cooperative. The cooperative
is owned and operated by the farmers. Assume furthermore that this is a
traditional cooperative in which

1. Equity gets no interest,
2. Surplus is allocated to members in proportion to patronage,

3. Members have a right to deliver total production to the cooperative

Using the first two principles, we see that the total surplusp )" jer @ must
be allocated as

si(c) P[Z q;(c;)] 6

el 2 jer 34(¢j)

In this payment plan, we have taken into account the fact that any farmer ;
only knows his own costs ¢; and that his production decision therefore can
only depend on ¢;. By the farmers being risk neutral and by using the third
principle above, we get that farmer ¢ will choose ¢;(¢;) to solve

gi(ci)

1 95 (

) — ¢ - gi(cy)]

ma,xEc ‘[p[z gi{c;)] 5

jerI
s.t. 0< gie) < ¢f



The cooperative (CO) solution will therefore be
cory_ ) & Ha<p COf N\ p-gf fg<p :
% (e) = { 0 otherwise 5 (@) = { 0 otherwise vi

1.e. the cooperative leads to the socially optimal solution from the last sec-
tion.

One interpretation of Proposition 2 is therefore that in a not too profitable
market, i.e. when p < c! Vi, the socially optimal production levels are imple-
mentable if and only if the surplus is shared as in a cooperative modula zero
mean lotteries. This provides an information economic rationale for cooper-
atives. Cooperatives not only suffices to give the socially optimal production
levels. Except for zero mean lotteries, cooperative sharing of the net revenue
product is necessary also to ensure optimality. In any other organization, the
farmers’ attempts to extract informational rents will lead to a loss of desir-
able production. Note that contrary to the traditional under-production or
under-investment problem resulting from a hold-up possibility under perfect
information, cf. the Introduction, the present potential under-production
problem cannot be handled by a-priori negotiation of the contracts. Long or
short contracts, any attempt to divert any of the surplus from the farmers -
or any attempt to share the surplus in any other way than proportional to
patronage - will lead to sub-optimal production.

In a more profitable market, i.e. when p > ¢V, the cooperative still leads
to the social optimum. But there are other possibilities as emphasized by
Proposition 3. There is some room for a paying the processor non-zero profit
- or for paying a non-zero interest on the cooperative equity. There is also
some room for payments that are not proportional to partronage. The room
for variations which do not eliminate the social optimality of cooperative-like
arrangements is given by Zj:p}c?(p - c?)q;, cL.(4).

5 Investor Owned Processor

Let us assume now that the processor is an investor owned, risk neutral profit
maximizing monopsonist. Being a monopsonist, we assume that the proces-
sor has all the bargaining power. Specifically, he is able to offer contracts on

a take it or leave it basis and to commit to these contracts as information is
revealed.



"The investor owned (I0) monopsonist’s contract design problem can thei-e-

fore be formulated as the general problem (P) with the following more spe-
cific objective

G'°(q,s) = ZE(p gi(c) — si(c )——ZE TACHESACY)

1=]1 =1

We see that the processor’s objective - as the constraints - depends only on
average production and payments. Also, the objective - as the constraints -
are effectively separable in farmer specific problems.

Using Proposition 1, we shall now characterize the solution to this prob-
lem. Assume that (s(.), g(.)) is a feasible solution and let & = sup{c;|(c;) >
0}. By the first property in Proposition 1, §i(c;) > 0 for all ¢; < & and
gi{c;) = 0 for all ¢; > &. Also, it follows from the monopsonist interest in
reducing payment that 5;(é&;) — & - §:(¢é) = 0.2 Using the second property in
Proposition 1, we therefore have

¢
Ei(c‘-)=c,--6i(0s)+f (&) dc; vei, i

e

Substituting this into the objective function and using partial integration,
we get

G'%g,s) = Z f (p %i(a) — - @iles) — / q‘(é‘-)d&-) files) de

:—1

- [l adatele) - Feae] de

t=1

This objective must be maximized subject to the constraints that production
levels are weakly decreasing, i.e. Vi,c,cf : ¢ > ¢! = Gi(c]) < q..(c”)
that they do not exceed the capacities, i.e. ‘dz ¢i:0<qgg) <.

This is easy, however, if we inwoke a bit of regularity on the cost distri-
butions. Specifically, we will assume that the cost distributions have weakly
increasing hazard rate, ie. Fi(c;)/fi(c) is weakly increasing on [cF, V'] for

‘By IR 5(&) — & - @(&) = 0. Now if 5:(&) — & - §i(&) = € > 0, we also have
3:(ci) — ¢i - Gi(ci} 2 € Ye; < & since the producer’s expected profit is decreasing in the
cost type, cf the proof of Proposition 1. In this case, the contract could be improved by
reducing payments with € for all ¢; < é&;. This would not affect the IC constraints.
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Vi. This is a property shared by many standard distributions, including the
normal, the uniform, the chi-squared, the logistic and the exponential distri-
bution.

- From the integrand of G'9(g, s), we see that the processor would like to
choose the maximal production level §;(¢;) = ¢V when (p—¢;) fi(e;) — Fi(ci) >
0 and the minimal production level §;(¢;) = 0 when (p— &) fi(e;) — Fi(ci) < 0.
Since (p—¢;) is decreasing in ¢; and Fi(c;)}/ fi(c;) is weakly increasing in ¢;, this
does not conflict with the monotonicity of g(.). Hence, letting é = sup{g|
(p — &) fi(e;) — Fi(¢;) = 0}, the optimal contracts under an investor owned
monopsonist are

U -~
g0y _ J & fora<é
&7 (e) = { 0 otherwise | (3)
7 é( - -~ ~ It -
Jo0.y — J & & + [ &(&)de=2¢&g fore <
57(a) { 0 ) otherwise (6)

where ¢; is defined as the unique solution to

_ay - Bila)
(p—&) fi(&)

except for the boundary case where (p—c? ) fi(c¥) — Fi(c¥) > 0 in which case
we have & = ¢/

As previously, the conclusions can be sharpened a bit further. Since
the average production must be either minimal or maximal, so must all the
specific production levels, i.e. we have ¢/°(c) = §/°(¢) Vi,c.

Above, we have characterized the best possible outcome for the monop-
sonist. One interpretation of the revelation game is that the monopsonist
offers a menu of contracts from which the farmers’ choose. Another is that
he commits to a certain production and payment plan which depend on the
cost reported by the farmers. It is interesting to note however that the out-
come could also be implemented by a mechanism in which the processor
simply offers farmer ¢ a price equal to ¢; per unit.

The optimal solution is generally ex post inefficient. When é; is an inner
solution, we have & = p — Fi(&)/ fi(¢;) < p. This means that attractive pro-
duction is forgone, namely when ¢; € (¢;, p). The monopsonist avoids trading
with the higher costs farmers, not because they are too costly per se but to
save on the information rents paid to low cost farmers. This loss of welfare is
the result of the asymmetric information. Such losses are common in models
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involving negotiations under asymmetric information, cf e.g. Akerlof(1970),
Vickrey(1961) and Chatterjee and Samuelson(1983). A model with much the
same structure of the optimal solution as above is Antle and Eppen(1985).

An advantage of the formulations above is that they not only support the
qualitative conclusion that investor owned processing leads to a welfare loss
In many cases where the cooperative organization would solve the central
planner’s problem. They also allow us to measure the extent of the welfare
loss and to identify circumstances where this is particularly important. The
next section gives some examples.

6 Some Examples

To illustrate our results, let us assume that costs are independent and uni-
formly distributed, ¢; ~ Uly; — i, p; + €] where ¢; € [0, u] measures the
uncertainty about farmer i’s costs. Also, let the average net revenue product
be p > u, — g; Vi. The potential social value from having farmer ¢ produce -
which is also the social value realized by the cooperative - is therefore

min{y;+€;,p} 1 .
[ (P-—c.-)-z-s—i ¢

Hi—&y

It is straightforward to show that an IO processor will choose

D+ [ — €
5}

If for example u; = 1,¢; = 1 and p = 2, the IO processor offers ¢;=1,1ie. he
foregoes trading with half of the farmer types, the high costs types¢; € (1,2],
to reduce his payment to the low cost types ¢; € [0,1] .

It follows that there will be no social loss from having a IO processor if
and only if p; +&; < Z(p+ p; — &), i.e. if and only if

¢ = min{u, + ¢;,

P — py 2 ey

Hence, the expected profit margin p— p, must exceed 3 times the uncertainty
measure ;. (Of course, in the case p < y, —¢; which we have excluded, there
will also not be a loss since in this case production is not even attractive
under the cooperative regime). Figure 2 below illustrates this.
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A measure of the relative social loss from having an IO as opposed to an
CO processor could be

min{p,+¢i,p} PR Y 2
fmm{m+£i p_u;-_‘}(p Gi) Qaidcg
min{g;+£4,p}
f =& i (p C,,) 2&'4

where the nominator is the social loss (from not producing when costs are
high) in the IO regime and the denominator is the total social gain available
(and realized by a cooperative). The relative social loss RSL as a function of
p i8 depicted in Figure 1 below when u, =¢; = 1.

RSL =

0.25¢
0.2¢
0.15¢
RSL |

i1

0.05}

o i ; ; : ;
Fig 1.: Relative Social Loss from IO, u, =¢; = 1

A more detailed illustration of RSL is provided in Figure 2 where we assume

My = 1.



0.6

Profit Marging 0.8

04 Ungbﬁrtainty

Fig. 2: Relative Social Loss from IO, y, =1

The production rationed away by the IO processor is the most expen-
sive and therefore the socially least valuable. This explains why we, in the
case u, = 1l,6; = 1 and p = 2, loose 50% of the productive cases but only
(RSL=)25% of the value. It should be observed, however, that across farm-
ers, we may not just ration away the least attractive cases. If for example
p = 1.5 and we have two farmers, one with costs uniform on [0, 1] and the
other with costs fixed at 1, we would choose ¢; = 0.75 and é; = 1. Thus, all
the cost levels we forego with farmer 1 is actually more profitable than the
one we accept from farmer 2. We can conclude therefore that the inefficiency
from private ownership may not just appear as lost production. It may also
show itself as a misallocation of production rights where the least productive

are allowed to produce more simply because their incentives are easier to
control.

7 Extensions

The derived optimality of the cooperative organizational form rests on three
essential assumptions, namely that types are independent, that the net aver-
age revenue product is constant, and that the income distribution does not
matter.

14



The assumption that types are independent is necessary to prove Propo-
sition 1. Specifically, (1) presumes independence. If the types are correlated,
a social planner could undermine the informational advantage of the agents
by comparing their messages. By paying most when an agent's message is
likely given the messages of the other agents, the planner could reduce the
payment to the agents. With perfectly correlated types, it would suffice to
pay the true costs in all cases. Hence, with correlated costs, the cooperative
solution is but one possibility to get the first best outcome. Indeed, with
perfectly correlated costs, an 10 processor would also generate the first best
outcome.

One way to relax the independence assumption without changing our
main results is to work with a refined set of IR constraints

si(c) —ci-gi(c) 20  Ve,i

i.e. by assuming that the farmers must never end up with a negative cash-
flow. The stronger IR constraints can be interpreted as limited liability
constraints, safety first constraints, or as the usual participation constraints
coupled with extreme risk aversion (prohibiting negative cash flows). Using
the stronger IR constraints, and assuming that the joint distribution of types
has support C = X;c/C;, we get basically the same propositions as above
for the central planner and the cooperative - but we get it without using
Proposition 1. This is not difficult to prove: Assume that p < c¢¥. To be
socially optimal, we need farmer 7 to produce as long as ¢; < p. The ¢; = p
type of farmer ¢ must therefore be paid at least p per unit and since all the
more efficient types (by the full support condition) can imitate this type, they
must all be paid at least p per unit. The budget balancing constraint now
gives that they must be paid exactly p. Of course, there may still be room for
some zero mean lotteries. An IO processor will still ration production since
otherwise he will earn zero profit. Hence, in this case the socially optimal
outcome is accomplished by a cooperative and - modula some zero mean
lotteries - by a cooperative only.

The assumed constancy of the average net revenue product p is an as-
sumption that the processor has no market power and that there are no scale
economies in the processing (or less realistically, that these effects even out).
Our conclusions are sensitive to this assumption. Relaxing it may destroy
the cooperative’s ability to give the first best production levels. Truly, first
best production level may not be possible under any arrangement when p
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depends on the aggregate production. However, the social planner’s solution
may be approximated better by an 10 than by a CO processor in this case.

The assumption of a constant p is necessary to avoid the.overproduction
problem otherwise generated by a cooperative. In a cooperative, a member
takes into account the price reduction that his production inflict on himself,
but he does not internalize the loss imposed on the other members. This
makes him overproduce. An IO processor on the other hand internalizes
these losses. It follows that an IO processor may be socially superior as
the internalization of the price reduction effect may more than outweigh
the rationing due to asymmetric information. An added drawback of the
cooperative when p decreases with production and costs are uncertain is the
lack of coordination of production levels. By the processor’s revenue function
being concave, the socially optimal production levels will be coordinated
such that producer ¢ produces relatively more when farmer ;7 has high costs
and therefore produces less. This coordination is necessary even though
costs types are independent - but it is not accomplished by a traditional
cooperative.

The assumed irrelevance of the income distribution is obvious. The co-
operative solution generates one distribution - favoring the most efficient
farmers - and if this is not satisfactory, the cooperative solution may not be
the optimal one.

In addition to the above qualitatively essential assumptions, we have in-
troduced a more technical assumption about the class of cost functions. We
have assumed that the farmers have linear costs and fixed capacity levels.
One can argue that this is a relatively narrow class of cost functions. This
is deliberate, however. Since we want to demonstrate that a cooperative
is necessary to ensure the socially optimal production levels, a small class
of function ma.k% the result stronger. The other mphcatlon, i.e. that the
cooperative suffices to give optimal production levels, would favor working
with a large class. This way, however, is simpler and it holds for arbitrary
classes of cost functions: Whatever his cost function ¢;(¢;), farmer i will
choose the socially optimal production level, i.e. the ¢; maximizing pg; — c(g;)
when processing is organized as a cooperative since in this case he is paid
P er 4(€lai/[Xse1 9i(ci)] = pgi. We could have simplified the assump-
tions even further by using a discrete set of possible ¢; values. A drawback
of this however is that it require us to assume that p can take on the same
values - a somewhat awkward assumption. Furthermore, using these assump-
tions we would not get the simple hazard rate results from Section 5. We
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could also have derived much the same results by claiming more traditional
assumptions from the mechanism design literature, c¢f. e.g. Laffont and
Tirole(1993). Specifically, we could have derived similar sufficiency and ne-
cessity results by assuming that the cost of farmer 's production is C*(g;, 8;),
where 6; is the privately known productivity parameter, 8; € [Gf', 9?], that
costs are increasing and convex, 8C*/8q; > 0 and 3*C*/8%g; > 0, that costs
and marginal costs are increasing in types 8C*/88; > 0 and 8°C*/8¢;00; > 0
to ensure the so-called single crossing property, and more technically that
O3C/ (8%6;0¢;) > 0 and 33C*/(8%q;06;) > 0 to avoid mixed strategy and
pooling equilibria, cf. Jensen(1998). We suggest that the assumptions we
have inwoked are as realistic and certainly simpler to understand.

8 Conclusions

We have shown that with asymmetric information about farm level produc-
tion costs, the only way to ensure socially optimal production levels may be
to organize processing as a cooperative. This gives an information economic
rationale for cooperatives. Specifically, we have shown that a cooperative is
necessary when farmers’ marginal production costs are independent, the net
average revenue product from sales is constant, and the income distribution
does not matter.

We have shown also that the relative advantage of cooperatives (com-
pared to investor owned processors) is largest, when the cost uncertainties
are large and when the profitability is limited, i.e. when the net marginal
product is small compared to the primary production cost. In these cases
the investor owned processor tends to ration away more social value to gain
private value. Since the agricultural sector may have these properties, we
suggest that our results may in part explain the apparent success of cooper-
atives among farmers.

In reality, the choice of organizational structure is not only determined by
incentive costs. The resulting market behavior should be taken into account
as well. Most likely, we would get different results if the market conditions
are not - as assumed he - characterized by perfect competition. We leave the
analysis of some such cases to future research.
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