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Abstract. A common aim of epidemiological research is to assess the association
between a particular exposure and a particular outcome, controlling for a set of ad-
ditional covariates. This is often done by using a regression model for the outcome,
conditional on exposure and covariates. A commonly used class of models is the
generalized linear models. The model parameters are typically estimated through
maximum likelihood. If the model is correct, then the maximum likelihood esti-
mator is consistent but may otherwise be inconsistent. Recently, a new class of
estimators known as doubly robust estimators has been proposed. These estima-
tors use two regression models, one for the outcome and one for the exposure, and
are consistent if either model is correct, not necessarily both. Thus doubly robust
estimators give the analyst two chances instead of only one to make valid infer-
ence. In this article, we describe a new Stata command, drglm, that implements
the most common doubly robust estimators for generalized linear models.
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186 Doubly robust estimators

1 Introduction

A common aim of epidemiological research is to assess the association between a par-
ticular exposure and a particular outcome, controlling for a set of additional covariates.
This is often done by fitting a regression model for the outcome, conditional on expo-
sure and covariates. A commonly used class of models is the generalized linear models
(GLMs). The model parameters are typically estimated through maximum likelihood
(ML). If the model is correct, then the ML estimator is consistent but may otherwise be
inconsistent.

When the mechanisms that bring about the outcome are well understood, the out-
come is a natural target for regression modeling. Sometimes, the researcher may have
a better understanding of the exposure mechanisms, in which case the exposure may
be a more natural target. For example, this could be the case when the exposure is
a treatment or a medical drug, which are typically assigned to patients according to
reasonably well-defined protocols. Robins, Mark, and Newey (1992) showed that expo-
sure regression models, like outcome regression models, can be used to estimate the
conditional exposure–outcome association, given covariates.

Often the researcher may not have a strong preference for either modeling strategy,
in which case a doubly robust (DR) estimator is attractive. A DR estimator requires one
model for the outcome and one model for the exposure but is consistent if either model
is correct, not necessarily both. Thus a DR estimator gives the researcher two chances
instead of only one to make valid inference. Over the last decade, DR estimators have
been developed for various parameters (see Bang and Robins [2005] and the references
therein).

In this article, we describe a new Stata command, drglm, that implements DR esti-
mators for GLMs. The article is organized as follows: In section 2, we establish notation
and definitions and define the target estimand. In section 3, we review estimators that
use outcome regression models, estimators that use exposure regression models, and DR

estimators. The DR estimators that we review in section 3 are special cases of more gen-
eral estimators developed in Robins (2000) and Tchetgen Tchetgen and Robins (2010).
In section 4, we present the drglm command with syntax and options. In section 5, we
carry out a simulation study to investigate the performance of the DR estimators, and
in section 6, we describe a practical example.

2 Target parameter

Let A and Y denote the exposure and outcome of interest, respectively. Let L denote
a vector of covariates that we wish to control for. We use p(·) generically for both
population probabilities and densities, and we assume that data consist of n independent
and identically distributed observations from p(Y,A,L). We use E(·) for population

means and Ẽ(·) for sample means; that is, E(R) =
∫

rp(r)dr, and Ẽ(R) =
∑n

i=1 Ri/n
for any random variable R.
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A standard way to assess the conditional association between A and Y , given L, is
to use a GLM on the form

g{E(Y |A,L;β, γ)} = βA + γT L (1)

where β quantifies the conditional A-Y association, given L, and g(·) is a suitable link
function. Typical link functions are the identity link (for continuous Y ), the log link
(for “counts”), and the logit link (for binary Y ), for which β is a mean difference, a log
risk-ratio, and a log odds-ratio, respectively. Typically, a constant term (“intercept”)
is included in the model. This can be achieved without changing notation by defining
the first component of L to be the constant 1. The model in (1) has no interaction
term between A and L; thus it assumes a constant strength of A-Y association on the
scale defined by g(·) across levels of L. To allow for interactions between A and L and
between separate components of L, we consider GLMs on the form

g{E(Y |A,L;β, γ)} = βT AX + γT V (2)

where X is a (p× 1)-dimensional function of L, and V is a (q× 1)-dimensional function
of L. For instance, if L = (L1, L2), X = (1, L1), and V = (1, L1, L2, L1L2), then (2)
reduces to

g{E(Y |A,L;β, γ)} = β0A + β1AL1 + γ0 + γ1L1 + γ2L2 + γ12L1L2

The model in (2) consists of two parts. The part

m(A,L;β) = g{E(Y |A,L)} − g{E(Y |A = 0, L)} = βT AX (3)

quantifies the conditional A-Y association, given L, and is typically of main interest; we
refer to it as the “main model”. The parameter β in the main model (3) is our target
parameter. The part

g{E(Y |A = 0, L; γ)} = γT V (4)

is primarily included to control for L; we refer to it as the “outcome nuisance model”.

3 Estimators

3.1 Estimators that use the nuisance model for the outcome

We first consider an estimator of β that uses the outcome nuisance model for E(Y |A =
0, L) in (4). This estimator is obtained by solving the estimating equation

Ẽ

[(
AX
V

)
{Y − E(Y |A,L;β, γ)}

]
= 0 (5)
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for (βT , γT )T . We use β̂OBE to denote the first p elements of the solution to (5), where
OBE stands for outcome-based estimation. Using the law of iterated expectations, we
have that

E

[(
AX
V

)
{Y − E(Y |A,L;β, γ)}

]

= E

[(
AX
V

)
E{Y − E(Y |A,L;β, γ)|A,L}

]

which equals 0, so the estimating equation in (5) is unbiased when both (3) and (4)

are correct. It follows from standard theory (Newey and McFadden 1994) that β̂OBE is
consistent and asymptotically normal (CAN) when both (3) and (4) are correct.

In the standard use of GLMs, Y is assumed to follow a distribution in the exponential
family, conditional on A and L. If g(·) is the canonical link function (for example, the
identity link in the normal distribution, the log link in the Poisson distribution, and
the logit link in the Bernoulli distribution), then β̂OBE is an ML estimator. β̂OBE is

the default estimator produced by the glm command. We emphasize that β̂OBE is CAN

even when it is not an ML estimator. The default standard errors produced by the glm

command are consistent under the distributional assumption, but are generally incon-
sistent when the distributional assumption is incorrect. Consistent standard errors that
do not rely on any distributional assumptions can be obtained through the “sandwich”
formula by specifying the vce(robust) option in the glm command.

3.2 Estimators that use the nuisance model for the exposure

We next consider estimators of β that use the nuisance model for the exposure. We
first give a heuristic argument for the case when g(·) is the identity link. Suppose
that the true value of β was known. We could then construct residuals on the form
Y − m(A,L;β). These residuals unbiasedly predict E(Y |A = 0, L). Conditionally on
L, E(Y |A = 0, L) is a constant and therefore uncorrelated with A. This argument
suggests the following estimation strategy: find the value of β for which the residual
Y − m(A,L;β) becomes conditionally uncorrelated with A, given L, in the sample. In
terms of an estimating equation, we find the value of β that solves

Ẽ [X{A − E(A|L)}{Y − m(A,L;β)}] = 0 (6)

Equation (6) involves E(A|L), which typically is unknown. Therefore, we predict
E(A|L) by using the exposure nuisance model in the form

h{E(A|L;α)} = αT Z (7)
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where h(·) is a smooth link function not necessarily equal to g(·) used in the main model
(3) and in the outcome model (4). Z is an (r × 1)-dimensional function of L, with the
first element typically being the constant 1. We will allow for the identity link, the log
link, and the logit link in the exposure nuisance (7). We fit the model in (7) by solving
the unbiased estimating equation for α,

Ẽ [Z{A − E(A|L;α)}] = 0

and we replace the true value of E(A|L) in (6) with the model-based prediction.

Combining these steps into one estimating equation for (βT , αT )T gives

Ẽ

[
X{A − E(A|L;α)}{Y − m(A,L;β)}

Z{A − E(A|L;α)}

]
= 0 (8)

We use β̂EBE to denote the first p elements of the solution to (8), where EBE stands for
exposure-based estimation. Using the law of iterated expectations, we have that

E

[
X{A − E(A|L;α)}{Y − m(A,L;β)}

Z{A − E(A|L;α)}

]

= E

[
XE{A − E(A|L;α)|L}E(Y |A = 0, L)

ZE{A − E(A|L;α)|L}

]
(9)

if (3) with the identity link is correct. If (7) is also correct, then the right-hand side
of (9) equals 0, so the estimating equation in (8) is unbiased when both (3) with the

identity link and (7) are correct. Thus β̂EBE is CAN when both (3) with the identity
link and (7) are correct.

A minor modification is required when g(·) in (3) is the log link. For this link
function, we replace Y −m(A,L;β) on the first p rows in (8) with Y e−m(A,L;β). Using the
law of iterated expectations, we can easily show that this modified estimating equation
is unbiased when both (3) with the log link and (7) are correct.

We now consider the case when g(·) is the logit link. For this link, we assume that
both A and Y are binary (0/1). We use the nuisance model in the form

logit{E(A|Y = 0, L; δ)} = δT W (10)

where W is an (s × 1)-dimensional function of L, with the first element typically being
the constant 1. Because of the symmetry of the odds ratio, (3) with the logit link and
(10) together define the joint model

logit{E(A|Y,L;β, δ)} = βT Y X + δT W

Under (3) with the logit link and (10), an ML estimator of (βT , δT )T is obtained by
solving the estimating equation

Ẽ

[(
Y X
W

)
{A − E(A|Y,L;β, δ)}

]
= 0 (11)

Using the law of iterated expectations, we can show that the estimating equation in
(11) is unbiased when both (3) with the logit link and (10) are correct. For simplicity,

we use β̂EBE to denote the first p elements of the solution to either (8) or (11).



190 Doubly robust estimators

3.3 DR estimators

We finally consider DR estimators of β. We first consider the case when g(·) is the
identity link. For this case, a DR estimator of β can be obtained by “combining” the
estimating equations (5) and (8) into

Ẽ




X{A − E(A|L;α)}{Y − E(Y |A,L;β, γ)}(
AX
V

)
{Y − E(Y |A,L;β†, γ)}

Z{A − E(A|L;α)}


 = 0 (12)

and solving for (βT , β†T , γT , αT )T . We use β̂DR to denote the first p elements of the
solution to (12). It follows from a more general result in Robins (2000) that the esti-
mating equation in (12) is unbiased if either (4) with the identity link or (7) is correct,

together with the main model (3) with the identity link.1 Thus β̂DR is CAN if either of
the nuisance models is correct, not necessarily both.

A minor modification is required when g(·) is the log link. For this link function,
we replace Y −E(Y |A,L;β, γ) = Y −m(A,L;β)−E(Y |A = 0, L; γ) on rows 1 through
p in (12) with Y e−m(A,L;β) − E(Y |A = 0, L; γ); and replace Y − E(Y |A,L;β†, γ) =
Y − m(A,L;β†) − E(Y |A = 0, L; γ) on rows p + q + 1 through 2p + q + 1 in (12)

with Y e−m(A,L;β†) −E(Y |A = 0, L; γ). Following Robins (2000), we can show that this
modified estimating equation system is unbiased if either (4) with the log link or (7) is
correct, together with the main model (3) with the log link.

We now consider the case when g(·) is the logit link. For this case, a DR estimator
of β can be obtained by solving the estimating equation

Ẽ




X {A − E∗(A|L;β, γ, δ)} {Y − E(Y |A,L;β, γ)}(
AX
V

)
{Y − E(Y |A,L;β†, γ)}

(
Y X
W

)
{A − E(A|Y,L;β‡, δ)}




= 0 (13)

for (βT , β†T , γT , β‡T , δT )T , where

E∗(A|L;β, γ, δ) =

[
1 +

{1 − E(A|Y = 0, L; δ)}E(Y |A = 0, L; γ)

E(A|Y = 0, L; δ)E(Y |A = 1, L;β, γ)

]−1

For simplicity, we use β̂DR to denote the first p elements of the solution to either (12)
or (13). It follows from a more general result in Tchetgen Tchetgen and Robins (2010)
that the estimating equation in (13) is unbiased if either (4) with the logit link or (10)
is correct, together with the main model (3) with the logit link.2

1. Here we define (β†T , γT , αT )T as the asymptotic solution to the last p+ q + r rows in (12) whether
(4) and (7) are misspecified or not. It follows that the last p + q + r rows in (12) are unbiased by
definition.

2. Here we define (β†T , γT , β‡T , δT )T as the asymptotic solution to the last p + q + p + s rows in (13)
whether (4) and (10) are misspecified or not. It follows that the last p + q + p + s rows in (13) are
unbiased by definition.
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3.4 Standard errors

All estimators of β that we have considered in section 3 are generalized method of
moments estimators, also referred to as Z-estimators (van der Vaart 1998). Specifically,
they are the first p elements of the solution to an unbiased estimating equation on the
form Ẽ{U(θ)} = 0, where θ = (βT , ηT )T , and η is a nuisance parameter. It follows from
general results on generalized method of moments estimators (Newey and McFadden

1994) that n1/2(θ̂ − θ) is asymptotically normal with mean 0 and variance–covariance
matrix

Σ =

[
E

{
∂U(θ)

∂θT

}]−1

Var{U(θ)}
([

E

{
∂U(θ)

∂θT

}]−1
)T

(14)

A consistent estimator of Σ is obtained by replacing θ in (14) with the estimator θ̂ and
the population moments in (14) with their sample counterparts.

3.5 A note on the possible combinations of link functions

The DR estimators that we have considered in section 3.3 only apply to main models on
the parametric form in (3) and to the combination of link functions listed in table 1. In
principle, it would be desirable to implement DR estimators that do not suffer from this
limitation. In practice, though, such DR estimators typically require stronger modeling
assumptions, or they may not even exist. For instance, when the outcome is binary and
the exposure is continuous, it would be desirable to have a DR estimator that uses a logit
link for the outcome and an identity link for the exposure. However, such an estimator
requires not only a mean model for the exposure but also a fully specified model for the
exposure distribution (Tchetgen Tchetgen and Robins 2010). This makes the estimator
less robust and more computationally intensive. For binary outcomes and exposures, it
would also be desirable to implement a DR estimator that uses probit links. However,
to the best of our knowledge, no such DR estimator exists.

Table 1. Possible combinations of link functions

main/outcome link exposure link

identity identity
identity log
identity logit

log identity
log log
log logit

logit logit
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4 The drglm command

drglm provides DR estimates for the main model (3) in GLMs.

4.1 Syntax

drglm depvar expvar
[
if
] [

in
] [

, main(varlist) outcome(varlist)

exposure(varlist) olink(linkname) elink(linkname) level(#) obe ebe

eform vce(vcetype)
]

The expvar (exposure, treatment, predictor, or covariate) must be numerical. Af-
ter drglm estimation, one can use postestimation commands such as test, testparm,
lincom, and predictnl.

Options

main(varlist) determines which variables are used in the main model part of the es-
timator. The constant 1 is always added to main(varlist). Then each variable in
main(varlist) is multiplied by expvar and saved in the current dataset.

outcome(varlist) determines which variables are used in the outcome model part of the
estimator. The constant 1 is always added to outcome(varlist).

exposure(varlist) determines which variables are used in the exposure model part of
the estimator. The constant 1 is always added to exposure(varlist).

olink(linkname) specifies the link function of the outcome model (identity, logit,
log). The default is olink(identity). If olink(logit) is specified, expvar can
take on only two values (either 0 or 1).

elink(linkname) specifies the link function of the exposure model (identity, logit,
log). The default is elink(identity).

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.

obe specifies the outcome-based estimation.

ebe specifies the exposure-based estimation.

eform reports coefficient estimates as exp(b) rather than as b.

vce(vcetype) specifies the type of standard error reported. vcetype may be robust,
cluster clustvar, bootstrap, or jackknife. The default is vce(robust).
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Saved results

drglm saves the following in e():

Scalars
e(N) number of observations e(rank) rank of e(V)

Macros
e(cmd) drglm e(olink) link function of the outcome
e(cmdline) command as typed model
e(depvar) name of dependent variable e(elink) link function of the exposure
e(vcetype) title used to label Std. Err. model
e(properties) b V e(estimator) type of estimator (dr, obe, or

ebe)

Matrices
e(b) coefficient vector e(V) variance–covariance matrix

of the estimators

Functions
e(sample) marks estimation sample

5 Simulation study

To demonstrate the doubly robustness of the implemented estimators, we present the
results from two simulation studies.

5.1 Simulation 1

We generated 1,000 samples of 500 observations each from the model

L = (L1, L2)
L1 ⊥ L2

L1 ∼ N(0, 1)
L2 ∼ N(0, 1)

A|L ∼ N {E(A|L), 1}
Y |A,L ∼ N {E(Y |A,L), 1}
E(A|L) = α0 + α1L1 + α2L2 + α12L1L2︸ ︷︷ ︸

Exposure nuisance model

E(Y |A = 0, L) = γ0 + γ1L1 + γ2L2 + γ12L1L2︸ ︷︷ ︸
Outcome nuisance model

m(A,L) = E(Y |A,L) − E(Y |A = 0, L)
= β0A + β1AL1︸ ︷︷ ︸

Main model





with nuisance parameter η = (α0, α1, α2, α12, γ0, γ1, γ2, γ12) = (0, 1, 1,−1.5,−1,−1,
−1, 1.5) and target parameter β = (β0, β1) = (1.5, 1). For each sample, we calcu-

lated β̂OBE, β̂EBE, and β̂DR by using correct models for E(A|L), E(Y |A = 0, L), and
m(A,L). We calculated the mean estimates (over the 1,000 samples), the mean theo-
retical standard errors (as obtained from the sandwich formula), the empirical standard
errors, and the empirical coverage probabilities of the corresponding 95% Wald confi-
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dence intervals (CIs). This procedure was repeated twice: we first used correct models
for E(Y |A = 0, L) and m(A,L) but the incorrect model E(A|L) = α0 + α1L1 + α2L2;
we then used correct models for E(A|L) and m(A,L) but the incorrect model E(Y |A =
0, L) = γ0 + γ1L1 + γ2L2. Table 2 shows the results. All three estimators work well
under correct model specifications. The mean estimates are close to the true value of
β; the mean theoretical standard errors are close to the mean empirical standard er-
rors; and the coverage probabilities of the CIs are very close to the nominal level of
95%. When the model for E(A|L) is misspecified, β̂EBE is biased. Similarly, when the

model for E(Y |A = 0) is misspecified, β̂OBE is biased. β̂DR is unbiased even if either of
these models is misspecified. The differences in empirical standard error for the three
estimators are minor.

Table 2. Simulation results for the estimate of β0 and β1. I: Correct models for E(A|L),
E(Y |A = 0, L), and E(Y |A,L) − E(Y |A = 0, L); II: Correct models for E(Y |A = 0, L)
and E(Y |A,L) − E(Y |A = 0, L) and incorrect model for E(A|L); III: Correct models
for E(A|L) and E(Y |A,L) − E(Y |A = 0, L) and incorrect model for E(Y |A = 0, L).

mean mean theoretical empirical coverage
estimate standard error standard error probability

I

β̂0,OBE 1.50 0.04 0.05 94

β̂1,OBE 1.00 0.02 0.02 93

β̂0,EBE 1.52 0.06 0.06 96

β̂1,EBE 0.99 0.14 0.14 97

β̂0,DR 1.50 0.05 0.05 94

β̂1,DR 1.00 0.05 0.05 95
II

β̂0,OBE 1.50 0.04 0.05 94

β̂1,OBE 1.00 0.02 0.02 93

β̂0,EBE 0.85 0.05 0.05 0

β̂1,EBE 1.07 0.03 0.03 42

β̂0,DR 1.50 0.04 0.05 94

β̂1,DR 1.00 0.02 0.02 93
III

β̂0,OBE 0.84 0.04 0.05 0

β̂1,OBE 1.06 0.03 0.03 40

β̂0,EBE 1.52 0.06 0.06 96

β̂1,EBE 0.99 0.14 0.14 97

β̂0,DR 1.51 0.06 0.06 96

β̂1,DR 0.98 0.13 0.13 96
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5.2 Simulation 2

We generated 1,000 samples of 500 observations each from the model

L = (L1, L2)
L1 ⊥ L2

L1 ∼ N(0, 1)
L2 ∼ N(0, 1)

(A, Y ) = ∈ (0, 1)
logit {E(A|Y = 0, L)} = α0 + α1L1 + α2L2 + α12L1L2︸ ︷︷ ︸

Exposure nuisance model

logit {E(Y |A = 0, L)} = γ0 + γ1L1 + γ2L2 + γ12L1L2︸ ︷︷ ︸
Outcome nuisance model

m(A,L) = logit {E(Y |A,L)} − logit {E(Y |A = 0, L)}
= β0A + β1AL1︸ ︷︷ ︸

Main model





with nuisance parameter η = (α0, α1, α2, α12, γ0, γ1, γ2, γ12) = (−1, 1, 1,−1.5,−1,−1,
−1, 1.5) and target parameter β = (β0, β1) = (1.5, 1). For each sample, we calcu-

lated β̂OBE, β̂EBE, and β̂DR by using correct models for both logit{E(A|Y = 0, L)},
logit{E(Y |A = 0, L)}, and m(A,L). We calculated the same summary measures as
in simulation 1. This procedure was repeated twice: we first used correct models for
logit{E(Y |A = 0, L)} and m(A,L) but the incorrect model logit{E(A|Y = 0, L)} =
α0 + α1L1 + α2L2; we then used correct models for logit{E(A|Y = 0, L)} and m(A,L)
but the incorrect model logit{E(Y |A = 0, L)} = γ0 + γ1L1 + γ2L2. Table 3 shows the
results. All three estimators work well under correct model specifications. The mean
estimates are close to the true value of β; the mean theoretical standard errors are close
to the mean empirical standard errors; and the coverage probabilities of the CIs are very
close to the nominal level of 95%. When the model for E(A|L) is misspecified, β̂EBE is

biased. Similarly, when the model for E(Y |A = 0) is misspecified, β̂OBE is biased. β̂DR

is unbiased even if either of these models is misspecified. The differences in empirical
standard error for the three estimators are minor.



196 Doubly robust estimators

Table 3. Simulation results for the estimate of β0. I: Correct models for logit{E(A|Y =
0, L)}, logit{E(Y |A = 0, L)}, and logit {E(Y |A,L)}−logit {E(Y |A = 0, L)}; II: Correct
models for logit{E(Y |A = 0, L)} and logit {E(Y |A,L)} − logit {E(Y |A = 0, L)} and
incorrect model for logit{E(A|Y = 0, L)}; III: Correct models for logit{E(A|Y = 0, L)}
and logit {E(Y |A,L)} − logit {E(Y |A = 0, L)} and incorrect model for logit{E(Y |A =
0, L)}.

mean mean theoretical empirical coverage
estimate standard error standard error probability

I

β̂0,OBE 1.53 0.27 0.26 96

β̂1,OBE 1.03 0.30 0.28 95

β̂0,EBE 1.53 0.28 0.27 96

β̂1,EBE 1.04 0.35 0.33 96

β̂0,DR 1.54 0.28 0.28 95

β̂1,DR 1.05 0.41 0.39 94
II

β̂0,OBE 1.53 0.27 0.26 96

β̂1,OBE 1.03 0.30 0.28 95

β̂0,EBE 0.73 0.25 0.25 13

β̂1,EBE 1.51 0.37 0.34 71

β̂0,DR 1.53 0.28 0.27 96

β̂1,DR 1.06 0.41 0.38 96
III

β̂0,OBE 0.78 0.24 0.25 17

β̂1,OBE 1.28 0.26 0.25 80

β̂0,EBE 1.53 0.28 0.27 96

β̂1,EBE 1.04 0.35 0.33 96

β̂0,DR 1.54 0.28 0.27 96

β̂1,DR 1.06 0.40 0.37 94

6 Example

Sjölander and Vansteelandt (2011) used data from the National Match Cohort (NMC)
(Bellocco et al. 2010) to illustrate the use of DR estimators of attributable fractions.
We use the same dataset to illustrate the use of the drglm command. The NMC was
established in 1997, when 300,000 Swedes participated in a national fund-raising event
organized by the Swedish Cancer Society. Every participant was asked to fill out a
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questionnaire that included items on known or suspected risk factors for cardiovascular
disease (CVD). Using the Swedish patient registry, the NMC followed participants until
2006, and each CVD event was recorded. Sjölander and Vansteelandt (2011) considered
a binary outcome cvd, with cvd = 1 if a subject developed CVD before end of follow-up,
and cvd = 0 otherwise. They considered a binary exposure bmi, with bmi = 0 for
those subjects with baseline body mass index (BMI)—body weight in kilograms divided
by height squared in meters—between 18.5 and 25 kg/m2 and bmi = 1 for subjects
with baseline BMI outside this range. The range 18.5 < BMI < 25 kg/m2 is considered
normal weight by the World Health Organization (World Health Organization 1995).
Based on self-reported history of physical activity, Sjölander and Vansteelandt (2011)
constructed a continuous measure. They controlled for both age at baseline (age)
and the constructed measure of physical activity (pa). The dataset nmc sj of 41,295
individuals is a sample that can be requested from the authors; it can be used only to
reproduce the current analysis.

A standard way to assess the association between bmi and cvd, controlling for age

and pa, is to use the logistic regression model logit{E(cvd|bmi, age, pa)} = βbmi+γ0 +
γ1age + γ2pa. Fitting this model with the logit command gives the output below.
The option vce(robust) is used to allow a comparison of the standard errors with the
drglm command.

. use nmc_sj
(National Match Cohort - SJ version)

. logit cvd bmi age pa, vce(robust) nolog

Logistic regression Number of obs = 41295
Wald chi2(3) = 1345.18
Prob > chi2 = 0.0000

Log pseudolikelihood = -27190.223 Pseudo R2 = 0.0253

Robust
cvd Coef. Std. Err. z P>|z| [95% Conf. Interval]

bmi .1464322 .044115 3.32 0.001 .0599684 .2328959
age .0173548 .0006421 27.03 0.000 .0160964 .0186133
pa -.1348361 .0067156 -20.08 0.000 -.1479983 -.1216738

_cons -.7620794 .0434613 -17.53 0.000 -.8472621 -.6768968
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If both the main model logit{E(cvd|bmi, age, pa)} − logit{E(cvd|bmi = 0, age, pa)}
= βbmi and the outcome nuisance model logit{E(cvd|bmi = 0, age, pa)} = γ0 +γ1age+
γ2pa are correct, then the estimate of β is consistent. An identical analysis is performed
by using the drglm command with the option obe (outcome-based estimator).

. drglm cvd bmi, outcome(age pa) olink(logit) elink(logit) obe

Generalized Linear Models Number of obs = 41295
Estimator: Outcome Based
Link functions: Outcome[logit] Exposure[logit]

Robust
cvd Coef. Std. Err. z P>|z| [95% Conf. Interval]

main
bmi .1464322 .044115 3.32 0.001 .0599684 .2328959

As argued in section 3.2, a consistent estimate of β can also be obtained through
the model logit{E(bmi|cvd, age, pa)} = βcvd + α0 + α1age + α2pa. Fitting this model
gives the output below.

. logit bmi cvd age pa, vce(robust) nolog

Logistic regression Number of obs = 41295
Wald chi2(3) = 2618.37
Prob > chi2 = 0.0000

Log pseudolikelihood = -7552.0003 Pseudo R2 = 0.1837

Robust
bmi Coef. Std. Err. z P>|z| [95% Conf. Interval]

cvd .3012316 .0445681 6.76 0.000 .2138798 .3885834
age .0975369 .0019346 50.42 0.000 .0937451 .1013287
pa -.0545103 .0166798 -3.27 0.001 -.0872021 -.0218186

_cons -8.53162 .1471068 -58.00 0.000 -8.819944 -8.243296

If both the main model logit{E(bmi|cvd, age, pa)} − logit{E(bmi|cvd = 0, age, pa)}
= βcvd and the exposure nuisance model logit{E(bmi|cvd = 0, age, pa)} = α0+α1age+
α2pa are correct, then the estimate of β is consistent. An identical analysis is performed
by using the drglm command with the option ebe (exposure-based estimator).

. drglm cvd bmi, exposure(age pa) olink(logit) elink(logit) ebe

Generalized Linear Models Number of obs = 41295
Estimator: Exposure Based
Link functions: Outcome[logit] Exposure[logit]

Robust
cvd Coef. Std. Err. z P>|z| [95% Conf. Interval]

main
bmi .3012316 .0445681 6.76 0.000 .2138798 .3885834
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A DR estimate of β that uses both nuisance models is obtained as follows:

. drglm cvd bmi, outcome(age pa) exposure(age pa) olink(logit) elink(logit)

Generalized Linear Models Number of obs = 41295
Estimator: Double Robust
Link functions: Outcome[logit] Exposure[logit]

Robust
cvd Coef. Std. Err. z P>|z| [95% Conf. Interval]

main
bmi .2991997 .0442286 6.76 0.000 .2125133 .3858861

By not specifying the option main(), the main model becomes equal to

logit {E(cvd|bmi, pa, age)} − logit {E(cvd|bmi = 0, pa, age)} = βbmi

Interpretation of the regression coefficient is usually done on an exponential scale
(odds ratios rather than log odds-ratios). One can use either the drglm’s option eform

or the postestimation command lincom. Compared with subjects with 18.5 < BMI < 25
kg/m2, the odds of CVD for subjects with BMI < 18.5 or BMI > 25 were 31% higher
(95% CI: [1.20, 1.43]).

. lincom bmi, eform

( 1) [main]bmi = 0

cvd exp(b) Std. Err. z P>|z| [95% Conf. Interval]

(1) 1.309507 .0579729 6.09 0.000 1.200672 1.428207

We observe that the DR estimate of β is very close to the estimate obtained through
the exposure nuisance model (option ebe) but less close to the estimate obtained through
the outcome nuisance model (option obe). This indicates that the exposure nuisance
model may be reasonably correct, whereas the outcome nuisance model may suffer from
more severe misspecifications.
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We refined the nuisance models by taking into account nonlinearities for both age

and pa. We modeled both quantitative covariates by using restricted cubic splines with
three knots at fixed percentiles of the distribution.

. mkspline pas = pa, nk(3) cubic

. mkspline ages = age, nk(3) cubic

. drglm cvd bmi, outcome(ages1 ages2 pas1 pas2) exposure(ages1 ages2 pas1 pas2)
> olink(logit) elink(logit)

Generalized Linear Models Number of obs = 41295
Estimator: Double Robust
Link functions: Outcome[logit] Exposure[logit]

Robust
cvd Coef. Std. Err. z P>|z| [95% Conf. Interval]

main
bmi .2696505 .0442708 6.09 0.000 .1828814 .3564196

With the refined outcome and exposure nuisance model, we obtained β̂OBE =
0.25 and β̂EBE = 0.27, respectively. Whereas the refinement resulted in a change in
β̂OBE with (0.15 − 0.25)/0.15 = −67%, it only resulted in a change in β̂EBE with
(0.30 − 0.27)/0.30 = 10%. This further indicates that the misspecification in the sim-
ple outcome nuisance model was more severe than the misspecification in the simple
exposure nuisance model.

We next considered the hypothesis that the association between BMI and CVD may
vary with physical activity. Therefore, we specify the main model of the form below by
specifying the main(pa) option.

logit {E(cvd|bmi, pa, age)} − logit {E(cvd|bmi = 0, pa, age)} = β0bmi + β1bmipa

. drglm cvd bmi, main(pa) outcome(ages1 ages2 pas1 pas2)
> exposure(ages1 ages2 pas1 pas2) olink(logit) elink(logit)

Generalized Linear Models Number of obs = 41295
Estimator: Double Robust
Link functions: Outcome[logit] Exposure[logit]

Robust
cvd Coef. Std. Err. z P>|z| [95% Conf. Interval]

main
bmi .2316385 .1228567 1.89 0.059 -.0091562 .4724332

bmipa .0106238 .0319545 0.33 0.740 -.0520059 .0732535



N. Orsini, R. Bellocco, and A. Sjölander 201

The variable bmipa is the product of bmi and pa created internally by the drglm

command. The coefficient of the interaction term, bmipa is not statistically significant
(p = 0.740). A test for overall no association between BMI on CVD is obtained with the
postestimation command testparm.

. testparm bmi bmipa

( 1) [main]bmi = 0
( 2) [main]bmipa = 0

chi2( 2) = 37.31
Prob > chi2 = 0.0000

Because of the interaction between BMI and physical activity in the main model,
to quantify the association between BMI (1 versus 0) and CVD, we need to consider a
specific value for physical activity. The coefficient of BMI depends on physical activity
via (β0 + β1pa). For example, the odds ratios of BMI for the minimal (0), median (4),
and maximal (8) physical activity level are calculated as follows:

. lincom _b[bmi] + _b[bmipa]*0, eform

( 1) [main]bmi = 0

cvd exp(b) Std. Err. z P>|z| [95% Conf. Interval]

(1) 1.260664 .154881 1.89 0.059 .9908856 1.603892

. lincom _b[bmi] + _b[bmipa]*4, eform

( 1) [main]bmi + 4*[main]bmipa = 0

cvd exp(b) Std. Err. z P>|z| [95% Conf. Interval]

(1) 1.315391 .0607068 5.94 0.000 1.20163 1.439921

. lincom _b[bmi] + _b[bmipa]*8, eform

( 1) [main]bmi + 8*[main]bmipa = 0

cvd exp(b) Std. Err. z P>|z| [95% Conf. Interval]

(1) 1.372493 .2028368 2.14 0.032 1.027339 1.833609
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To present graphically how the odds ratio for CVD associated with BMI varies
with physical activity (figure 1), we can use the convenient postestimation command
predictnl.

. predictnl logor = _b[bmi] + _b[bmipa]*pa, ci(lo hi)
note: Confidence intervals calculated using Z critical values

. generate or = exp(logor)

. generate lb = exp(lo)

. generate ub = exp(hi)

. by pa, sort: generate flag = (_n == 1)

. twoway (line or lb ub pa, sort lp(l - -) lc(black black black)) if flag,
> yscale(log) ytitle("Odds Ratio of BMI") xtitle("Physical activity")
> legend(off) scheme(sj) ylabel(1(.2)1.8, angle(horiz) format(%3.2fc))
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Figure 1. Odds ratio for CVD associated with BMI as function of physical activity

Although the logit link is by far the most common link for binary exposures and
outcomes, all combinations listed in table 1 are possible. In table 4, we present β̂OBE,
β̂EBE, and β̂DR together with the corresponding 95% CIs, obtained by using the main
model g{E(cvd|bmi, age, pa)}− g{E(cvd|bmi = 0, age, pa)} = β, the outcome nuisance
model g{E(cvd|bmi = 0, age, pa)} = γ0 + γ1age + γ2pa, and the exposure nuisance
model h{E(bmi|age, pa)} = α0 + α1age + α2pa for each of the first six link-function
combinations in table 1. We remind the reader that the interpretation of β depends on
the choice of link function in the main model.
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Table 4. Estimated values of β̂ using three estimators (outcome based, exposure based,
and DR) and various combinations of link functions

main/outcome exposure

link link bβOBE 95% CI bβEBE 95% CI bβDR 95% CI

identity identity 0.04 [0.02, 0.06] 0.04 [0.02, 0.06] 0.04 [0.02, 0.06]
identity log 0.04 [0.02, 0.06] 0.08 [0.06, 0.10] 0.08 [0.06, 0.10]
identity logit 0.04 [0.02, 0.06] 0.07 [0.05, 0.10] 0.07 [0.05, 0.10]

log identity 0.06 [0.02, 0.11] 0.08 [0.03, 0.12] 0.06 [0.02, 0.10]
log log 0.06 [0.02, 0.11] 0.16 [0.12, 0.20] 0.16 [0.12, 0.21]
log logit 0.06 [0.02, 0.11] 0.15 [0.11, 0.19] 0.15 [0.11, 0.20]

Let us consider two alternative DR measures of association with logit as exposure
link. When the outcome link is identity, the regression coefficient is a difference in mean
outcome.

. drglm cvd bmi, outcome(age pa) exposure(age pa) olink(identity) elink(logit)

Generalized Linear Models Number of obs = 41295
Estimator: Double Robust
Link functions: Outcome[identity] Exposure[logit]

Robust
cvd Coef. Std. Err. z P>|z| [95% Conf. Interval]

main
bmi .0738476 .0109156 6.77 0.000 .0524533 .0952418

The CVD risk difference comparing subjects with 18.5 < BMI < 25 kg/m2 versus subjects
with BMI < 18.5 or BMI > 25 was 7% (95% CI: [5%, 10%]). If the outcome link instead
is log, the regression coefficient is a log risk-ratio.

. drglm cvd bmi, outcome(age pa) exposure(age pa) olink(log) elink(logit) eform

Generalized Linear Models Number of obs = 41295
Estimator: Double Robust
Link functions: Outcome[log] Exposure[logit]

Robust
cvd exp(b) Std. Err. z P>|z| [95% Conf. Interval]

main
bmi 1.165457 .0248518 7.18 0.000 1.117752 1.215198

Compared with subjects with 18.5 < BMI < 25 kg/m2, the risk of CVD for subjects with
BMI < 18.5 or BMI > 25 was 17% higher (95% CI: [1.12, 1.22]).
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7 Discussion

In this article, we have presented the new Stata command drglm, which carries out DR

estimation in GLMs. The DR estimators use two regression models and are consistent
if either model is correct, not necessarily both. In our simulated scenarios, the DR

estimators were almost as efficient as the more “standard” estimators, which used only
one regression model. Furthermore, in our simulated scenarios, the estimators that used
only one regression model were severely biased whenever the model was incorrect. These
results speak in favor of the DR estimators.

The target parameter β is a subpopulation parameter; it quantifies the conditional
A-Y association, given covariates L (that is, the association in each subpopulation
defined by a distinct level of L). In the special case when g(·) is the identity link or the
log link, and there are no interactions between A and L in the main model, β may be
interpreted as a population parameter because of the collapsibility of mean differences
and log risk-ratios. In the general case (that is, for a link function other than the identity
link and the log link and with interactions between A and Y ), it is possible to construct
DR estimators for population parameters through inverse probability weighting. These
methods have been implemented in Stata by Emsley et al. (2008).

In practice, it is unlikely for any model to be exactly correct. Several authors have
investigated the performance of DR estimators in various contexts when both work-
ing models are misspecified (Bang and Robins 2005; Davidian, Tsiatis, and Leon 2005;
Kang and Schafer 2007). These authors have drawn somewhat different conclusions.
Bang and Robins (2005) state: “In our opinion, a DR estimator has the following ad-
vantage that argues for its routine use: if either the [outcome] model or the [exposure]
model is nearly correct, then the bias of a DR estimator . . . will be small”. In contrast,
Kang and Schafer (2007) provided a simulated example where DR estimators were out-
performed by estimators that rely on only one regression model; all involved models
being moderately misspecified. They concluded that “two wrong models are not neces-
sarily better than one”.
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