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Abstract. The joint modeling of longitudinal and survival data has received
remarkable attention in the methodological literature over the past decade; how-
ever, the availability of software to implement the methods lags behind. The most
common form of joint model assumes that the association between the survival
and the longitudinal processes is underlined by shared random effects. As a re-
sult, computationally intensive numerical integration techniques such as adaptive
Gauss–Hermite quadrature are required to evaluate the likelihood. We describe a
new user-written command, stjm, that allows the user to jointly model a continu-
ous longitudinal response and the time to an event of interest. We assume a linear
mixed-effects model for the longitudinal submodel, allowing flexibility through the
use of fixed or random fractional polynomials of time. Four choices are available
for the survival submodel: the exponential, Weibull or Gompertz proportional
hazard models, and the flexible parametric model (stpm2). Flexible parametric
models are fit on the log cumulative-hazard scale, which has direct computational
benefits because it avoids the use of numerical integration to evaluate the cumu-
lative hazard. We describe the features of stjm through application to a dataset
investigating the effect of serum bilirubin level on time to death from any cause in
312 patients with primary biliary cirrhosis.

Keywords: st0289, stjm, stjmgraph, stjm postestimation, joint modeling, mixed
effects, survival analysis, longitudinal data, adaptive Gauss–Hermite quadrature

1 Introduction

A joint model of longitudinal and time-to-event data can effectively assess the im-
pact that a longitudinal covariate, measured with error, has on the time to an event
of interest, providing a framework to assess the predictive ability of a biomarker on
survival. Wulfsohn and Tsiatis (1997) and Henderson, Diggle, and Dobson (2000) have

c© 2013 StataCorp LP st0289



166 Joint modeling of longitudinal and survival data

shown that by undertaking a joint model that evaluates both the longitudinal and the
survival data simultaneously, we can reduce biases and improve precision over simpler
approaches. Such approaches include the separate modeling of each form of data by
using standard tools such as xtmixed and streg or a two-stage approach whereby fit-
ted values, including empirical Bayes estimates of the longitudinal model, are used as a
time-varying covariate in a survival model. Conversely, joint models can also be viewed
from the perspective of adjusting for informative drop-out in a longitudinal study (for
example, if one finds when modeling quality of life over time in patients with cancer
that patients with lower quality of life are more likely to die, resulting in nonignorable
drop-out, as described in Billingham and Abrams [2002]).

The most widely used form of joint model assumes that the longitudinal and sur-
vival processes are underpinned by shared random effects. This results in a joint like-
lihood that cannot be evaluated analytically. Consequently, computationally demand-
ing numerical integration techniques such as adaptive Gauss–Hermite quadrature (see
Pinheiro and Bates [1995]) must be used to evaluate both the cumulative hazard and
the overall joint likelihood.

The implementation of joint modeling in Stata is somewhat limited. The extensive
gllamm suite (see Rabe-Hesketh, Skrondal, and Pickles [2002]) can fit shared parameter
models but can assume only a piecewise exponential form for the survival submodel. The
newly implemented jmre1 command (see Pantazis and Touloumi [2010]) approaches
analyses from the point of view of adjusting for informative drop-out in a longitudinal
study, assuming the longitudinal and survival components are multivariate normal.

We present the stjm command, which allows the user to jointly model a contin-
uous longitudinal response and the time to an event of interest. We assume a lin-
ear mixed-effects model for the longitudinal submodel, allowing flexibility through the
use of fixed or random fractional polynomials of time. Four choices are available for
the survival submodel, including the exponential, Weibull (Guo and Carlin 2004), and
Gompertz proportional hazards models. We believe this is the first implementation
of the Gompertz survival model within a joint modeling context. Furthermore, we
implement the joint model of Crowther, Abrams, and Lambert (2012), which incorpo-
rates the flexible parametric survival model, stpm2 (see Royston and Parmar [2002] and
Lambert and Royston [2009]). Flexible parametric survival models are fit on the log
cumulative-hazard scale, which has direct computational benefits because it avoids the
need for numerical integration to evaluate the cumulative hazard. The models are fit by
using maximum likelihood, with both simple and adaptive Gauss–Hermite quadrature
available.
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We illustrate the command by using a dataset of 312 patients with primary biliary
cirrhosis (see Murtaugh et al. [1994] for further details). Of the 312, 158 were ran-
domized to receive D-penicillamine, and 154 assigned a placebo. Serum bilirubin was
measured repeatedly at intermittent time points. We investigate the effect of treatment
after adjusting for the relationship between serum bilirubin levels and time to death.
There may be other areas of application; however, in this article, we concentrate on the
biostatistical aspect.

2 Joint modeling of longitudinal and survival data

Consider a clinical trial where we observe a continuous longitudinal biomarker, measured
intermittently and with error, and the time to an event of interest. Baseline covariates
are also recorded. Let Si be the survival time of the ith patient, where i = 1, . . . , n,
and Ti = min(Si, Ci) the observed survival time, with Ci the censoring time. Define
an event indicator di, which takes the value of 1 if Si ≤ Ci and 0 otherwise. Let
yij = {yi(tij), j = 1, . . . ,mi} denote the longitudinal response measurements of the
continuous biomarker for the ith patient taken at times tij . Furthermore, we define
shared random effects, bi, which underpin the survival and longitudinal processes. Each
submodel can be dependent on a set of baseline covariates, Ui, which can potentially
differ between submodels. We impose the common assumptions that both censoring
and time of measurements are noninformative.

2.1 Longitudinal submodel

We specify for the longitudinal submodel a linear mixed-effects model where time can be
modeled by using a combination of fixed or random fractional polynomials. This should
provide a highly flexible framework to capture a variety of longitudinal trajectories (see
Royston and Altman [1994]). Therefore, we observe

yi(tij) = Wi(tij) + eij , eij ∼ N(0, σ2
e)

Wi(tij) = x′
i(tij)β + z′i(tij)bi + uiδ (1)

with design matrices Xi and Zi for the fixed (β) and random (bi) effects, respectively,
consisting of fractional polynomial time variables. Furthermore, we also have a vector of
covariates (possibly time dependent), ui ∈ Ui, and corresponding regression coefficients,
δ. We assume that the measurement error, eij , is independent from the random effects
and that cov(eij , eik) = 0 (where j 6= k). Wi(tij) now represents the “true” underlying
biomarker trajectory.
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2.2 Survival submodel

Exponential, Weibull, and Gompertz

Standard parametric distributions have been implemented for the survival submodel.
We define the proportional hazards submodel

h(t|bi, vi) = h0(t) exp {αWi(tij) + viφ}

where h0(t) is the baseline hazard function (see [ST] streg for more details), α denotes
the association parameter, and φ is a set of regression coefficients associated with a set of
covariates (again possibly time dependent), vi ∈ Ui. In this formulation, we assume the
association is based on the current value of the longitudinal response. In other words,
the value of the biomarker, as estimated by the longitudinal submodel, is included in
the survival linear predictor as a time-varying covariate.

If covariates are included in both submodels, then we can obtain overall effects on
survival through combining the direct effect on the longitudinal marker, multiplied by
the association parameter, plus the direct effect on survival. This concept is explained
further in the example below and in Ibrahim, Chu, and Chen (2010).

Flexible parametric model

We define the proportional cumulative hazards time-to-event submodel

log{H(t|bi, vi)} = log{H0(t)} + αWi(tij) + viφ (2)

where H0(t) is the cumulative baseline hazard function. The remaining parameters are
as defined in “Exponential, Weibull, and Gompertz”.

The spline basis for this specification is derived from the log cumulative-hazard
function of a Weibull proportional hazards model. The linear relationship between the
baseline log cumulative-hazard and log time is extended by using restricted cubic splines,
which impose the restriction that the fitted function be linear before the first knot and
after the final knot. Further details can be found in Durrleman and Simon (1989),
Royston and Parmar (2002), and Lambert and Royston (2009). We can therefore write
a restricted cubic spline function of log(t), with knots k0, as s{log(t)|γ,k0}. This is
now substituted for the log cumulative baseline hazard in (2).

log{H(t|bi, ubs,i)} = ηi = s{log(t)|γ,k0} + αWi(tij) + viφ

Transforming to the hazard and survival scales, we obtain

h(t|bi, vi) =

[
1

t

ds{log(t)|γ,k0}
d log(t)

+ α
dW (t)

dt

]
exp(ηi), S(t|bi, vi) = exp{− exp(ηi)}

Again this formulation is specific to the current value parameterization. We discuss the
various forms of association in section 2.4.
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2.3 Joint likelihood

Constructing the full likelihood for the joint model, we obtain

n∏

i=1



∫ ∞

−∞




mi∏

j=1

f {yi(tij)|bi, θ}


 f(bi|θ)f(Ti, di|bi, θ) dbi


 (3)

where

f {yi(tij)|bi, θ} = (2πσ2
e)−1/2 exp

{
−yi(tij) − Wi(tij)

2σ2
e

}

and

f(bi|θ) = (2π|V |)−1/2 exp

(
−b′iV

−1bi

2

)

The survival likelihood component under an exponential, Weibull, or Gompertz sub-
model can be expressed as

f(Ti, di|bi, θ) = [h0(Ti) exp {αWi(t) + φvi}]di exp

[
−
∫ Ti

0

h0(u) exp {αWi(u) + φvi} du

]

Under the flexible parametric modeling approach, the survival likelihood component is
written as

f(Ti, di|bi, θ) =

([
1

Ti

ds{log(Ti)|γ,k0}
d log(Ti)

+ α
dW (Ti)

dTi

]
exp(ηi)

)di

exp {− exp(ηi)}

Evaluating (3) is a computationally demanding task, the details of which are discussed
in section 2.5.

2.4 Association structure

There are a variety of ways to link the longitudinal and survival components by using
the trajectory function defined in (1). The most commonly used form, called the current
value parameterization (described above), includes the trajectory function as a time-
dependent covariate in the linear predictor of the survival submodel. As in (2), we
assess the strength of the association through α.

Alternatively, we may be interested in the effect that the slope or rate of change of
the biomarker has on survival. This can be achieved by including αW ′

i (tij) in the linear
predictor of the survival submodel.

Finally, we could link the component models through a time-independent association
structure, α(βk + bik), linking the subject-specific deviation from the mean of the kth
random effect. A special case of this links the subject-specific random intercept and its
effect on survival.

The value of α is simply the log hazard-ratio for a one-unit increase in the longi-
tudinal component included in the survival submodel. Note that if α is estimated to
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be 0, that is, no association is present, then the joint model reduces to the two standard
separate models. Any combination of the three association structures can be used in
the same model: for example, in some settings, both the subject-specific baseline and
the current value may be predictive of survival. Choice of association structure should
be guided by the clinical question under investigation.

2.5 Maximization

Using Stata’s default Newton–Raphson method (see Gould, Pitblado, and Poi [2010]),
stjm uses a d0 evaluator program to maximize the likelihood. The joint likelihood in (3)
contains an analytically intractable integral where we wish to integrate out the random
effects. This can be achieved by using numerical techniques such as simple Gauss–
Hermite quadrature (Pinheiro and Bates 1995). Essentially, we can approximate the
integral by a weighted summation of the function evaluated at a set of m points, where
the m points are the roots of a mth degree Hermite polynomial. Increasing m increases
the accuracy of the approximation; however, computation time also increases. Extension
to multivariate integrals (random effects) follows naturally; however, computation time
will grow exponentially. For example, a model with only a random intercept evaluated
with 5-point quadrature evaluates the likelihood at 5 specified points. If this is extended
to a random intercept and slope model, with 5-point quadrature for each random effect,
then the likelihood is evaluated at 5 × 5 = 25 points.

In addition to the full joint likelihood, under an exponential, Weibull, or Gompertz
survival submodel, we must use Gauss–Kronrod quadrature to calculate the cumulative
hazard. This can be done by using 7- or 15-point quadrature in stjm. This is not
required when using a flexible parametric survival submodel, because we model on the
log cumulative-hazard scale, providing computational benefits.

Crowther, Abrams, and Lambert (2012) note that the use of simple Gauss–Hermite
quadrature in the joint model setting can drastically underestimate the standard errors
of the parameters in the longitudinal submodel unless a sufficiently high number of
quadrature nodes are used. This substantially increases computation time, which is
exponentiated with the addition of more random effects. A more complex but accurate
extension is to use adaptive Gauss–Hermite quadrature. The implementation of this in
Stata in the mixed-model context has been described in Rabe-Hesketh, Skrondal, and
Pickles (2002). At the beginning of each full Newton–Raphson iteration, we can center
and scale the quadrature node locations for each individual panel, positioning the node
matrix in the most appropriate area. This is achieved by using the empirical Bayes
estimates and associated standard errors of the random effects for each panel. The
use of adaptive quadrature means that a much-reduced number of nodes are required
for each random-effects dimension, resulting in substantial computational benefits and
much greater accuracy in the estimation.

We caution the user that these models are complex, and sometimes the default
estimation algorithm may lead to a model that does not converge. As in all random-
effects models, one should be cautious about overmodeling, particularly the number of
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random-effects parameters. The majority of previous work on joint models has only
considered up to two random effects, that is, intercept and slope (Wulfsohn and Tsiatis
1997). stjm can have up to five random effects; however, with a limited data size, it is
not feasible to have too complex a model.

2.6 Delayed entry and time-varying covariates

stjm has been developed to be entirely consistent with the setup of multiple-record
st data. We can therefore use t0 to denote the measurement times defined as tij in
section 2. This allows both for delayed entry models, which, for example, let age be
used as the time scale, and for inclusion of further time-varying covariates within both
submodels, assuming they vary at the time of measurements, that is, that they are
allowed to change at times t0 but are constant within intervals [ t0, t).

3 The stjm command

3.1 Syntax

stjm depvar
[
indepvars

] [
if
] [

in
]
, panel(varname) survmodel(survsubmodel)

[
ffp(numlist) rfp(numlist) timeinteraction(varlist) covariance(vartype)

survcov(varlist) df(#) knots(numlist) noorthog nocurrent

derivassociation intassociation association(numlist)

assoccovariates(varlist) gh(#) gk(#) adaptit(#) noshowadapt atol(#)

nonadapt fulldata nullassoc maximize options showinitial variance

showcons keepcons level(#)
]

You must stset the data into enter and exit times before using stjm; see [ST] stset.
depvar is the longitudinal response, and indepvars are covariates in the longitudinal
submodel. stjm uses t0 as measurement times and each patient’s final row of t as
the survival time.

3.2 Options

Required

panel(varname) contains the panel identification variable. Each panel should be iden-
tified by a unique integer. panel() is required.

survmodel(survsubmodel) specifies the survival submodel to be fit. survmodel() is
required. survsubmodel can be one of the following:
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survmodel(fpm) fits a flexible parametric survival submodel. This is a highly flexi-
ble, fully parametric alternative to the Cox model, modeled on the log cumulative-
hazard scale by using restricted cubic splines. For more details, see stpm2.

survmodel(exponential) fits an exponential survival submodel.

survmodel(weibull) fits a Weibull survival submodel.

survmodel(gompertz) fits a Gompertz survival submodel.

Longitudinal submodel

ffp(numlist) specifies power transformations of the time variable to be included in the
longitudinal submodel as fixed effects. t0 is used as the time of measurements.
Values must be in {-5, -4, -3, -2, -1, -0.5, 0, 0.5, 1, 2, 3, 4, 5}.

rfp(numlist) specifies power transformations of the time variable to be included in
the longitudinal submodel as fixed and random effects. t0 is used as the time of
measurements. Values must be in {-5, -4, -3, -2, -1, -0.5, 0, 0.5, 1, 2, 3, 4, 5}.

timeinteraction(varlist) specifies covariates to interact with the fixed fractional poly-
nomials of measurement time.

covariance(vartype) specifies the variance–covariance structure of the random effects.
vartype can be one of the following:

covariance(independent) specifies a distinct variance for each random effect, with
all covariances equal to 0.

covariance(exchangeable) specifies equal variances for all random effects and one
common pairwise covariance.

covariance(identity) specifies equal variances for all random effects, with all co-
variances equal to 0.

covariance(unstructured) specifies that all variances and covariances are dis-
tinctly estimated. This is the default.

Survival submodel

survcov(varlist) specifies covariates to be included in the survival submodel.

df(#) specifies the degrees of freedom for the restricted cubic spline function used for
the baseline cumulative hazard under a flexible parametric survival submodel. #

must be between 1 and 10, but usually, a value between 1 and 5 is sufficient.

knots(numlist) specifies knot locations for the baseline distribution function under a
flexible parametric survival submodel, as opposed to the default locations set by
df(). Note that the locations of the knots are placed on the standard time scale.
However, the scale used by the restricted cubic spline function is always log time.
Default knot positions are determined by the df() option.
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noorthog suppresses orthogonal transformation of spline variables under a flexible para-
metric survival submodel.

Association

nocurrent specifies that the association between the survival and the longitudinal sub-
models is not based on the current value. The default association is based on the
current value of the longitudinal response. If nocurrent is invoked, at least one of
intassociation, association(), and derivassociation must be specified.

derivassociation specifies that the association between the survival and the longitu-
dinal submodels is based on the first derivative of the longitudinal submodel.

intassociation specifies that the association between the survival and the longitudinal
submodels is based on the random intercept of the longitudinal submodel.

association(numlist) specifies that the association between the survival and the lon-
gitudinal submodels is based on a random coefficient of time fractional polynomials
specified in rfp().

assoccovariates(varlist) specifies covariates to be included in the linear predictor
of the association parameters. Under the default current value association, this
corresponds to interacting the longitudinal submodel with covariates.

Maximization

gh(#) specifies the number of quadrature points for the simple or adaptive Gauss–
Hermite quadrature used to evaluate the joint likelihood. Minimum number of
quadrature points is two. The default is gh(5) or gh(15) under adaptive or simple
quadrature, respectively.

gk(#) specifies the number of quadrature points for the Gauss–Kronrod quadrature
used to evaluate the cumulative hazard under an exponential, Weibull, or Gompertz
survival submodel. Two choices are available, either 7 or 15. The default is gk(15).

adaptit(#) defines the number of iterations of adaptive Gauss–Hermite quadrature to
use in the maximization process. The default is adaptit(5). Adaptive quadrature
is implemented at the beginning of each full Newton–Raphson iteration.

noshowadapt suppresses the display of the log-likelihood values under the subiterations
used to assess convergence of the adaptive quadrature implemented at the beginning
of each full Newton–Raphson iteration.

atol(#) specifies tolerance for the log likelihood under adaptive quadrature subitera-
tions. The default is atol(1.0E-05).
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nonadapt uses nonadaptive Gauss–Hermite quadrature to evaluate the joint likelihood.
This will generally require a much higher number of nodes, gh(), to ensure accurate
estimates and standard errors, resulting in much greater computation time.

fulldata forces stjm to use all rows of data in the survival component of the likelihood.
By default, stjm assesses whether all covariates specified in survcov() are constant
within panels; if they are, stjm only needs to use the first row of t0 and the final
row of t in the maximization process, providing considerable advantages in speed.

nullassoc sets the initial value for association parameters to 0. Use of the default
initial values may in rare situations cause stjm to display initial values not feasible.
Using this option solves this; however, convergence time is generally longer.

maximize options: difficult, technique(algorithm spec), iterate(#),[
no
]
log, trace, gradient, showstep, hessian, shownrtolerance,

tolerance(#), ltolerance(#), gtolerance(#), nrtolerance(#),
nonrtolerance, and from(init specs); see [R] maximize. These options are seldom
used, but the difficult option may be useful if there are convergence problems.

Reporting

showinitial displays the output from the xtmixed and stpm2 or streg models fit to
obtain initial values.

variance shows random-effects parameter estimates as variances–covariances.

showcons displays the constraints used by stpm2 and stjm for the derivatives of the
spline function. This option is only valid under a flexible parametric survival sub-
model.

keepcons prevents the constraints imposed by stjm on the derivatives of the spline
function when fitting delayed entry models from being dropped. By default, the
constraints are dropped. This option is only valid under a flexible parametric survival
submodel.

level(#) specifies the confidence level, as a percentage, for confidence intervals (CIs).
The default is level(95) or as set by set level.

4 The stjm postestimation command

4.1 Syntax for obtaining best linear unbiased predictions (BLUPs)
of random effects or the standard errors of BLUPs

predict {stub* |newvarlist}, {reffects | reses}
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4.2 Syntax for obtaining other predictions

predict newvar
[
if
] [

in
] [

, longitudinal residuals rstandard hazard

survival cumhazard martingale deviance reffects reses xb fitted m(#)

at(varname #
[
varname # ...

]
) ci timevar(varname) meastime

survtime zeros
]

4.3 Options

Longitudinal submodel

longitudinal predicts the fitted values for the longitudinal submodel. If xb is specified
(the default), then only contributions from the fixed portion of the model are in-
cluded. If fitted is specified, then estimates of the random effects are also included.

residuals calculates residuals for the longitudinal submodel, equal to the responses
minus fitted values. By default, the fitted values take into account the random
effects.

rstandard calculates standardized residuals, equal to the residuals multiplied by the
inverse square root of the estimated error covariance matrix.

Survival submodel

hazard calculates the predicted hazard. Default prediction, xb, is the average of the
fixed portion of the model plus m() random draws from the estimated variance–
covariance matrix of the random-effects distribution. If fitted is specified, then
individual specific estimates of the random effects are included with the fixed portion
of the model.

survival calculates each observation’s predicted survival probability. Default predic-
tion, xb, is the average of the fixed portion of the model plus m() random draws
from the estimated variance–covariance matrix of the random-effects distribution.
If fitted is specified, then individual specific estimates of the random effects are
included with the fixed portion of the model.

cumhazard calculates the predicted cumulative hazard. Default prediction, xb, is the
average of the fixed portion of the model plus m() random draws from the estimated
variance–covariance matrix of the random-effects distribution. If fitted is specified,
then individual specific estimates of the random effects are included with the fixed
portion of the model.

martingale calculates martingale-like residuals. Default includes contributions from
random effects.

deviance calculates the deviance residuals.
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Random effects

reffects calculates BLUPs of the random effects. You must specify q new variables,
where q is the number of random-effects terms in the model (or level). However, it
is much easier to just specify stub* and let Stata name the variables stub1, . . ., stubq

for you.

reses calculates the standard errors of the BLUPs of the random effects. You must
specify q new variables, where q is the number of random-effects terms in the model
(or level). However, it is much easier to just specify stub* and let Stata name the
variables stub1, . . ., stubq for you.

Subsidiary

xb specifies predictions based on the fixed portion of the model when a longitudinal

option is specified. When the prediction option is hazard, cumhazard, or survival,
the predictions are based on the average of the fixed portion plus m() draws from
the estimated random-effects variance–covariance matrix.

fitted specifies the linear predictor of the fixed portion plus contributions based on
predicted random effects.

m(#) specifies, when xb is chosen, the number of draws from the estimated random-
effects variance–covariance matrix in survival submodel predictions.

at(varname #
[
varname # ...

]
) requests that the covariates specified by the listed

varnames be set to the listed # values. For example, at(x1 1 x3 50) would evalu-
ate predictions at x1 = 1 and x3 = 50. This is a useful way to obtain out-of-sample
predictions. Note that if at() is used together with zeros, all covariates not listed
in at() are set to 0. If at() is used without zeros, then all covariates not listed in
at() are set to their sample values. See also zeros.

ci calculates a CI for the requested statistic and stores the confidence limits in new-

var lci and newvar uci.

timevar(varname) defines the variable used as time in the predictions. This is useful
for large datasets where for plotting purposes, predictions are only needed for, say,
200 observations. Note that you should take some caution when using this option
because predictions may be made at whatever covariate values are in the first 200
rows of data. This can be avoided by using the at() option or the zeros option to
define the covariate patterns for which you require the predictions.

meastime evaluates predictions at measurement times, that is, t0. Default for longi-
tudinal submodel predictions.

survtime evaluates predictions at survival times, that is, t. Default for survival sub-
model predictions.

zeros sets all covariates to 0 (baseline prediction). For example, predict s0, survival

zeros calculates the baseline survival function. See also at().
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5 The stjmgraph command

A subsidiary command, stjmgraph, is available. This creates a longitudinal trajectory
plot whereby the time scale is adjusted by taking away each patient’s event or censoring
time. This form of graph can be useful to display joint longitudinal and survival data,
giving an indication of any association between the two processes. A separate plot is
created for patients who were censored and for patients who experienced the event of
interest. They are then combined by using graph combine.

5.1 Syntax

stjmgraph depvar
[
if
] [

in
]
, panel(varname)

[
censgraphopts(string)

eventgraphopts(string) combineopts(string) draw lowess
]

The dataset must be stset, as described for stjm.

5.2 Options

panel(varname) defines the panel identification variable. panel() is required.

censgraphopts(string) pass options to the twoway graph of censored observations; see
[G-3] twoway options.

eventgraphopts(string) pass options to the twoway graph of observations who expe-
rienced the event of interest; see [G-3] twoway options.

combineopts(string) pass options to the final graph combine; see [G-2] graph com-
bine.

draw displays the intermediate twoway plots used to create the final graph.

lowess overlays a lowess smoother to each graph to aid interpretation.

6 Example

We illustrate stjm through application to a dataset of 312 patients with primary biliary
cirrhosis (see Murtaugh et al. [1994]). Of the 312, 158 were randomized to receive D-
penicillamine, and 154 assigned a placebo. Serum bilirubin was measured repeatedly
at intermittent time points. We investigate the effect of treatment after adjusting for
the relationship between serum bilirubin levels and time to death. Because of right
skewness, in all analyses, we work with log(serum bilirubin).

The dataset must be correctly stset for use with stjm through the use of start and
stop times. This allows stjm to use t0 as the measurement times and the final row of
t as the survival times. We illustrate the data structure below:
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. use fullpbc

. stset stop, enter(start) f(event=1) id(id)

id: id
failure event: event == 1

obs. time interval: (stop[_n-1], stop]
enter on or after: time start
exit on or before: failure

1945 total obs.
0 exclusions

1945 obs. remaining, representing
312 subjects
140 failures in single failure-per-subject data

2000.307 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 14.30566

. list id logb drug _t0 _t _d if id==3 | id==5, noobs sepby(id)

id logb drug _t0 _t _d

3 .3364722 D-penicil 0 .48187494 0
3 .0953102 D-penicil .48187494 .99660498 0
3 .4054651 D-penicil .99660498 2.0342789 0
3 .5877866 D-penicil 2.0342789 2.7707808 1

5 1.223776 placebo 0 .54484725 0
5 .6418539 placebo .54484725 1.070529 0
5 .9162908 placebo 1.070529 2.1054649 0
5 1.740466 placebo 2.1054649 3.0062425 0
5 1.648659 placebo 3.0062425 3.9836819 0
5 2.944439 placebo 3.9836819 4.1205783 0

Here we have two patients with four and six measurements of log(serum bilirubin),
respectively. The data have been stset, allowing t0 to be used to denote the time
that measurements were taken and the final row (for each patient) of t to denote the
survival time. We can explore the joint data by using stjmgraph. We use the lowess

option to aid interpretation.
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. stjmgraph logb, panel(id) lowess
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Figure 1. Longitudinal profiles of log(serum bilirubin) for patients who were censored
or who died. Time scale is adjusted by taking away each patient’s survival time.

Figure 1 displays all patients’ longitudinal trajectories against time, across died and
censoring status, with the time scale adjusted by subtracting each patient’s survival or
censoring time. We could restrict the plotted sample by using the if or in qualifier.
There appears to be a generally increasing trend that is much sharper in patients who
died than in those who were censored. This is indicative of a positive association between
longitudinal response and time to death, whereby a higher level of the biomarker appears
to be associated with time to death. We now investigate this formally by using stjm.

We model the longitudinal process by using a linear trajectory model with random
intercept and slope, adjusting for treatment group. We model the survival process by
using a Weibull proportional hazards survival submodel and adjusting for treatment
group. We use the default current value association and the default unstructured

form for the random-effects variance–covariance matrix.



180 Joint modeling of longitudinal and survival data

. stjm logb trt, panel(id) survm(weibull) rfp(1) survcov(trt)
-> gen double _time_1 = X^(1)
(where X = _t0)

Obtaining initial values:

Fitting full model:

-> Conducting adaptive Gauss-Hermite quadrature

-- Iteration 0: Adapted log likelihood = -1920.5096
-- Iteration 1: Adapted log likelihood = -1923.2378
-- Iteration 2: Adapted log likelihood = -1923.2206
-- Iteration 3: Adapted log likelihood = -1923.2214

(output omitted )

Joint model estimates Number of obs. = 1945
Panel variable: id Number of panels = 312

Number of failures = 140

Log-likelihood = -1918.5172

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Longitudinal
_time_1 .1848437 .0132919 13.91 0.000 .1587921 .2108953

trt -.1313587 .1120029 -1.17 0.241 -.3508803 .0881629
_cons .5591394 .0812295 6.88 0.000 .3999324 .7183463

Survival
assoc:value

_cons 1.240947 .0931014 13.33 0.000 1.058471 1.423422
ln_lambda

trt .0389711 .1790989 0.22 0.828 -.3120563 .3899985
_cons -4.408948 .2738691 -16.10 0.000 -4.945722 -3.872175

ln_gamma
_cons .0189773 .0827617 0.23 0.819 -.1432327 .1811874

Random effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Unstructured
sd(_time_1) .1805185 .0123477 .1578695 .2064167

sd(_cons) 1.00034 .0425768 .9202769 1.087369
corr(_time_1,_cons) .4247242 .0727761 .2723586 .5563106

sd(Residual) .3471654 .0066731 .3343297 .3604939

Longitudinal submodel: Linear mixed effects model
Survival submodel: Weibull proportional hazards model

Integration method: Adaptive Gauss-Hermite quadrature using 5 nodes
Cumulative hazard: Gauss-Kronrod quadrature using 15 nodes

We observe a nonstatistically significant direct treatment effect on log (serum biliru-
bin) of −0.131 (95% CI: [−0.351, 0.088]). A nonstatistically significant direct treatment
effect on survival is observed of 0.039 (95% CI: [−0.312, 0.390]). However, a highly pos-
itive statistically significant association can be seen of 1.241 (95% CI: [1.058, 1.423]),
indicating that a higher value of log (serum bilirubin) increases the risk of death. This
corresponds to a hazard ratio for a one-unit increase in the value of the time-dependent
biomarker of 3.459 (95% CI: [2.881, 4.150]). This is consistent with figure 1. Because we
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have adjusted for treatment in both submodels, we can calculate an overall treatment
effect on survival. For example, we have α = 1.241, δ = −0.131, and φ = 0.039. The
overall log hazard-ratio for the effect of treatment is therefore αδ + φ. This can be
calculated as follows:

. nlcom [alpha_1][_cons]*[Longitudinal][trt] + [ln_lambda][trt]

_nl_1: [alpha_1][_cons]*[Longitudinal][trt] + [ln_lambda][trt]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.124038 .2293071 -0.54 0.589 -.5734717 .3253957

This shows a nonstatistically significant log hazard-ratio due to treatment of −0.124
(95% CI: [−0.573, 0.325]). Standard predictions can be obtained following an stjm fit.
Fitted values and standardized residuals can be plotted against each other to evaluate
model fit.

. predict longfitvals, fitted longitudinal

. predict stresids, rstandard

. scatter stresids longfitvals, yline(0) ytitle("Standardized residuals")
> xtitle("Fitted values") title("Fitted values vs. residuals")
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Figure 2. Fitted values versus standardized residuals to assess model fit

Note that the longitudinal residuals described in this article must be interpreted
with caution because of the inherent missing-data process underpinning the longitudi-
nal process. A form of multiple-imputed residuals has been proposed by Rizopoulos,
Verbeke, and Molenberghs (2010).
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We can also compare predicted values of the survival function with the Kaplan–Meier
estimate.

. predict survfit, xb survival
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Figure 3. Predicted survival function for patients in the treatment group

One of the benefits of fitting joint models within a shared parameter framework is
the ability to tailor predictions at the individual level. The set of fitted predictions
described above is not exhaustive and does not include conditional survival predictions,
whereby we wish to predict a patient’s survival conditional on a set of observed longi-
tudinal measurements. A Monte Carlo scheme has been proposed by Rizopoulos (2011)
to fully account for variability in parameter estimates and in empirical Bayes estimates
of the random effects. This proposal is currently being implemented in Stata.

7 Discussion

The new stjm command implements shared parameter joint modeling of longitudinal
and survival data within Stata. It provides a highly flexible framework for both the
longitudinal submodel through the use of fractional polynomials and the survival sub-
model through the four choices of submodel. Through the implementation of adaptive
Gauss–Hermite quadrature, accurate estimates of effect can be obtained by using a
much-reduced number of quadrature nodes, resulting in substantial computational ben-
efits.

The software is being constantly updated and improved, and we aim to write further
articles for the Stata Journal to include the extension to competing risks, the inclusion
of a cure proportion, and the allowance of categorical longitudinal responses.
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