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Abstract. This article describes a new Stata command, tsb, for performing a
stratified two-stage nonparametric bootstrap resampling procedure for clustered
data. Estimates for uncertainty around the point estimate, such as standard er-
ror and confidence intervals, are derived from the resultant bootstrap samples. A
shrinkage estimator proposed for correcting possible overestimation due to second-
stage sampling is implemented as default. Although this command is written with
cost effectiveness analyses alongside cluster trials in mind, it is applicable to the
analysis of continuous endpoints in cluster trials more generally. The use of this
command is exemplified with a case study of a cost effectiveness analysis under-
taken alongside a cluster randomized trial. We also report bootstrap confidence
interval coverage by using data from a published simulation study.

Keywords: st0288, tsb, tsbceprob, two-stage nonparametric bootstrap, shrinkage
correction, clustered data, cost effectiveness, health economics

1 Introduction

The bootstrap method can be used for estimating uncertainty around the point esti-
mate of a statistic of interest (Efron and Tibshirani 1993; Davison and Hinkley 1997).
It provides an alternative to statistical methods that rely on normality when such an
assumption is implausible and transformation of the original data (to approximate nor-
mality) is either problematic or undesirable. A prime example is cost data, which
tend to be right skewed. Here models that assume normality can provide inefficient
estimates of the mean cost. One approach is to transform costs (for example, by log
transformation), but simply back transforming the resultant estimates does not provide

c© 2013 StataCorp LP st0288



142 Two-stage bootstrap for clustered data

the estimate of interest, the effect of treatment on the arithmetic mean cost (Manning
1998; Briggs et al. 2005; Faddy, Graves, and Pettitt 2009). Nonparametric bootstrap
methods are attractive in this context because they avoid making distributional as-
sumptions.

Many health economic evaluations are undertaken together with cluster randomized
trials (CRTs), for example, because the intervention (for instance, vaccination programs)
is delivered at the level of the group or cluster (Sullivan et al. 2005; Colvin et al. 2006;
Wolters et al. 2006; Bachmann et al. 2007; Gomes et al. 2012a). Here the unit of ran-
domization is the cluster (for example, school or hospital) rather than the individual
(pupil or patient). Clusters are randomized to one of a number of alternative interven-
tions; individuals within the same cluster all receive the same intervention. Such study
design also helps in minimizing the chance of treatment contamination and helps in those
cases where individual randomization may not be feasible or may be considered uneth-
ical (Donner and Klar 2000). However, the potentially dependent nature of the CRT

data may violate the independently and identically distributed assumption on which
many standard statistical methods, including the bootstrap, rely (Flynn and Peters
2004; Nixon, Wonderling, and Grieve 2010).

Davison and Hinkley (1997) proposed an extension to the standard bootstrap pro-
cedure that recognizes clustering by resampling clusters and then individuals within
clusters. We shall refer to this algorithm as the two-stage bootstrap (TSB). This boot-
strap algorithm naturally extends to allowing for any correlation between two or more
endpoints (such as costs and health outcomes). While this TSB has been applied previ-
ously (Bachmann et al. 2007; Flynn and Peters 2005), there are no routinely available
commands for implementing the routine. Further, previous studies do not appear to
have followed Davison and Hinkley’s (1997) original suggestion of using a shrinkage
correction for correcting the potential overestimation of variance due to resampling at
the second stage, and the original algorithm was only proposed for studies with equal
numbers per cluster (balanced designs). The aim of this article is to provide Stata
commands for implementing the TSB and to extend the original algorithm to CRTs with
unequal numbers per cluster. The commands are of central relevance to cost effective-
ness analyses together with CRTs, but the flexibility of the package allows it to extend
more generally to CRTs with other continuous endpoints.

Section 2 gives an overview of the extended bootstrap resampling for clustered data
with and without a shrinkage correction. Section 3 describes the new suite of commands
and their options. Section 4 illustrates the TSB commands by applying them to a cost
effectiveness analysis alongside a CRT. Section 5 reports bootstrap confidence interval
coverage of TSB by using data from a previously published simulation study. Finally,
we finish with a discussion in section 6.
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2 TSB resampling and shrinkage correction

2.1 The standard nonparametric bootstrap

In brief, the standard nonparametric bootstrap approach assumes the observed data are
a sample, s, drawn from a population with distribution F . A statistic of interest, R,
estimated from the observed sample, is given by R̂. Bootstrap samples are generated
by resampling with replacement, from the observed sample, B times, resulting in B
bootstrap samples. For each resample, the statistic of interest is calculated and denoted
by R̂∗

b for b = 1 to B.1 The bootstrap estimates R̂(s)∗1, . . . , R̂(s)∗B provide an empirical
distribution of the statistic of interest that can be used to approximate the sampling
distribution of the statistic. Measures of uncertainty around the point estimate, such
as standard error and confidence intervals (CIs), are then constructed from this em-
pirical distribution. See Efron and Tibshirani (1993) for a comprehensive discussion of
bootstrap methods.

For data collected from clusters such as schools, workplaces, and general practices,
the independently and identically distributed assumption required for many standard
statistical methods, including the bootstrap, may not hold (Liu 1988). The dependent
nature of the data can be accounted for by extending the resampling strategy to mimic
the way in which the data are sampled from the population so as to preserve the structure
of the original data. We now consider alternative ways of modifying the bootstrap
routine to address this.

2.2 The “cluster bootstrap”

One way that the bootstrap routine can be modified to recognize the clustering is to
resample clusters rather than individuals (Davison and Hinkley 1997). The routine is
otherwise as for the standard bootstrap and is readily available to Stata users through
the bootstrap command with cluster() option. However, the cluster bootstrap ap-
proach has been found to perform poorly with CI coverage levels below the nominal
level (Flynn and Peters 2005).

2.3 The TSB for clustered and correlated data, with particular ap-
plication to cost effectiveness analysis

A different strategy proposed by Davison and Hinkley (1997) requires the resampling
to be performed in two stages (both with replacement). Here clusters are resampled in
the first stage, and individuals within the chosen clusters are resampled in the second
stage (with replacement in both stages) to obtain a bootstrap sample. The statistic
of interest is calculated for the bootstrap sample. This process is repeated B times to
form the empirical distribution of the statistic of interest. In the TSB, any correlation

1. General recommendations suggest that at least 1,000 replicates are required for bootstrap con-
fidence intervals (Davison and Hinkley 1997; Campbell and Torgerson 1999; Nixon, Wonderling,
and Grieve 2010).
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between the endpoints can be recognized by resampling jointly those variables that are
required for calculating the statistic of interest.

In health economic evaluations, a common statistic of interest is the incremental net
monetary benefit (INB), which reports the relative value for money of alternative health
care programs (Stinnett and Mullahy 1998). The INB is calculated by estimating the
difference between the treatment alternatives in the mean health outcomes, valuing this
by the threshold willingness to pay (WTP) for a unit of health gain, and subtracting from
this the incremental costs. Methods guidance recommends that measures of uncertainty
for statistics such as the INB should recognize the potential correlation between the
endpoints, cost and health outcomes (Willan and Briggs 2006).2

The statistical uncertainty in the estimated cost effectiveness can be reported by
estimating 95% CIs around the INB. Hence, under the TSB approach, the INB can be
calculated in each bootstrap replicate, and the 95% CIs estimated from the resultant
empirical distribution. Another recommended metric for summarizing the statistical
uncertainty surrounding the cost-effectiveness (CE) measure is the cost-effectiveness
acceptability curve (CEAC) (Van Hout et al. 1994). The CEAC presents the probability
that an intervention is cost effective, given the data, at alternative threshold levels of
WTP for a unit of health outcome, λ. See the description section of the new command
tsbceprob for further details of the estimation of CEACs with TSB.

Either measure can allow for the correlation between costs and health outcomes
within the TSB routine by resampling pairs of cost, and effect can be taken from indi-
viduals at the second stage. In the new command tsb, we implement joint resampling
of endpoint variables from the original data. Where stratified sampling is appropriate
(for example, data from a CRT comparing two interventions), resampling is performed
independently within each stratum.

2.4 TSB with shrinkage correction

Davison and Hinkley (1997) noted that unless the number of clusters and individuals
per cluster are both large, this method may overestimate the variance due to resam-
pling at the second stage. Resampling at the second stage is likely to double count the
within-cluster variance because the estimates of the cluster means resampled from stage
1 already incorporate both within- and between-cluster variability (Davison and Hinkley
1997; Flynn and Peters 2004; Gomes et al. 2012b). Davison and Hinkley (1997) there-
fore proposed a shrinkage correction to avoid overestimating the variance. This ap-
proach differs from that described above in that rather than resampling clusters and
then individuals within the chosen clusters, the algorithm resamples estimates for two
distributions directly, namely, Fx for cluster means and Fz for individual deviations
or residuals from the cluster means, denoted as zij , for the ith individual in cluster j.

2. INB = λ×∆e−∆c, where ∆c and ∆e are the incremental cost and health outcome (∆e = e1 − e0

and ∆c = c1 − c0 with the intervention arm denoted by subscript 1 and 0 for control), and λ
the maximum WTP per unit of health outcomes. The variance of the INB is given by V (INB) =
λ2V (∆e) + V (∆c) − 2λcov(∆e, ∆c).
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Details of this approach are elaborated in the algorithm below. It includes modifications
to the original proposal to allow for unbalanced cluster sizes, which makes the procedure
more applicable to real data.

2.5 Algorithm for TSB with shrinkage correction:

1. For k = 1 (k = 1, . . . ,K intervention arms; for simplicity sake, subscript k is
omitted in the following steps).

2. Calculate shrunken cluster means, x̂j = cy.. + (1 − c)yj , for j = 1, . . . , Nc, where
Nc is the number of clusters in the stratum. See footnote3 for derivation of the
constant c.

3. Calculate the standardized individual-level residuals (from the estimated cluster

means), ẑij = (yij −yj)/
√

(1 − n−1
∗ ), where n∗ is the cluster size. For unbalanced

cluster sizes, n∗ is replaced by different measures of “average” cluster size in tsb

(see options for tsb).

4. Randomly sample (with replacement) from x̂1, . . . , x̂Nc
to obtain x̂∗

j′ for j
′

=

1, . . . , Nc. j
′

is a new index for the chosen clusters.

5. Randomly sample (with replacement) from ẑ11, . . . , ẑnNc Nc
to obtain ẑ∗

i′ j′ for i
′

=

1, . . . , nj′ , where nj′ is the size of the jth cluster chosen in step 4. The index
nNc

Nc denotes the last individual in the last cluster in the original data. The
number of units to be sampled in this step is dependent on the sum of the sizes
of the chosen clusters in step 4. Note also that the cluster membership of the
original sample is ignored here.

6. Reconstruct the sample by creating a “synthetic” sample by y∗
ij = x̂∗

j′ + ẑ∗
i′j′ .

7. Repeat steps 2 to 6 for the remaining K − 1 intervention arms; then stack the K
synthetic samples to form the bth bootstrap sample.

8. Calculate the statistic of interest R for the bth bootstrap sample to obtain R̂b(y
∗
ij).

9. Repeat steps 1 to 8 B times to obtain the bootstrap estimates, R̂b(y
∗
ij), for b =

1, . . . , B.

3. The constant c is given by (1− c)2 = (Nck/Nck−1)−SSw/{nj(nj − 1)SSb} or set to 1 if the right-

hand side of the expression is negative. SSw =
PNc

j=1

Pnj

i=1
(yij − yj)

2, SSb =
PNc

j=1
(yj − y..)

2,

and the grand mean is given by y.. = (
PNc

j=1
nj)

−1
PNc

j=1

Pnj

i=1
yij .
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The distribution of the R̂b(y
∗
ij)’s approximates the empirical distribution of R and

can be used for estimating the bootstrap standard error and confidence intervals. Where
two or more variables from the original data are required to calculate the statistic
of interest, the above resampling is performed jointly for the variables involved. For
health economic evaluations, individual costs and effects are resampled jointly: x̂j and
ẑij become matrices of dimensions (1 × m) and (nj × m), where m is the number of
variables or endpoints (needed to calculate the statistic of interest), and nj is the number
of individuals in cluster j. For example, m = 2 for individual costs and health outcomes
for calculating the INB. The algorithm above assumes that stratification between the
treatment arms is required, but if that is not the case, then steps 1 and 7 should be
omitted.

The original proposal assumed constant cluster size, n∗, across clusters. In our
implementation of TSB with shrinkage correction, it has been generalized to allow for
unequal cluster sizes by replacing n∗ by an “average” cluster size (within the stratum)
in step 3 and by acknowledging the variable stratum sizes in step 5, where the second
stage resampling takes place. n∗ is replaced by three different measures of “average”
cluster size in tsb: dk (see page 9 of Donner and Klar [2000]), median, and mean. See
the next section on the tsb command for explanation.

3 Commands

3.1 tsb

Syntax

tsb varlist
[
if
] [

in
]
, stats(&f()) cluster(varname)

[
strata(varname)

reps(#) seed(#) unbal(string) lambda(real) noshrink level(#) nodots
]

Description

tsb performs a two-stage bootstrap sampling procedure on a user-supplied statistic for
clustered data. It is implemented as an ado-file, which serves as a wrapper function for
invoking a number of Mata functions, to perform TSB with or without shrinkage cor-
rection. The uncertainty around the point estimate calculated from the original sample
is quantified by the bootstrap standard error and confidence intervals. These estimates
are given by applying the Stata programmer’s command bstat on the bootstrap repli-
cates of the statistic of interest. A detailed discussion of the derivation of bootstrap
confidential intervals is beyond the remit of this article. Readers are referred to, for
example, Carpenter and Bithell (2000) for a comprehensive review.

Among the nonparametric confidence intervals reported by bstat and bootstrap,
the bias-corrected and accelerated (BCa) confidence interval requires the estimation of
an acceleration parameter that adjusts for the skewness in the sampling distribution
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(Briggs, Wonderling, and Mooney 1997; Carpenter and Bithell 2000). In our Stata im-
plementation of TSB, the acceleration parameter is calculated by using a stand-alone
Mata function before the result is passed to bstat for constructing the BCa confidence
interval.4

Options

stats(&f()) specifies a user-supplied Mata function, f(), for calculating the statistic
for bootstrapping. See appendix for examples of such functions. Note that the
ampersand (&) before f() is required as part of the syntax. stats() is required.

cluster(varname) specifies the variable that identifies clusters. cluster() is required.

strata(varname) specifies the variable that identifies strata. For an example of a
cluster randomized trial, the strata would be levels of a cluster-level treatment or
intervention variable. The default is strata(constant).

reps(#) specifies the number of bootstrap replications to be performed. For estimation
of the confidence interval, 1,000 or more replications are generally recommended
(Efron and Tibshirani 1993; Davison and Hinkley 1997). The default is reps(1000).

seed(#) specifies the random number seed.

unbal(string) specifies the “average” cluster size, n∗. string can be dk (page 9 of Donner
and Klar [2000]), median, or mean. The default is unbal(dk). These are calculated
independently for each stratum specified in strata. For the option unbal(dk), n∗ =
n. −

∑Nc

j=1(nj − n.)
2/(Nc − 1)M , where n. = M/Nc (arithmetic mean cluster size)

and M =
∑Nc

j=1 nj (total number of individuals in the Nc clusters).

lambda(real) is relevant for cost-effectiveness analysis (CEA) and is the threshold WTP

for a unit of health outcome; the user specifies an optional value, real, that can be
called from within the user-supplied function f(), if required.

noshrink specifies that the two-stage bootstrap resampling is performed without shrink-
age correction. If this option is chosen, instead of cluster means, whole clusters are
resampled with replacement in stage 1. In stage 2, individuals within the chosen clus-
ters are then resampled also with replacement. Cluster membership in the original
data is respected in this case.

4. Our early attempts of implementing TSB through bootstrap with the bca option suggested that
second-stage resampling caused instability in the estimation and on occasions caused Stata to shut
down. The instability was due partly to the jackknife sampling procedure used for estimating the
acceleration parameter in bootstrap (Stata Technical Support 2010). As a result, we decided to
write our own computer code for implementing TSB.
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level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.

nodots suppresses display of the replication dots. One dot character is displayed for
each successful replication.

Saved results

In addition to the standard output given by bstat shown in the Results window, a
number of useful results are stored in Stata matrices e() and r() postestimation. The
statistic of interest calculated from the original sample is stored in e(b). The bootstrap
replicates of the statistic of interest are stored in r(tsb sam) (with its mean stored in
e(b bs)).

3.2 tsbceprob

Syntax

tsbceprob varlist
[
if
] [

in
]
, stats(&nb()) cluster(varname)

strata(varname) lambda(real)
[
reps(#) seed(#) unbal(string) noshrink

level(#) nodots
]

Description

tsbceprob is designed for calculating CE probabilities and has to be used in conjunction
with the Mata function nb(). nb() calculates the net monetary benefit (NMB) for each
level of the cluster-level interventions (or comparators) defined by the strata variable.
NMBk is calculated as λek − ck, where ek is the arithmetic mean of health outcomes
(second variable in varlist), ck the mean of costs (first variable in varlist) for the kth
comparator, and λ is the WTP threshold.

For a two-way comparison, the intervention is defined as the most cost effective
if it has a positive INB versus the comparator. For an n-way comparison, the most
cost-effective alternative is that with the highest NMB, where the NMB is calculated
for each comparator by valuing the absolute level of health outcomes by λ. CEACs
can be calculated by estimating the NMB in each bootstrap replicate and reporting
the probability that each intervention is the most cost effective as the proportion of
replicates in which each intervention has a positive INB versus the comparator (two-way
comparison) or the highest NMB (n-way comparison).

In tsbceprob, when exactly the same NMB value is calculated for two or more
comparators in the same replicate (that is, resulting in ties), these comparators are
considered equally cost effective. For example, in a replicate where the first of three
comparators yielded the highest NMB, this would result in a row vector of (1, 0, 0) for
the replicate; if the second and third comparators yielded the same highest NMB, the
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indicator vector would become (0, 0.5, 0.5). The same principle applies for two- or
n-way comparison. The CE probabilities are then estimated by the column means of a
matrix consisting of the row vectors for all replicates.

Options

The options are the same as those for tsb except that strata() and lambda() have
to be specified and that tsbceprob is designed to be used with the NMB function nb()

only.

Output

tsbceprob returns estimates of the CE probabilities at the given WTP value in the
matrix r(tsb ceprob). The content in r(tsb ceprob) is shown in the Results window.
r(tsb ceprob) is of dimension {1×(K +1)}, where elements in the first K columns are
the CE probabilities for the K comparators (defined in the strata variable), and the last
element is the corresponding λ WTP value used for the estimation. These probabilities
can then be used to plot the CEACs against a range of threshold values, λ. An example
based on data of a published CRT is given in the next section. See appendix for examples
of some user-supplied functions in Mata.

4 Illustrative examples

In the following examples, we use cost-effectiveness data from a published CRT for
evaluating alternative interventions for preventing postnatal depression. The PoNDER
(psychological interventions for postnatal depression-randomized controlled trial and
economic evaluation) study is a UK health technology assessment of alternative inter-
ventions compared with usual care for preventing postnatal depression (Morrell et al.
2009). The participating general practices were randomized to usual care (control arm)
or one of two interventions, a person-centered approach (PCA) or cognitive-behavioral
approach (CBA). We use cost and health-related, quality-of-life data reported at six
months for 1,732 patients (70 general practices) with complete information for our illus-
tration. Health effects are calculated by the change (six months from baseline) in the
health-related, quality-of-life measure.
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4.1 Example 1: Mean cost (mept())

In our first example, we grouped the two interventions (PCA and CBA) into a single
intervention group. Individual-level health care costs are typically highly right skewed,
as in the case for PoNDER (figure 1).
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Figure 1. Distributions of individual-level costs (in British pounds) by intervention
(PoNDER)

TSB can be used here for estimating the uncertainties around the two point estimates
for mean costs for the control and intervention arms. Here we show how the bootstrap
standard error and different confidence intervals can be estimated by using tsb in con-
junction with the user-supplied Mata function mept(). mept() calculates the mean of
the single variable specified in varlist for tsb. The variables used in the example are
cost for individual-level costs (measured in British pounds, GBP), int1 for cluster-level
treatment (0 for control, 1 for intervention), and cluster for cluster identifier.
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Figure 2. Distributions of bootstrap replicates of mean costs (in British pounds) by
intervention arm (PoNDER)

Note: Histograms overlaid with corresponding normal densities.

Despite the high level of skewness in the observed costs, the distributions of the
bootstrap replicates of mean costs appear symmetric in both arms (figure 2). As a
result, the differences in the limits of the normal approximation and percentile-based
confidence intervals are small. For the control arm, the 95% normal CIs are estimated
to be 278.8 to 341.0 GBP and 279.9 to 341.8 GBP for the BCa CIs. The TSB sampling
took less than 10 seconds to complete for both arms (see Elapsed time in the output).5

5. All examples were performed with Stata/IC 11.2 for Windows (32-bit) on a Dell PC with Xeon(R)
2.93 GHz CPU and 12 GB RAM.
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. tsb cost if int1==0, stats(&mept()) cluster(cluster) seed(101)

*** User-supplied settings ***
Cluster variable: cluster
Statistic (function): &mept()
Strata variable: not supplied (assumed constant)

Two-stage bootstrap WITH shrinkage estimator
.................................................. 50
.................................................. 100

(output omitted )

.................................................. 1000

Elapsed time (mins) = .133

Bootstrap results Number of obs = 495
Replications = 1000

Observed Bootstrap
Coef. Bias Std. Err. [95% Conf. Interval]

bsam 309.8899 -.2805662 15.871883 278.7816 340.9982 (N)
278.7852 340.61 (P)
279.0978 341.143 (BC)
279.9131 341.812 (BCa)

(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval
(BCa) bias-corrected and accelerated confidence interval

Mean of TSB sample of statistic of interest =
309.60933

. tsb cost if int1==1, stats(&mept()) cluster(cluster) seed(101) nodots

*** User-supplied settings ***
Cluster variable: cluster
Statistic (function): &mept()
Strata variable: not supplied (assumed constant)

Two-stage bootstrap WITH shrinkage estimator

Elapsed time (mins) = .15

Bootstrap results Number of obs = 1237
Replications = 1000

Observed Bootstrap
Coef. Bias Std. Err. [95% Conf. Interval]

bsam 246.4919 .0702566 6.2435131 234.2548 258.729 (N)
234.5496 258.2897 (P)
234.4035 258.169 (BC)
234.5774 258.3279 (BCa)

(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval
(BCa) bias-corrected and accelerated confidence interval

Mean of TSB sample of statistic of interest =
246.56216
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4.2 Example 2: Incremental net benefit (inb())

At a societal WTP threshold value of 20,000 GBP per unit of effect, the INB calcu-
lated from the observed sample was 98.4 GBP (see Observed Coef. in the output).
The uncertainty around this point estimate is quantified by the bootstrap standard
error and confidential intervals. Where the symmetry of the sampling distribution
of the statistic of interest is questionable because of, for example, skewed data, the
normal-approximation-based confidence interval may be inappropriate, as indicated in
Campbell and Torgerson (1999). Gomes et al. (2012b) showed that the BCa confidence
intervals based on TSB with shrinkage correction provide good confidence interval cov-
erage (close to nominal level) over a range of challenging data scenarios, including few
clusters, unbalanced cluster sizes, and skewed costs, in their simulation study. Here the
BCa confidence interval suggests there is a 95% chance that the true INB lies between
33.6 and 173.2 GBP. The TSB sampling estimation took 34 seconds to complete.

. tsb cost qalygain, stats(&inb()) cluster(cluster) strata(int1) seed(101)
> lambda(20000)

*** User-supplied settings ***
Cluster variable: cluster
Statistic (function): &inb()
Strata variable: int1
Lambda = 20000

Two-stage bootstrap WITH shrinkage estimator
.................................................. 50

(output omitted )

.................................................. 1000

Elapsed time (mins) = .567

Bootstrap results Number of obs = 1732
Replications = 1000

Observed Bootstrap
Coef. Bias Std. Err. [95% Conf. Interval]

bsam 98.395852 -1.580874 35.236647 29.33329 167.4584 (N)
28.34896 166.2569 (P)
32.92921 172.3587 (BC)
33.58042 173.1515 (BCa)

(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval
(BCa) bias-corrected and accelerated confidence interval

Mean of TSB sample of statistic of interest =
96.814978
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4.3 Example 3: Cost-effectiveness probabilities (tsbceprob()) and
CEACs

In example 3, we use int2 as the cluster-level treatment variable. The interventions
defined in this variable are control, PCA, and CBA. The following syntax shows how
tsbceprob could be used to estimate CE probabilities by embedding it in a foreach

loop. The resultant CE probabilities estimated for a range of WTP values from 0 to
60,000 GBP (in steps of 5,000) are stored in the Stata matrix ceprob mat. The context
of the matrix was then exported into the current Stata dataset by svmat for plotting
the CEACs (figure 3). Here the treatment variable is int2 with 0 for control, 1 for CBA,
and 2 for PCA. A seed value is used for reproducible results.

. capture matrix drop ceprob_mat

. foreach num of numlist 0(5000)60000 {
2. tsbceprob cost qalygain, stats(&nb()) cluster(cluster) strata(int2)

> reps(1000) unbal(dk) nodots seed(101) lambda(`num´)
3. matrix ceprob_mat = (nullmat(ceprob_mat)\r(tsb_ceprob))
4. }

*** User-supplied settings ***
Cluster variable: cluster
Statistic (function): &nb()
Strata variable: int2
Average cluster size: dk
Lambda = 0

Two-stage bootstrap WITH shrinkage estimator

Elapsed time (mins) = .533

Cost-effective probabilities and WTP value
0 .92 .08 0

*** User-supplied settings ***
Cluster variable: cluster
Statistic (function): &nb()
Strata variable: int2
Average cluster size: dk
Lambda = 5000

Two-stage bootstrap WITH shrinkage estimator

Elapsed time (mins) = .533

Cost-effective probabilities and WTP value
0 .917 .083 5000

(output omitted )
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. matrix list ceprob_mat

ceprob_mat[13,4]
c1 c2 c3 c4

r1 0 .92 .08 0
r1 0 .917 .083 5000
r1 0 .872 .128 10000
r1 0 .817 .183 15000
r1 0 .783 .217 20000
r1 .002 .752 .246 25000
r1 .004 .734 .262 30000
r1 .008 .718 .274 35000
r1 .012 .704 .284 40000
r1 .013 .695 .292 45000
r1 .014 .68 .306 50000
r1 .016 .672 .312 55000
r1 .018 .662 .32 60000

. svmat ceprob_mat, names(tsb_ceprob)

. rename tsb_ceprob1 tx_control

. rename tsb_ceprob2 tx_1

. rename tsb_ceprob3 tx_2

. rename tsb_ceprob4 lval

. label variable tx_control "Control"

. label variable tx_1 "CBA"

. label variable tx_2 "PCA"

. label variable lval "Willingness-to-pay threshold ()"

. scatter tx_control tx_1 tx_2 lval, connect(l l l)
> msize(small small small)
> ytitle("Probability cost effective")
> yscale(range(0 1)) ylabel(0(0.2)1)
> xlabel(0(10000)60000)
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CBA is shown to be the most cost-effective intervention over the entire range of WTP

considered according to the CEACs in figure 3. This is followed by PCA and control.
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Figure 3. Cost-effectiveness acceptability curves at 6 months (PoNDER)

Note: y axis shows the proportions of bootstrap samples with highest net benefit
value of the corresponding intervention.

5 Simulation study

A recent extensive simulation study reported that TSB with shrinkage correction per-
formed as well as mixed models and outperformed robust methods such as seeming
unrelated regression and general estimating equation, both with robust variance esti-
mators (Gomes et al. 2012b). Here we apply the new Stata command tsb to some of
the scenarios from the simulation study. We report the CI coverage of four different CIs
given by bstat, together with the mean width of the CIs and their lower and upper tail
error rate (table 1).
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Table 1. Confidence interval coverage of 95% confidence interval reported by tsb with
and without shrinkage correction on simulated data (true INB = 1,000 GBP)

ScenarioI

Base case Challenging

Shrinkage correction
Confidence interval Without With Without With

Normal CoverageIII 0.981 0.944 0.965 0.966
Mean width 533.8 427.1 3,217.0 3,280.0
Lower tail error rate 0.009 0.029 0.016 0.016
Upper tail error rate 0.011 0.028 0.020 0.019

Percentile CoverageIII 0.979 0.942 0.960 0.958
Mean width 533.6 426.5 3,320.0 3,366.0
Lower tail error rate 0.010 0.028 0.018 0.017
Upper tail error rate 0.011 0.031 0.023 0.025

Bias-corrected CoverageIII 0.983 0.939 0.959 0.956
Mean width 533.5 426.7 3,185.0 3,251.0
Lower tail error rate 0.009 0.029 0.018 0.019
Upper tail error rate 0.009 0.033 0.024 0.026

Bias-corrected CoverageIII 0.983 0.939 0.954 0.950
and accelerated Mean width 533.5 426.7 3,266.0 3,353.0

Lower tail error rate 0.009 0.029 0.021 0.022
Upper tail error rate 0.009 0.033 0.026 0.029

Notes: I. Base case: 20 clusters per arm, 50 individuals per cluster, cluster size imbalance (cvimb = 0),
intracluster correlation coefficient for costs = 0.01 (effects 0.01), cost skewness (cvcost = 0.2 implies no
skewness for Gamma distributed costs), individual- (cluster-) level correlation of costs and effects = 0.2
(0); challenging: same as base case but with the following differences: 3 clusters per arm, cvimb = 1,
and cvcost = 3.
II. All seed values were set at 101 and with 1,000 bootstrap replications throughout. Two thousand
datasets were simulated for each scenario.
III. The coverage probabilities are each based on 2,000 replicate samples, implying a typical confi-
dence interval width for the coverage probabilities, of 2 × 1.96 ×

p

0.95 × (1 − 0.95)/2000 = 0.0191
(approximately 1.9 percentage points).

In brief, cost and health outcome data were generated from a CRT design assumed
to have two randomized arms (intervention and control). Gomes et al. (2012b) simu-
lated the effect of the intervention on mean costs and health outcomes according to a
bivariate linear additive model. Each of the two simultaneous equations for costs and
health outcomes included a cluster-level mean, a cluster-level incremental effect (for the
intervention arm), and an individual deviation from the cluster mean. Individual- and
cluster-level costs and health outcomes were allowed to be correlated and, for the base
case, followed a bivariate normal distribution. The base case also assumed a balanced
design with 50 individuals within each cluster and 20 clusters within each treatment
arm.
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In a more challenging scenario, Gomes et al. (2012b) assumed that there were only
three clusters per arm and that the size of the clusters followed a Gamma distribution
with a mean and a coefficient of variation (cvimb) of 1, which resulted in imbalanced
cluster sizes. cvimb is obtained by dividing the standard deviation of cluster size by its
mean. Individual costs were also assumed to follow a Gamma distribution with varying
level of skewness as defined by a cvcost of 3. All simulations used the same true value
of 1,000 GBP for the metric of interest, the INB. Two thousand datasets were simulated
for each scenario (for more details, see Gomes et al. [2012b]).

Here we find that under both these scenarios, the CIs constructed by using TSB with
shrinkage correction all gave CI coverages close to the nominal rate of 0.95. As was
anticipated when the TSB was applied without the shrinkage correction, the CIs were
too wide, and the CI coverage exceeded nominal levels. Under the more challenging
scenario with few clusters, variable cluster sizes, and skewed costs, the bias-corrected
and accelerated CI, after application of the shrinkage correction, yielded the coverage
rate closest to the nominal.

6 Discussion

In this article, we have provided new Stata commands for implementing and extending
the TSB algorithm proposed by Davison and Hinkley (1997). Unlike their original algo-
rithm, our implementation can be applied to the common setting of a CRT with unequal
numbers per cluster. We envisage that the suite of commands will be particularly useful
in a CEA alongside a cluster trial. In this setting, statistical methods are required to
allow for the clustered nature of the data, recognizing that costs and health outcomes
may be correlated and that cost data are highly skewed. In general, though, such CEAs
fail to address these issues; indeed, a recent review found that around 95% of published
CEAs alongside CRTs used inappropriate methods (Gomes et al. 2012a). The TSB tools
we provide can help analysts address the challenges of handling clustered data with
highly skewed costs that are correlated with health outcomes.

The two-stage nonparametric bootstrap method with shrinkage correction was re-
ported to perform favorably in an extensive simulation study designed to compare the
appropriateness of a number of commonly used statistical methods for CEA of CRTs
(Gomes et al. 2012b). However, this procedure has not been widely applied in practice
among health economists mainly because of a lack of implementation in mainstream
and user-friendly software. We hope that making this method available through Stata
will help translate research findings into practice in the community.
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The TSB approach relies on asymptotic assumptions that may be invalid for small
samples (in particular, few cluster-level units for clustered data). Although Gomes et al.
(2012b) showed that TSB with shrinkage correction gives good confidence interval cover-
age even with as few as three clusters per arm, such a result was based on a simulation
study with a known data-generating mechanism. For real data with few clusters, the
data would have been generated by numerous other factors that would not have been
captured by any given data-generating mechanism. Hence, analysts should exercise
caution when interpreting the results based on small samples.

Our implementation of TSB generalized Davison and Hinkley’s (1997) original pro-
posal by allowing unbalanced cluster sizes in the original data. This should help make
our implementation applicable to more realistic data settings where completely balanced
clusters may be rare. Finally, although our illustrative examples focus on health eco-
nomic evaluations, the TSB method is applicable for cluster study design more generally.
It should be noted, though, that the application only applied to circumstances with a
cluster design with two levels to the data hierarchy. It does not extend to dependen-
cies that may arise in multicenter randomized controlled trials where within a center,
individuals are randomized to alternative treatments. Nor does the application extend
to a CRT with three or more levels to the data hierarchy (for example, when repeated
measures are nested within patients and within clusters).
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Appendix. Sample Mata functions for use with TSB

The three Mata functions used in our examples are shown below, namely, mept(),
inb(), and nb(). These child functions take an input data object, data, from their
parent function tsb when they are called by the latter. The data object is of dimension
{Nk × (nept + 2)}, where Nk is the total number of observations in stratum k (the
subscript k is omitted when resampling is performed without stratification), and nept

is the number of endpoints to be resampled jointly. For CEAs where two endpoints,
individual costs and effects, are to be resampled jointly, nept equals 2. The last two
columns in data are reserved for cluster and strata variables (see technical notes below).
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Technical notes on TSB

The two rightmost columns of the data object are reserved for the cluster identifier
(second column from the right) and strata (rightmost column) variables. For example,
inb() and nb() both assume the rightmost column (fourth column) in data, the strata
variable (the object treat is used in these functions for the strata variable). Analysts
wishing to use tsb on other statistics of interest must bear this in mind when writing
their own child Mata functions.

The first nept columns in the data object are the variables (endpoints) specified to
be resampled jointly. Where nept > 1, the ordering of the variables in the child Mata
function must match those given in varlist for tsb. For example, the function inb()

takes the first column of the data object as costs and the second column as health effects.
Therefore, these two endpoints must appear in the same order in the tsb command (for
example, tsb costs effects, stats(&inb()) . . . ).

When the following three sets of syntax are issued in Stata, the corresponding Mata
functions will be saved in one’s (Stata’s) personal directory. If one is unsure where
one’s personal directory is, it will be displayed when the command personal is issued
in Stata. Replace “local directory” in the following syntax with one that matches one’s
local setting so that the Mata functions are stored in the appropriate directory for
access.

A.1. mept()—mean endpoint

mata:
real scalar function mept(transmorphic matrix data)
{
version 11.2
/* DECLARATIONS */
real matrix cost
real scalar mept
/* Extract data from "data" for calculation */
cost=data[,1]
/* Calculate mean endpoint */
mept=mean(cost)
return(mept)
}
mata mosave mept(), dir("local directory:\ado\personal") replace
end
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A.2. inb()—incremental net benefit

mata:
real scalar function inb(transmorphic matrix data, |real scalar lambda)
{
version 11.2
/* DECLARATIONS */
real matrix cost, effect, treat
real scalar mc_ctl, mc_tmt, me_ctl, me_tmt
/* DATA CHECKING */
if (cols(data)!=4){
_error("Function requires an input data matrix of 4 columns wide.")

}
cost=data[,1]
effect=data[,2]
treat=data[,4]
/* SET UNSPECIFIED PARAM VALUES */
if (lambda==.) lambda=20000
/* DATA CHECKING */
/* 1. Stop if treatment var has anything other than 2 levels */
if (rows(uniqrows(treat))<2) {
_error("Treatment variable has <2 unique values.")
} else if (rows(uniqrows(treat))>2) {
_error("Treatment variable has >2 unique values.")

}
/* Calculate INB */
mc_ctl=mean(select(cost,treat:==uniqrows(treat)[1])) /* mean cost for ctl */
mc_tmt=mean(select(cost,treat:==uniqrows(treat)[2])) /* mean cost for tmt */
me_ctl=mean(select(effect,treat:==uniqrows(treat)[1])) /* mean eff for ctl */
me_tmt=mean(select(effect,treat:==uniqrows(treat)[2])) /* mean eff for tmt */
inb=(me_tmt-me_ctl)*lambda - (mc_tmt-mc_ctl)
return(inb)
}
mata mosave inb(), dir("local directory:\ado\personal") replace
end
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A.3. nb()—net benefit (for calculating cost-effectiveness
probabilities)

mata:
real matrix function nb(transmorphic matrix data, | real scalar lambda)
{
version 11.2
/* DECLARATIONS */
real matrix cost, effect, treat
real scalar mc_ctl, mc_tmt, me_ctl, me_tmt
/* DATA CHECKING */
if (cols(data)!=4){
_error("Function requires an input data matrix of 4 columns wide.")
}

cost=data[,1]
effect=data[,2]
treat=data[,4]
/* SET UNSPECIFIED PARAM VALUES */
if (lambda==.) lambda=20000
nstrata=rows(uniqrows(treat))
nb=J(1,nstrata,.)
for (i=1; i<=nstrata; i++) {
nb[1,i] = mean(select(effect,treat:==uniqrows(treat)[i]))*lambda -

> mean(select(cost,treat:==uniqrows(treat)[i]))
}
return(nb)
}
mata mosave nb(), dir("local directory:\ado\personal") replace
end




