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Abstract. The regression anatomy theorem (Angrist and Pischke, 2009, Mostly

Harmless Econometrics: An Empiricist’s Companion [Princeton University Press])
is an alternative formulation of the Frisch–Waugh–Lovell theorem (Frisch and
Waugh, 1933, Econometrica 1: 387–401; Lovell, 1963, Journal of the American

Statistical Association 58: 993–1010), a key finding in the algebra of ordinary
least-squares multiple regression models. In this article, I present a command,
reganat, to implement graphically the method of regression anatomy. This addi-
tion complements the built-in Stata command avplot in the validation of linear
models, producing bidimensional scatterplots and regression lines obtained by con-
trolling for the other covariates, along with several fine-tuning options. Moreover, I
provide 1) a fully worked-out proof of the regression anatomy theorem and 2) an ex-
planation of how the regression anatomy and the Frisch–Waugh–Lovell theorems
relate to partial and semipartial correlations, whose coefficients are informative
when evaluating relevant variables in a linear regression model.

Keywords: st0285, reganat, regression anatomy, Frisch–Waugh–Lovell theorem,
linear models, partial correlation, semipartial correlation

1 Inside the black box

In the case of a linear bivariate model of the type

yi = α + βxi + εi

the ordinary least-squares (OLS) estimator for β has the known simple expression

β =

∑n
i (xi − x) (yi − y)
∑n

i (xi − x)
2 =

Cov(yi, xi)

Var(xi)

In this framework, a bidimensional scatterplot can be a useful graphical device during
model building to detect, for instance, the presence of nonlinearities or anomalous data.

When the model includes more than a single independent variable, there is no
straightforward equivalent for the estimation of β, and the same bivariate scatterplot
between the dependent variable and the independent variable of interest becomes po-
tentially misleading because, in the general case, the independent variables are not
orthogonal between them. Consequently, most econometric textbooks limit themselves
to providing the formula for the β vector of the type

β = (X ′X)
−1

X ′y

c© 2013 StataCorp LP st0285
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and drop altogether any graphical depiction of the relation of interest. Although com-
pact and easy to remember, this formulation is a sort of black box because it hardly
reveals anything about what really happens during the estimation of a multivariate OLS

model. Furthermore, the link between the β and the moments of the data distribution
disappears, buried in the intricacies of matrix algebra.

Luckily, an enlightening interpretation of the β’s in the multivariate case exists and
has relevant interpreting power. It was originally formulated more than 70 years ago by
Frisch and Waugh (1933), revived by Lovell (1963), and implemented in applied econo-
metrics by Angrist and Pischke (2009) under the catchy phrase “regression anatomy”.
According to this result, given a model with K independent variables, the coefficient β
for the kth variable can be written as

βk =
Cov

(
yi, x̃

k
i

)

Var
(
x̃k

i

)

where x̃k
i is the residual obtained by regressing xk

i on all remaining K − 1 independent
variables.

The result is striking because it establishes the possibility of breaking a multivariate
model with K independent variables into K simpler bivariate models and also sheds
light on the machinery of multivariate OLS. This property of OLS does not depend on
the underlying data-generating process or on its causal interpretation: it is a purely
numerical property of the estimator that holds because of the algebra behind it.

For example, the regression anatomy theorem makes transparent the case of the
so-called problem of multicollinearity. In a multivariate model with two variables that
are highly linearly related, the theorem implies that for a variable to have a statistically
significant β, it must retain sufficient explicative power after the other independent
variables have been partialled out. Obviously, this is not likely to happen in a highly
multicollinear model because the most variability is between the regressors and not
between the residual variable x̃k

i and the dependent variable y.

While this theorem is widely known as a standard result of the matrix algebra of
the OLS model, its practical relevance in the modeling process has been overlooked,
say Davidson and MacKinnon (1993), most probably because the original articles had a
limited scope; it nonetheless illuminated a very general property of the OLS estimator.
Hopefully, the introduction of a Stata command that implements it will help to spread
its use in econometric practice.

2 The Frisch–Waugh–Lovell theorem

The regression anatomy theorem is an application of the Frisch–Waugh–Lovell (FWL)
theorem about the relationship between the OLS estimator and any vertical partitioning
of the data matrix X. Originally, Frisch and Waugh (1933) tackled a confusing issue
in time-series econometrics. Because many temporal series exhibit a common temporal
trend, it was typical during the early days of econometrics to detrend these variables
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before entering them in a regression model. The rationale behind this two-stage method-
ology was to purify the variables from spurious temporal correlation and use only the
residual variance in the regression model of interest.

In practice, when an analyst was faced with fitting a model of the type

yi = β0 + β1x1i + · · · + βkxki + · · · + βKxKi + ei (1)

with each variable possibly depending linearly on time, the analyst first estimated a set
of K auxiliary regressions of the type

xki = ck + c1kt + eki

and an analogous regression for the dependent variable,

yi = c0y + c1yt + eyi

The analyst then used the residuals from these models to build an analogue to (1):

ỹi = β′
0 + β′

1x̃1i + · · · + β′
kx̃ki + · · · + β′

K x̃Ki + e′i

Alternatively, other analysts directly entered the time variable in (1) and fit the full
model:

yi = β∗
0 + β∗

1x1i + · · · + β∗
kxki + · · · + β∗

KxKi + dt + e∗i

These two schools of econometric practice debated over the merits and the shortcomings
of the respective methods until Frisch and Waugh quite surprisingly demonstrated that
the two estimation methods are numerically equivalent; that is, they provide exactly
the same results

β′
k = β∗

k

and
e′i = e∗i

In broader terms, the theorem applies to any regression model with two or more inde-
pendent variables that can be partitioned into two groups:

y = X′
1β1 + X′

2β2 + r (2)

Consider the general OLS model y = X′β + e, with XN,K . Next partition the X matrix
in the following way: let X1 be an N × K1 matrix and let X2 be an N × K2 matrix,
with K = K1 + K2. It follows that X = (X1X2). Let us now consider the model

M1y = M1X2β2 + e (3)

where M1 is the matrix projecting off the subspace spanned by the columns of X1.
In this formulation, y and the K2 columns of X2 are regressed on X1; then the vec-
tor of residuals M1y is regressed on the matrix of residuals M1X2. The FWL the-
orem states that the β’s calculated for (3) are identical to those calculated for (2).
A complete proof can be found in advanced econometric textbooks such as those by
Davidson and MacKinnon (1993, 19–24) and Ruud (2000, 54–60).
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3 The regression anatomy theorem

A straightforward implication of the FWL theorem states that the βk coefficient also can
be estimated without partialling the remaining variables out of the dependent variable
yi. This is exactly the regression anatomy (RA) theorem that Angrist and Pischke
(2009) have advanced as a fundamental tool in applied econometrics. In this section,
for the sake of simplicity and relevance to my Stata command reganat, I provide a
proof restricted to the case in which XN,K , K1 = 1, and K2 = K − 1, building on the
indications provided in Angrist and Pischke (2009).

Theorem 3.1 (Regression anatomy). Given the regression model

yi = β0 + β1x1i + · · · + βkxki + · · · + βKxKi + ei (4)

and an auxiliary regression in which the variable xki is regressed on all the remaining

independent variables,

xki = γ0 + γ1x1i + · · · + γk−1xk−1i + γk+1xk+1i + · · · + γKxKi + fi (5)

with x̃ki = xki− x̂ki being the residual for the auxiliary regression, the parameter βk can

be written as

βk =
Cov(yi, x̃ki)

Var(x̃ki)
(6)

Proof. To prove the theorem, plug (4) and the residual x̃ki from (5) into the covariance
Cov(yi, x̃ki) from (6) and obtain

βk =
Cov(β0 + β1x1i + · · · + βkxki + · · · + βKxKi + ei, x̃ki)

Var(x̃ki)

=
Cov(β0 + β1x1i + · · · + βkxki + · · · + βKxKi + ei, fi)

Var(fi)

1. Because by construction E(fi) = 0, it follows that the term β0E(fi) = 0.

2. Because fi is a linear combination of all the independent variables with the ex-
ception of xki, it must be that

β1E(fix1i) = · · · = βk−1E(fixk−1i) = βk+1E(fixk+1i) = · · · = βKE(fixKi) = 0

3. Consider now the term E(eifi). This can be written as

E(eifi) = E(eifi)

= E(eix̃ki)

= E {ei (xki − x̂ki)}
= E(eixki) − E(eix̂ki)
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Because ei is uncorrelated with any independent variable, it is also uncorrelated
with xki; accordingly, we have E(eixki) = 0. With regard to the second term of
the subtraction, substituting the predicted value from (5), we get

E {ei (γ0 + γ1x1i + · · · + γk−1xk−1i + γk+1xk+1i + · · · + γKxKi)}

Once again, because ei is uncorrelated with any independent variable, the expected
value of the terms is equal to 0. Thus it follows that E(eifi) = 0.

4. The only remaining term is E (βkxkix̃ki). The term xki can be substituted by
using a rewriting of (5) such that

xki = E (xki|X−k) + x̃ki

This gives

E (βkxkix̃ki) = βkE [x̃ki {E (xki|X−k) + x̃ki}]
= βk

(
E
{
x̃2

ki

}
+ E [{E (xki|X−k) x̃ki}]

)

= βkVar(x̃ki)

which follows directly from the orthogonality between E (xki|X−k) and x̃ki.

5. From previous derivations, we finally get

Cov(yi, x̃ki) = βkVar(x̃ki)

which completes the proof.

4 A comparison between reganat and avplot

Let us sum up our results so far: the value of the coefficient βk can be obtained by the
FWL theorem and the RA theorem. While the FWL theorem states that

βk =
Cov(ỹi, x̃

k
i )

Var(x̃k
i )

the RA theorem states that

βk =
Cov(yi, x̃

k
i )

Var(x̃k
i )

There are good reasons to use both formulations when building a multivariate model:
both have advantages and shortcomings.
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1. Variance of residuals
The OLS residuals obtained by the FWL theorem and the RA theorem are generally
different. In particular, those obtained via the FWL theorem coincide with those
obtained for the multivariate full OLS model and are valid for inferences about βk,
while the residuals obtained via the RA theorem tend to be inflated because

Var (yi) ≥ Var (ỹi)

This holds true because the variance of y can be written, in the simple case of a
univariate model yi = α + βxi + ǫi, as

σ2
y = β2σ2

x + σ2
ǫ

where β2σ2
x is the variance of ỹ.

2. Partial and semipartial correlations
In a regression model with just one independent variable, the OLS estimator can
be written as

β =
Cov(yi, xi)

Var(xi)
= ρyx

σy

σx

where ρyx is the correlation coefficient between x and y. The same relation applied
to a multivariate model provides two alternative expressions when using either the
FWL method or the RA method. In the case of the FWL method, we have

βk =
Cov(ỹi, x̃

k
i )

Var(x̃k
i )

= ρeyex
σey

σex

while in the case of the RA theorem, we have

βk =
Cov(yi, x̃

k
i )

Var(x̃k
i )

= ρyex
σy

σex

The term ρeyex is the partial correlation coefficient, while ρyex is the semipartial
correlation coefficient. Because the FWL and the RA methods provide the same
estimate for βk, we can write the relation between the two types of correlation
coefficients as

ρyex =
σey

σy
ρeyex

from which is evident that ρyex ≤ ρeyex because the variance of y is larger than the
variance of ỹ.

The advantage of using the semipartial coefficient over the partial coefficient is that
the former is expressed in terms of σy units, whereas the latter’s metrics depend
on the independent variable under study. Thus using the semipartial coefficient
allows for a comparison of the relative strength of different independent variables.
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3. Semipartial correlations and R2

In a multivariate OLS model, each independent variable’s variance can be split
into three components:

a. Variance not associated with y

b. Variance associated with y and shared with other regressors

c. Variance associated with y and not shared with other regressors

When you construct an OLS model, the inclusion of a new regressor is valuable
when the additional explaining power contained in it is not already fully captured
by the other K regressors. Accordingly, the new variable must mainly provide the
kind of variance denoted with (c).

A measure of the value of this informative variance for a new regressor is its semi-
partial correlation coefficient: this fact can be used to decompose the variance in a
multivariate model. Under normal conditions, the sum of the squared semipartials
can be subtracted from the overall R2 for the complete OLS regression to get the
value of common variance shared by the independent variables with y.

The squared semipartial coefficient can also be expressed as the gain to the R2

due to the inclusion of the kth variable, weighted by the portion of unexplained
variance. In formula, this is

ρ2
yexk

=
R2

with − R2
without

(1 − R2
with) (N − K − 1)

Finally, a correspondence between the correlation coefficient and the R2’s from
either the FWL regression or the RA regression can be established. In the case
of the univariate model yi = α + βxi + ǫi, the coefficient of determination R2 is
defined as β2σ2

x/σ2
y and is equal to ρ2

yx, that is, the squared simple correlation
coefficient between y and x. In the same fashion, the R2 from the FWL regression
is equal to the squared partial correlation coefficient, while the R2 from the RA

regression is equal to the squared semipartial correlation coefficient.

I must note that Stata includes the official command avplot, which graphs the
variable x̃ki against ỹki (the residual of a regression of y on all variables except the kth).
Though germane in scope and complementary in many walks of statistical life, reganat
is more congruent than avplot with the quantitative interpretation of a multivariate
linear model: the former permits an appreciation of the original metrics of yi, while the
latter focuses on ỹki, whose metrics are less appealing to the general reader.

In the causal interpretation of the regression model (Angrist and Pischke 2009,
chap. 1), the coefficient β is the size of the effect of a causing variable on a depen-
dent variable, free of other competing factors. The same logic relies on the concept
of ceteris paribus, that is, the evaluation of a cause with all other factors being equal.
While the variable x̃ki is the statistical counterpart of the causing variable, the variable
ỹki is less informative than the original yi because it is constrained to have a zero mean.
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In applied statistical practice—for example, in econometrics (Feyrer, Sacerdote, and
Stern 2008)—it is customary to present, early in an article, a bidimensional scatterplot
of a dependent variable against an explanator of interest, even though the plot is po-
tentially misleading because the variance shared by other potential confounders is not
taken into account. Usually, in later pages, the main explanator is plugged into a set
of other explanators to fit a regression model, but any scatterplot of the main rela-
tion of interest is seldom presented. This is unfortunate because the valuable graphical
information derived from the FWL theorem gets lost. Nonetheless, to be worth the ef-
fort, the postestimation graph must resemble the original relation of interest. This is
exactly the context in which reganat can enrich the visual apparatus available to the
applied statistician while saving the original metrics of the variables involved as much
as possible.

5 The command reganat

The estimation command reganat is written for Stata 10.1. It has not been tested on
previous versions of the program.

5.1 Syntax

The command has the following syntax:

reganat depvar varlist
[
if
] [

in
] [

, dis(varlist) label(varname) biscat biline

reg nolegend nocovlist fwl semip scheme(graphical scheme)
]

Just like any other standard OLS model, a single dependent variable and an array of
independent variables are required.

By default, when the user specifies K covariates, the command builds a multigraph
made of K bidimensional subgraphs. In each of them, the x axis displays the value of
each independent variable free of any correlation with the other variables, while the y
axis displays the value of the dependent variable. Within each subgraph, the command
displays the scatterplot and the corresponding regression line.

5.2 Options

dis(varlist) restricts the output to the variables in varlist and excludes the rest. Only
the specified varlist will be graphed; nonetheless, the other regressors will be used
in the background calculations.

label(varname) uses varname to label the observations in the scatterplot.

biscat adds to each subgraph the scatterplot between the dependent variable and the
original regressor under study. The observations are displayed using a small triangle.
Because E(x̃ki) = 0 by construction and because E(xki) is in general different from 0,
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the plotting of xki and x̃ki along the same axis requires the variable E(xki) to be
shifted by subtracting its mean.

biline adds to each subgraph a regression line calculated over the univariate model
in which the dependent variable is regressed only on the regressor under study. To
distinguish the two regression lines that appear on the same graph, biline uses a
dashed pattern for the one for the univariate model.

reg displays the output of the regression command for the complete model.

nolegend prevents the legend from being displayed.

nocovlist prevents the list of covariates from being displayed.

fwl uses the FWL formulation in place of RA.

semip adds a table with a decomposition of the model’s variance.

scheme(graphical scheme) specifies the graphical scheme to be applied to the composite
graph. The default is scheme(sj).

6 An example

Consider the following illustrative example of reganat, without any pretense of estab-
lishing a genuine causality model. Suppose that we are interested in the estimation of a
simple hedonic model for the price of cars dependent on their technical characteristics.
In particular, we want to estimate the effect, if any, of a car’s length on its price.

First, we load the classic auto.dta and regress price on length, obtaining

. sysuse auto
(1978 Automobile Data)

. regress price length

Source SS df MS Number of obs = 74
F( 1, 72) = 16.50

Model 118425867 1 118425867 Prob > F = 0.0001
Residual 516639529 72 7175549.01 R-squared = 0.1865

Adj R-squared = 0.1752
Total 635065396 73 8699525.97 Root MSE = 2678.7

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

length 57.20224 14.08047 4.06 0.000 29.13332 85.27115
_cons -4584.899 2664.437 -1.72 0.090 -9896.357 726.559
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The estimated β is positive. Then because other technical characteristics could influence
the selling price, we include mpg (mileage) and weight as additional controls to get

. regress price length mpg weight

Source SS df MS Number of obs = 74
F( 3, 70) = 12.98

Model 226957412 3 75652470.6 Prob > F = 0.0000
Residual 408107984 70 5830114.06 R-squared = 0.3574

Adj R-squared = 0.3298
Total 635065396 73 8699525.97 Root MSE = 2414.6

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

length -104.8682 39.72154 -2.64 0.010 -184.0903 -25.64607
mpg -86.78928 83.94335 -1.03 0.305 -254.209 80.63046

weight 4.364798 1.167455 3.74 0.000 2.036383 6.693213
_cons 14542.43 5890.632 2.47 0.016 2793.94 26290.93

With this new estimation, the sign of length has become negative. The RA theorem
states that this last estimate of β for length also could be obtained in two stages, which
is exactly the method deployed by the command.

In the first stage, we regress length on mpg and weight:

. regress length mpg weight

Source SS df MS Number of obs = 74
F( 2, 71) = 312.22

Model 32497.5726 2 16248.7863 Prob > F = 0.0000
Residual 3695.08956 71 52.0435149 R-squared = 0.8979

Adj R-squared = 0.8950
Total 36192.6622 73 495.789893 Root MSE = 7.2141

length Coef. Std. Err. t P>|t| [95% Conf. Interval]

mpg -.3554659 .2472287 -1.44 0.155 -.8484259 .137494
weight .024967 .0018404 13.57 0.000 .0212973 .0286366
_cons 120.1162 10.3219 11.64 0.000 99.53492 140.6975

Here it becomes clear that length and weight are remarkably correlated. In the second
stage, we get the residual value of length conditional on mpg and weight by using the
model just estimated, and then we regress price on this residual reslengthr.
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. predict reslengthr, residuals

. regress price reslengthr

Source SS df MS Number of obs = 74
F( 1, 72) = 4.92

Model 40636131.6 1 40636131.6 Prob > F = 0.0297
Residual 594429265 72 8255962.01 R-squared = 0.0640

Adj R-squared = 0.0510
Total 635065396 73 8699525.97 Root MSE = 2873.3

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

reslengthr -104.8682 47.26845 -2.22 0.030 -199.0961 -10.64024
_cons 6165.257 334.0165 18.46 0.000 5499.407 6831.107

The value of the β from this bivariate regression coincides with that obtained from
the multivariate model, although the standard errors are not equal because of different
degrees of freedom used in the calculation.

The command reganat uses the decomposability of the RA theorem to plot the
relation between price and length on a bidimensional Cartesian graph, even though
the model we are actually using is multivariate. Actually, the command plots price

and reslengthr by using the following command, which produces the graph in figure 1.

. reganat price length mpg weight, dis(length)

Regression Anatomy

Dependent variable ...... : price
Independent variables ... : length mpg weight
Plotting ................ : length

3
,2

9
1

1
5

,9
0

6

−24.71256 12.65348

Multivariate slope: −104.868 (39.722). Semipartial rho2: 0.064

Length (in.)

Covariates: Length (in.), Mileage (mpg), Weight (lbs.).

Dependent variable: Price

Regression Anatomy

Figure 1. Regression anatomy
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The graph displays the variable length after partialling out the influence of mpg and
weight. Remarkably, this variable now also assumes negative values, which did not
happen in the original data. This happens because residuals have zero expected value
by construction; accordingly, the original data have been scaled to have zero mean
displayed on the x axis together with residuals.

It is instructive to compare graphically the bivariate model and the multivariate
model with the options biscat and biline. This command produces the graph of
figure 2.

. reganat price length mpg weight, dis(length) biscat biline

Regression Anatomy

Dependent variable ...... : price
Independent variables ... : length mpg weight
Plotting ................ : length
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Multivariate slope: −104.868 (39.722). Semipartial rho2: 0.064

Bivariate slope: 57.202 (14.080)

Length (in.)

Covariates: Length (in.), Mileage (mpg), Weight (lbs.).

Regression lines: Solid = Multivariate, Dashed = Bivariate.
Scatterplot: Dots = Transformed data, Triangles = Original data.

Dependent variable: Price

Regression Anatomy

Figure 2. Regression anatomy: Original and transformed data

The graph also displays, for both models, the numerical value of β and its standard
error at 95% in parentheses. Furthermore, on the same line, the command displays the
squared semipartial correlation coefficient. The calculation is obtained using Stata’s
built-in pcorr command.



104 Regression anatomy, revealed

The other variables of the model also can be plotted on the graph to check whether
the inclusion of additional controls does influence their effect on the dependent variable.
This produces the composite graph of figure 3.

. reganat price length mpg weight, dis(length weight) biscat biline

Regression Anatomy

Dependent variable ...... : price
Independent variables ... : length mpg weight
Plotting ................ : length weight
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Regression lines: Solid = Multivariate, Dashed = Bivariate.
Scatterplot: Dots = Transformed data, Triangles = Original data.
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Regression Anatomy

Figure 3. Regression anatomy: Composite graph

The inclusion of additional controls also affects the β for weight; in the bivariate model,
its value is less than half as much as in the multivariate model (as is clear from the
observation of the different slopes in the right panel).



V. Filoso 105

The command is also useful to decompose the model’s variance to get an idea of
both the idiosyncratic and the joint contributions of the independent variables. Us-
ing the option semip, we get an additional table with partial correlations, semipartial
correlations, squared partial correlations, squared semipartial correlations, relevant sig-
nificance values, and some summary statistics. The results are obtained using Stata’s
built-in pcorr command.

. reganat price length mpg weight, dis(length) semip

Regression Anatomy

Dependent variable ...... : price
Independent variables ... : length mpg weight
Plotting ................ : length
(obs=74)

Partial and semipartial correlations of price with

Partial Semipartial Partial Semipartial Significance
Variable Corr. Corr. Corr.^2 Corr.^2 Value

length -0.3009 -0.2530 0.0906 0.0640 0.0102
mpg -0.1226 -0.0991 0.0150 0.0098 0.3047

weight 0.4080 0.3582 0.1664 0.1283 0.0004

Model´s variance decomposition Value Perc.

Variance explained by the X´s individually 0.2021 0.5656
Variance common to X´s 0.1553 0.4344

Variance explained by the model (R-squared) 0.3574

The final table decomposes the model’s variance: the vector of the three variables
length, mpg, and weight explains 35.74% of price. This explained variance can be
broken into the idiosyncratic contribution of each variable (6.4% + 0.98% + 12.83% =
20.21%) and the common variance (15.53%). In conclusion, around 57% of the model’s
explained variance can be attributed to the specific contribution of the independent
variables, while these same variables share around 43% of price’s explained variance.
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