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Abstract. We present a new command, metacumbounds, for the estimation of trial
sequential monitoring boundaries in cumulative meta-analyses. The approach is
based on the Lan–DeMets method for estimating group sequential boundaries
in individual randomized controlled trials by using the package ldbounds in R
statistical software. Through Stata’s metan command, metacumbounds plots the
Lan–DeMets bounds, z-values, and p-values obtained from both fixed and random-
effects cumulative meta-analyses. The analysis can be performed with count data
or on the hazard scale for time-to-event data.

Keywords: st0284, metacumbounds, trial sequential analysis, cumulative meta-
analysis, information size, Lan–DeMets bounds, monitoring boundary, cumulative
z score, heterogeneity

1 Introduction

Randomized controlled trials (RCTs) are the gold standard for making causal inferences
regarding treatment effects. Meta-analyses of RCTs increase both the power and the
precision of estimated treatment effects. However, there is a risk that a meta-analysis
may report false positive results, that is, report a treatment effect when in reality there is
none. This is especially true when the pooled estimates are updated with the publication
of a new trial in cumulative meta-analyses. A small RCT may result in chance findings
and overestimation. To avoid false conclusions, Pogue and Yusuf (1997, 1998) advocated
constructing Lan–DeMets trial sequential monitoring boundaries for cumulative meta-
analysis. This is analogous to constructing interim treatment sequential monitoring
boundaries in a single RCT, where a trial would be terminated if the cumulative z curve

c© 2013 StataCorp LP st0284



78 Trial sequential boundaries for cumulative meta-analyses

crossed the discrete sequential boundary and a treatment larger than expected occurred.
They calculated the optimal information size based on the assumption that participants
originated from a single trial.

More recently, Wetterslev et al. (2008) adjusted the method for heterogeneity and la-
beled it trial sequential analysis (TSA). Their approach accounted for bias and observed
heterogeneity in a retrospective cumulative meta-analysis. We implement TSA in Stata
under the command metacumbounds and with the ldbounds package in open-source
R statistical software, which calculates bounds by using the Lan–DeMets α spending
function approach. metacumbounds is the first widely available package to construct
monitoring bounds for cumulative meta-analysis for both count data and information
in the form of hazard ratios for time-to-event data. Analyzing time-to-event data on the
count scale leads to the loss of valuable information, decreases the power, and should be
avoided. Tierney et al. (2007) discuss methods for extracting hazard ratios from pub-
lished data. The option to construct monitoring bounds for cumulative meta-analysis
on the hazard scale has not been available in the domain of public software and, to our
knowledge, is presented here for the first time. In section 2, we discuss the methodology
behind TSA. In section 3, we describe how to install R and the packages needed to im-
plement metacumbounds. In section 4, we present the command metacumbounds, and
in section 5, the command is illustrated with two examples from published literature.

2 Methods

Group sequential analysis for individual RCTs was introduced by Armitage (1969) and
Pocock (1977). Gordon Lan and Demets (1983) made the methods for controlling the
type I error when interim analyses are conducted more flexible by introducing the z curve
and α spending function, which produce either the O’Brien–Fleming or the Pocock type
boundaries. Under this method, the progress of a single RCT is measured over time,
and the trial is terminated early if the cumulative z curve crosses a discrete sequential
boundary. The boundary depends on the number of decision times and the rate at
which the prespecified type I error α is spent, independent of the number of future
decision times. The probability of terminating a trial early at time ti is calculated as
the proportion of α that should be spent at ti minus the α already used in the past.
We use five different spending functions (Demets and Gordon Lan 1994):

(i) O’Brien–Fleming spending function

α(t) =

{
0, t = 0

2 − 2Φ(
Z α

2√
t
), 0 < t ≤ 1

(ii) Pocock spending function

α(t) =

{
0, t = 0

α ln{1 + (e − 1)t}, 0 < t ≤ 1
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(iii) Alpha × time

α(t) =

{
0, t = 0

αt, 0 < t ≤ 1

(iv) Alpha × time1.5

α(t) =

{
0, t = 0

αt1.5, 0 < t ≤ 1

(v) Alpha × time2

α(t) =

{
0, t = 0

αt2, 0 < t ≤ 1

Pogue and Yusuf (1997) extended the methodology to cumulative meta-analysis,
where its progress is monitored as the relevant information is accrued over time. The
total number of observed patients in the cumulative meta-analysis is defined as the
accrued information size (AIS). Assuming that the information size (that is, the sample
size) needed is at least equal to the sample size required in an individual RCT, given
the prespecified type I error α and power (1−β), then the required a priori anticipated
information size (APIS) based on a prespecified intervention effect is defined as

APIS =
4ν

µ2
(Zα

2
+ Zβ)2

Here µ is the intervention effect and ν its variance, assuming equal size between the
intervention and control groups. For count data and the event rates in the control and
experimental groups pc and pe, µ = pc − pe and ν = p∗(1− p∗), where p∗ = (pc + pe)/2.
The a priori relative risk reduction (RRR) is defined as RRR = 1 − pe/pc.

If we use the results of Lachin and Foulkes (1986), the required APIS for time-to-
event data and assumed hazard ratio HR0, expected censoring rate w (that is, loss to
follow-up), and average survival rate across studies S is given by

APIS =
(Zα

2
+ Zβ)2

(1 − w)(1 − S)

(
HR0 + 1

HR0 − 1

)2

Individual RCTs may be biased. It is well accepted that trials with a high risk of
bias due to inadequate randomization sequence generation, intention-to-treat analysis,
allocation concealment, masking, or reported incomplete outcome data may overesti-
mate intervention effects. RRR and low-bias information size (LBIS) are thus calculated
by applying the intervention effects from low-bias trials only. Combining trials as if
participants came from one mega-trial may bias the results because of heterogeneity.
To account for uncertainty induced by heterogeneity, we must adjust (multiply) infor-
mation size by 1/(1 − I2) to calculate the low-bias heterogeneity-adjusted information
size (LBHIS). Note that I2 is heterogeneity defined as

I2 =
(Q − k + 1)

Q
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and Q is Cochran’s homogeneity statistic. Once the information size is calculated, while
the new trials are published and meta-analyses are updated, the monitoring bounds can
be updated over time as well. Brok et al. (2008) present a set of examples of two-sided
TSA for four different cumulative z curves (see figure 1).

Figure 1. Examples of the upper half of two-sided TSA

(A) Crossing of Z = 1.96 provides a significant result but a spurious effect because the
z curve does not cross the monitoring boundary. This is a false positive result.

(B) Crossing of the monitoring boundary before reaching the information size provides
for firm evidence of effect. This is a true positive result.

(C) z curve not crossing Z = 1.96 indicates absence of evidence; that is, the meta-
analysis included fewer patients than the required information size. This is a false
negative result.

(D) Lack of predefined effect even though the information size is reached. This is a
true negative result.

The monitoring boundary typically moves right and down over time. However, it may
move right and up if the event rate decreases, intervention effect increases, or hetero-
geneity increases. In the context of LBIS and LBHIS, crossing of the monitoring bounds
before the information size is reached indicates that high-bias risk trials find a larger
intervention effect compared with low-bias risk trials.

3 R statistical software

R statistical software is an open-source package that may be downloaded free of charge
at http://www.r-project.org. To use metacumbounds, after installing R, the user needs
to install the R packages foreign (to read and write Stata data files) and ldbounds

(to compute group sequential bounds by using the Lan–Demets method with either
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the O’Brien–Fleming or the Pocock spending functions). The package ldbounds is
based on the Fortran code ld98 by Reboussin et al. (2000). Statistical packages can
be downloaded from the Comprehensive R Archive Network from a multitude of mirror
websites within R. This is done by selecting Packages > Install package(s). . . and
then the mirror site closest to the user (figure 2 outlines the steps). The USA(MD)

Comprehensive R Archive Network mirror highlighted in figure 2 is at the United States
National Cancer Institute (http://watson.nci.nih.gov/cran mirror/).

Figure 2. ldbounds installation description

Note that R does not have to be running when Stata is executing the metacumbounds

command. The Stata program rsource is used to run R from inside Stata. It works by
running the Rterm.exe program and may be downloaded from within Stata by typing
ssc install rsource.

4 The metacumbounds command

4.1 Syntax for metacumbounds

Our command metacumbounds assumes that Stata’s metan command (Harris et al.
2008) has been installed. Because of the complexity of the syntax and to facilitate
its implementation, we have included the dialog-box file metacumbounds.dlg, which
should be placed in the active Stata directory.
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metacumbounds varlist
[
if
] [

in
]
, data(count | loghr) effect(f | r)

spending(string) rdir(string) is(ais | apis | lbis | lbhis)
[
id(strvar)

surv(#) loss(#) lbid(varname) stat(rr | or | rd) wkdir(string)

kprsrce(string) alpha(#) beta(#) graph rrr(#) listRout listRin keepR

graph options
]

where varlist contains either count data or log hazard-ratios, their standard errors, and
trial sample size.

4.2 Options

data(count | loghr) specifies whether the analysis is done for count data or on the log-
hazard scale for time-to-event outcomes. Under the data(count) option, the user
can specify effect size based on risk ratio, odds ratio, or risk difference. For both
data(count) and data(loghr), the output is on the natural scale. logrr or logor
may equally be used under the loghr option in the unlikely event that the count
data are unavailable, in which case the survival rate S and loss to follow-up are both
equal to 0. data() is required.

effect(f | r) specifies whether fixed- or random-effects estimates are used in the output
and graph. If the fixed-effects model is chosen and heterogeneity I2 is greater than
30%, then a warning message is displayed. The pooling method used is the inverse
variance method (fixedi and randomi in metan). effect() is required.

spending(string) specifies the spending function that is calculated by ldbounds in
R. spending(1) computes O’Brien–Fleming type bounds. spending(2) computes
Pocock type bounds. spending(3) computes bounds of type αt. spending(4) com-
putes bounds of type αt1.5. spending(5) computes bounds of type αt2. spending()
is required.

rdir(string) lists the path of the directory where the binary files for R can be found.
rdir() is required.

is(ais | apis | lbis | lbhis) specifies the method to be used for calculation size. is()

is required.

ais represents the simple accrued information size—the fraction of the total number
of participants in the meta-analysis used up to that point. The assumed a priori
RRR (RRR = rrr()) is used to determine the power of the test for given alpha and
given (actual) sample size.

apis represents the a priori information size and means that the total sample size
will be calculated so that the trial has the a priori intervention effect (RRR = rrr())
on the incidence rate in the control group (which is calculated from the provided
trial data). The incidence rate for the experimental group is calculated using this
RRR. The RRR is given by the user, as are alpha and beta. These variables are then
used to determine the sample size (APIS).
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lbis represents the low-bias information size and means that the total sample size
will be calculated using the incidence rate of only those trials for which the low-bias
ID variable is greater than 0. If LBIS = 1, then the trial has low bias. If LBIS = 0,
then the trial does not have low bias, it has high bias. The intervention effect (RRR)
is now calculated from the incidence rates of both control and experimental groups
for only those trials for which the low-bias ID variable is greater than 0. For this
RRR and for user-specified alpha and beta, we calculate the required sample size and
call it LBIS.

lbhis (low-bias heterogeneity-adjusted information size) is the same as lbis ex-
cept adjusted for heterogeneity; that is, LBHIS = LBIS/(1 − I2), where I2 is the
heterogeneity index of this group of trials for the given statistic.

id(strvar) is a character variable used to label the studies. If the data contain a
labeled numeric variable, then the decode command can be used to create a character
variable.

surv(#) for hazard-ratio data specifies the overall average survival rate and is defined
on [0, 1).

loss(#) for hazard-ratio data specifies the percent of patients lost to follow-up and is
defined on [0, 1).

lbid(varname) specifies whether each study is low risk for bias (coded 1) or high risk
for bias (coded 0) under is(lbis) or is(lbhis).

stat(rr | or | rd) for count data specifies the effect size (risk ratio, odds ratio, or risk
difference) to be pooled.

wkdir(string) is the directory where all the files should be saved.

kprsrce(string) saves the R source file after the program is completed.

alpha(#) specifies the type I error. # must be between 0 and 1.

beta(#) specifies the type II error. # must be between 0 and 1.

graph requests a graph.

rrr(#) specifies the trial a priori intervention effect size (RRR) to calculate APIS. For
LBIS and LBHIS, rrr() is calculated from low-bias trials only.

listRout lists the R output on the Stata screen.

listRin lists the R source file on the Stata screen.

keepR keeps the R source file.

graph options are overall graph options. shwRRR and pos() allow for the addition and
position of the RRR, α, and power on the graph; xtitle(string) and ytitle(string)

add labels to the x and y axes; title(string) and subtitle(string) add the title
and subtitle to the graph. The dialog box makes performing TSA easier.



84 Trial sequential boundaries for cumulative meta-analyses

5 Examples
5.1 Example 1: Effects of artery catheter tip position in the newborn

Wetterslev et al. (2008) performed TSA with data from a systematic review by Barring-
ton (2000). One of the review’s aims was to determine whether the position (high versus
low) of the tip of an umbilical arterial catheter led to clinical vascular compromise. Out
of five total trials, only one was found to have adequate allocation concealment and
was considered low bias (table 1). The author reported that high-placed catheters were
found to produce a significantly lower incidence of clinical vascular complications with
RRR = 47% (95% confidence interval (CI); [37%–56%]).

Table 1. High versus low catheter position for clinical vascular compromise

Study High (n/N) Low (n/N) Low bias

Harris (1978) 3/18 12/18 no
Mokrohisky (1978) 9/33 26/40 no

Stork (1984) 12/85 25/97 no
Kempley (1992) 34/162 66/146 no
UACTSG (1992) 77/481 130/489 yes

For LBIS and LBHIS to be calculated, the low-bias ID variable needs to be specified.
In their analysis, Wetterslev et al. (2008) assumed RRR = 15% based on clinical sig-
nificance. Figure 3 provides a screenshot of the dialog box used to perform the TSA

analysis, which confirms the results from the systematic review in figure 4(a)–(c). The
figure also displays the actual power achieved given the information size. Trial sequen-
tial monitoring boundary (TSMB) for AIS and APIS detected three potentially spurious
p-values; TSMB for LBIS and LBHIS detected two potentially spurious levels.

Figure 3. Dialog box used to create figure 4
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(a) Results showing three potentially spurious p-values
for AIS of 1,569 patients.

APIS = 2743
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(b) Results showing three potentially spurious p-values
for APIS of 2,743 patients.
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RRR = 40% (alpha = 5%, power = 80%)

(c) Results showing three potentially spurious p-values
for LBIS of 470 patients. Note that because LBIS equals
LBHIS, results for the latter are the same.

Figure 4. TSA on the effects of umbilical artery catheter position in newborns
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. use example1

. metacumbounds a b c d, data(count) effect(f) id(study) alpha(0.05) beta(0.20)
> is(AIS) stat(rr) graph spending(1) rrr(.15) kprsrce(StataRsource.R)
> rdir(C:\Program Files\R\R-2.12.2\bin\i386) shwRRR pos(10)
> xtitle(Information size)
Isquare = 0.00%

Cumulative fixed-effects meta-analysis of 5 studies with Lan-DeMets bounds
---------------------------------------------------------------

Cumulative
Trial estimate(rr) z P val partN UB
Harris_1978 0.250 2.508 0.012 36 8.000
Mokrohisky_1978 0.371 3.691 0.000 109 8.000
Stork_1984 0.436 4.041 0.000 291 5.128
Kempley_1992 0.452 5.911 0.000 599 3.445
UACTSG_1992 0.525 6.936 0.000 1569 1.962

5.2 Example 2: Neoadjuvant chemotherapy for invasive bladder can-
cer

Advanced Bladder Cancer Meta-analysis Collaboration (2011) conducted individual pa-
tient data meta-analysis to study whether neoadjuvant chemotherapy improves survival
in patients with invasive bladder cancer. They concluded that the hazard ratio for
all trials, including single-agent cisplatin, tended to favor neoadjuvant chemotherapy
with RRR = 11% (95% CI; [2%–19%]) (the results were reported on the hazard scale as
HR = 0.89; 95% CI; [81%–98%]). All 10 trials were found to have adequate allocation
concealment and were considered low bias (see table 2). Because I2 = 0%, fixed- and
random-effects meta-analyses produce identical TSMBs, and LBIS equals LBHIS.

Table 2. Neoadjuvant chemotherapy for invasive bladder cancer

Study Neoadjuvant (n/N) Local (n/N) HR [95% CI] Low bias

Raghavan (1991) 34/41 37/55 1.43 [0.88, 2.31] yes
Wallace (1991) 59/83 50/76 1.11 [0.76, 1.61] yes
Martinez (1995) 43/62 38/59 1.02 [0.66, 1.57] yes

Malmstrom (1996) 68/151 84/160 0.77 [0.56, 1.06] yes
Cortesi (unpub) 43/82 41/71 0.91 [0.6, 1.40] yes

Bassi (1999) 53/102 60/104 0.93 [0.64, 1.35] yes
MRC/EORTC (1999) 275/491 301/485 0.85 [0.72, 1] yes

Sherif (2002) 79/158 90/159 0.86 [0.64, 1.16] yes
Sengelov (2002) 70/78 60/75 1.06 [0.75, 1.50] yes
Grossman (2003) 98/158 108/159 0.77 [0.58, 1.01] yes

Figure 5 provides a screenshot of the dialog box used to perform the analysis. Using
the estimated average survival rate of S = 40% and assuming w = 0% loss to follow-up,
we found that TSA confirms the results from the systematic review for AIS [figure 6(a)–
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(c)]. TSMB crosses the z curve for AIS of 2,809 patients. The TSA confirms the results
for the systematic review of APIS = 1,990 under assumed RRR = 15%, α = 0.05, and
power(1 − β) = 0.8. However, the results of the systematic review do not hold under
estimated LBIS = LBHIS = 4,418. There was one spurious p-value (Grossman trial)
under LBIS and LBHIS estimates.

Figure 5. Dialog box used to create figure 6
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(a) Results showing that TSMB crosses z curve for AIS
of 2,809 patients.
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(b) Results for APIS of 1,990 patients.
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(c) Results for LBIS of 4,418 patients. Note that because
LBIS equals LBHIS, results for the latter are the same.

Figure 6. TSA on the effects of neoadjuvant chemotherapy for invasive bladder cancer
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. use example2

. metacumbounds ln_hr se_ln_hr N, data(loghr) effect(r) id(study) surv(0.40)
> loss(0.00) alpha(0.05) beta(0.20) is(APIS) graph spending(1) rrr(.15)
> kprsrce(StataRsource.R) rdir(C:\Program Files\R\R-2.12.2\bin\i386\)
> shwRRR pos(10) xtitle(Information size)
Isquare = 0.00%

Cumulative random-effects meta-analysis of 10 studies with Lan-DeMets bounds
----------------------------------------------------------------

Cumulative
Trial estimate() z P val partN UB
Raghavan_1991 1.430 1.453 0.146 96 8.000
Wallace_1991 1.221 1.322 0.186 255 8.000
Martinez_1995 1.153 1.142 0.253 376 5.087
Malmstrom_1996 1.019 0.143 0.887 687 3.640
Cortesi_1997 0.989 0.106 0.915 840 3.281
Bassi_1999 0.971 0.360 0.719 1046 2.910
MRC_EORTC_1999 0.917 1.384 0.166 2022 .
Sherif_2002 0.903 1.876 0.061 2339 .
Sengelov_2002 0.915 1.696 0.090 2492 .
Grossman_2003b 0.897 2.229 0.026 2809 .

6 Discussion

We presented a command, metacumbounds, for the implementation of TSA in Stata,
which we recommend to minimize the risk of random error when performing cumulative
meta-analyses. This way, the risk of finding a difference in treatment effects where
no difference exists is minimized. The command uses a package for constructing Lan–
Demets bounds in an open-source R statistical software.

metacumbounds can be implemented by using either fixed- or random-effects meta-
analysis. It can incorporate heterogeneity in the calculation of boundaries. The method
can be applied with count data or on the hazard scale for time-to-event data; TSA

for both has not been available in the domain of public software. In addition to the
subgroup analysis, funnel plots and meta-regression, the plot of the cumulative z curve,
and monitoring boundaries, APIS and LBIS (or LBHIS in the presence of heterogeneity)
should be a standard supplement to any meta-analysis.
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