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random-effects models: Advantages and

drawbacks of correlated random effects and

hybrid models
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Abstract. Correlated random-effects (Mundlak, 1978, Econometrica 46: 69–85;
Wooldridge, 2010, Econometric Analysis of Cross Section and Panel Data [MIT

Press]) and hybrid models (Allison, 2009, Fixed Effects Regression Models [Sage])
are attractive alternatives to standard random-effects and fixed-effects models be-
cause they provide within estimates of level 1 variables and allow for the inclusion
of level 2 variables. I discuss these models, give estimation examples, and address
some complications that arise when interaction effects are included.

Keywords: st0283, xtreg, xtmixed, multilevel data, panel data, fixed effects, ran-
dom effects, correlated random effects, hybrid model

1 Introduction

It is widely recognized that fixed-effects models have an advantage over random-effects
models when analyzing panel data because they control for all level 2 characteristics,
measured or unmeasured (Allison 2009; Halaby 2004; Wooldridge 2010). This also
applies in a multilevel framework. However, a major drawback of fixed-effects mod-
els is their inability to estimate the effect of any variable that does not vary within
clusters, which holds for all level 2 variables. To circumvent this disadvantage, it
has been proposed to estimate within effects in random-effects models (Allison 2009;
Neuhaus and Kalbfleisch 1998; Rabe-Hesketh and Skrondal 2008; Raudenbush 1989a;
Wooldridge 2010).

2 Models

In the linear case,1 the random-intercept model is given by

yit = β0 + β1xit + β2ci + µi + ǫit (1)

1. The strategy presented here also extends to nonlinear models (Allison 2009; Neuhaus and
Kalbfleisch 1998, Wooldridge 2010).

c© 2013 StataCorp LP st0283



66 Within and between estimates in random-effects models

where subscript i denotes level 2 (for example, subjects) and t denotes level 1 (for
example, occasions). xit is a level 1 variable that varies between and within clusters,
and ci is a level 2 variable that varies only between clusters. µi is the level 2 error and
the random intercept, and ǫit is the level 1 error. Throughout the article, ǫit will be
treated as white noise and not considered further.

The standard distributional assumption regarding the level 2 error is µi|xit, ci ∼
N(0, σ2

µ). The model provides consistent effect estimates if E(µi|xit, ci) = 0. Subtract-
ing the between model

yi = β0 + β1xi + β2ci + µi + ǫi

from (1) provides the fixed-effects model in its demeaned form:

(yit − yi) = β1(xit − xi) + (ǫit − ǫi) (2)

The subtraction removes the level 2 error (µi) from the equation. As a result, the
model’s estimate of β1 is unbiased even if E(µi|xit) 6= 0. But this comes at a cost.
The subtraction also removes all variables that do not vary at level 1. Fixed-effects
models therefore cannot estimate the effect of level 2 variables. This may not be seen
as a problem in panel-data analysis. But it is definitely a major drawback in multilevel
analysis, where interest often lies particularly in estimating the effect of level 2 variables.

However, it is possible to estimate within effects in random-effects models by de-
composing level 1 variables into a between (xi = n−1

i

∑ni

t=1 xit) and a cluster (xit − xi)
component. This hybrid model (Allison 2009) is given by

yit = β0 + β1(xit − xi) + β2ci + β3xi + µi + ǫit (3)

Using (3) to estimate β1 gives the within-effect estimate, that is, the fixed-effects esti-
mate (Mundlak 1978; Neuhaus and Kalbfleisch 1998). Hence, the estimates of β1 from
(2) and (3) are identical. Because (3) is a random-effects model, we can use it to
estimate effects of level 2 variables. However, for the estimate of β2 to be unbiased,
E(µi|xit, ci) = 0 and µi|xit, ci ∼ N(0, σ2

µ) still have to hold. Moreover, even though (3)
is a random-effects model, its estimate of β1 is not more efficient than the one obtained
through estimating (2), because both estimates are solely based on within variation. β3

estimates the between effect (Mundlak 1978; Neuhaus and Kalbfleisch 1998). While it is
not necessary to include the cluster mean (xi) to obtain the within estimate of β1, its in-
clusion ensures that effect estimates of level 2 variables are corrected for between-cluster
differences in xit.

The idea to decompose between and within variation and to estimate the respec-
tive effects in a single model is not new (Kaufman 1993; Kreft, de Leeuw, and Aiken
1995; Neuhaus and Kalbfleisch 1998; Raudenbush 1989a), but it seems to have become
increasingly popular in panel data (Burnett and Farkas 2009; Phillips 2006; Ousey and
Wilcox 2007; Teachman 2011; Zhou 2011) as well as in multilevel analysis (Curran and
Bauer 2011; Epstein et al. 2012; Landale, Gorman, and Oropesa 2006; Nomaguchi and
Brown 2011; Park, Lee, and Epstein 2009; Schempf et al. 2011).
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This approach offers several additional advantages. First, it allows us to test for
equivalence of within and between estimates. This test, which is referred to as an
augmented regression test (Jones et al. 2007, 217), can be used as an alternative to
the Hausman specification test (Baltagi 2008, 73). If between and within effects are
the same—that is, β1 = β3—then (3) collapses to (1), the random-intercept model.
Second, a decomposition into between and within effects can be used with generalized
estimating equations, which enables us to specify less restrictive within-cluster error
structures. Third, this approach can be extended to include random slopes, allowing
effects of level 1 variables to vary between clusters.

A hybrid model that includes a random slope for (xit − xi) is given by

yit = β0 + (β1 + µ2i)(xit − xi) + β2ci + β3xi + µ1i + ǫit

The hybrid model is closely related to the correlated random-effects model (Wooldridge
2010), first proposed by Mundlak (1978). The correlated random-effects model relaxes
the assumption of zero correlation between the level 2 error and the level 1 variables.
In particular, it introduces the assumption µi = πxi + νi, so (1) becomes

yit = β0 + β1xit + β2ci + πxi + νi + ǫit (4)

The cluster mean of xit picks up any correlation between this variable and the level 2
error. Including the cluster mean of a level 1 variable in a random-effects model is
therefore an alternative to cluster mean centering (Halaby 2003, 519). Thus β1 from
(4) is the fixed-effects estimate (Mundlak 1978; Wooldridge 2010), and it is identical to
the estimate obtained from (3). But the estimated effect of xi will differ. In the hybrid
model, this is the between effect. In the correlated random-effects model, this is the
difference of the within and between effects (Mundlak 1978); that is, π = β3 − β1.

The relation between the hybrid model and the correlated random-effects model
becomes obvious if we rewrite (3) as

yit = β0 + β1xit + β2ci + (β3 − β1)xi + µi + ǫit (5)

The correlated random-effects model allows for the inclusion of level 2 variables, and
it can be used with generalized estimating equations, just like the hybrid model. It is
also possible to perform an augmented regression test. But the test takes a different
form. Because π already estimates the difference of the within and between effects, the
null hypothesis is π = 0 (Baltagi 2008, 133). In principle, the correlated random-effects
model can also include random slopes. However, a correlated random-effects model with
random slopes is not equivalent to the corresponding hybrid model with random slopes,
and it is advisable to use the hybrid model (Raudenbush 1989a; 1989b).2

2. In particular, because π = β3 − β1, the random part of the slope, µ2i, will appear in the estimated
effect of xit and xi, which makes it hard to interpret (see Raudenbush [1989a, 12]).
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3 Estimation

The example presented below uses infant birth weight data (Abrevaya 2006; Rabe-
Hesketh and Skrondal 2008). The data comprise 8,604 infants clustered within 3,978
mothers. We will examine how the level 1 variables, mother’s age (mage, continuous)
and smoking behavior (smoke, binary), and the level 2 variable, race (black, binary),
affect a child’s birth weight (birwt, continuous). To estimate between and within effects
in one model, we must first generate the cluster-specific mean of xit. The second step is
to create the deviation scores, which is also known as group mean centering. We have
to ensure that the means are generated on the multivariate sample, that is, by using
listwise deletion to handle missings. This is done using mark (Jann 2007b).

. use http://www.stata-press.com/data/mlmus2/smoking

. mark nonmiss

. markout nonmiss birwt smoke mage black

. egen msmoke = mean(smoke) if nonmiss==1, by(momid)

. generate dsmoke = smoke-msmoke

The cluster-specific means and the deviation scores can also be computed easily with
the center command (Jann 2007a).

. by momid, sort: center mage if nonmiss==1, prefix(d) mean(m)

Once the variables have been created, xtreg, re can be used to fit the hybrid model.

. xtreg birwt dsmoke dmage msmoke mmage black, i(momid) re

. estimates store hybrid

The correlated random-effects model is fit in a similar way, but it includes uncentered
versions of the level 1 variables.

. xtreg birwt smoke mage msmoke mmage black, i(momid) re

. estimates store corr_re

We also fit a random-intercept and a fixed-effects model so that we can compare their
estimates with those of the hybrid model and the correlated random-effects model.

. xtreg birwt smoke mage black, i(momid) re

. estimates store re

. xtreg birwt smoke mage, i(momid) fe

. estimates store fe



R. Schunck 69

Estimation results are shown in table 1. Model 1 presents the estimates from the
random-intercept model, model 2 from the fixed-effects model, model 3 from the hybrid
model, and model 4 from the correlated random-effects model. Comparing the random-
intercept model (model 1) with the fixed-effects model (model 2), we see that there
are considerable differences in effect estimates. The estimated effect on birth weight
of smoking during pregnancy, for instance, is considerably smaller when estimated as a
within-mother effect, that is, once all time-constant (observed and unobserved) differ-
ences between mothers are accounted for. The estimated effect of mother’s age, on the
other hand, is considerably larger in the fixed-effects model than in the random-effects
model.

If we compare the estimates from the fixed-effects model (model 2) with those from
the hybrid model (model 3) and the correlated random-effects model (model 4), we see
that all three models estimate the same (within) effects of the level 1 variables.3 A
comparison of between and within effects from the hybrid model (model 3) provides
additional insight. The model, for instance, estimates the between-mother effect of
smoking as −332.93. Accordingly, the average birth weight for a mother who smokes
and a mother who does not smoke will differ by 332.928 grams. The within-mother
effect is estimated to be −105.70. Thus for a given mother, smoking decreases the
birth weight of her children by 105.70 on average. A Wald test can be used to test for
equivalence of within and between estimates.

. estimates restore hybrid

. test dsmoke=msmoke

. test dmage=mmage

. hausman fe re

In the present case, the test statistics suggest that the null hypothesis of equality
for within and between estimates should be rejected [smoking: Wald χ2(1) = 38.68,
age: Wald χ2(1) = 22.09], which can be considered evidence against the random-effects
model. A Hausman test reaches the same conclusion [χ2(2) = 58.63]. How can we
explain the differences of between and within effects? Smoking is likely to be corre-
lated with other mother-specific unobserved variables (Abrevaya 2006) that adversely
impact birth weight. Therefore, the between effect (and the estimate from the random-
intercept model, which is a weighted average of the between and the within estimate)
overestimates the effect of smoking. Certainly, this raises the question whether there
is a meaningful interpretation of the between effect. The estimate is obviously biased
because it is confounded with the level 2 error. However, a comparison with the within
estimate can inform us how much of the observed relation in birth weight and a mother’s
smoking is due to unobserved heterogeneity between smoking and nonsmoking mothers,
which is not accounted for by our model.

3. The estimated standard errors differ slightly because the data used here are unbalanced (Allison
2009, 27).
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As argued above, the estimated effects of the cluster means will differ between the
hybrid model and the correlated random-effects model. In the correlated random-effects
model, this is π = β3 − β1, as shown in (5). Indeed, the estimated effect of −227.23
for the cluster mean from the correlated random-effects model (model 4) corresponds
exactly to the difference of the estimated within-mother and between-mother effects
from the hybrid model (model 3): −332.93− (−105.70) = −227.23. The test of the null
hypothesis that the difference of within and between estimates is equal to 0 provides
the same results as for the hybrid model [smoking: Wald χ2(1) = 38.68, age: Wald
χ2(1) = 22.09].

. estimates restore corr_re

. test msmoke

. test mmage

As columns 4 and 5 in table 1 show, the hybrid model and the correlated random-
effects model also provide (identical) effect estimates of the level 2 variable black. The
estimated effect of this variable is similar, albeit not identical, to the one obtained
from the random-intercept model (model 1). This is because including xi controls more
encompassingly for between-cluster differences in xit.

As pointed out above, a decomposition into between and within effects also allows
us to incorporate random slopes. Let us assume we have reasons to believe that the
within effect of smoking varies across mothers. In that case, we would want to specify
a hybrid model with a random slope for the variable dsmoke. This can be done with
xtmixed.

. xtmixed birwt dsmoke dmage msmoke mmage black || momid: dsmoke

The results are shown in the last column of table 1 (model 5).

4 Interactions

There are pitfalls to the application of these models when including interactions. Let
us say we are interested in including an interaction of smoking by mother’s age. Thus
our comparison model is the following fixed-effects model:

(
birwtit − birwti

)
= β1 (mageit − magei) + β2

(
smokeit − smokei

)

+β3

(
smokeitmageit − smokeimagei

)
+ (ǫit − ǫi) (6)

We can fit this easily by using the operator # to specify the interaction, the c. operator
to indicate continuous variables, and i. to indicate factor variables.

. xtreg birwt i.smoke##c.mage, i(momid) fe

. estimates store fe_inter
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However, specifying the hybrid model as4

. xtreg birwt c.dsmoke##c.dmage c.msmoke##c.mmage black, i(momid) re

. estimates store hybrid_inter_incorrect

is incorrect. Why is that? What we want to estimate is βk(xitzit − xizi). But if
we specify the interaction in the hybrid model as above, we estimate βk{(xit − xi)
(zit − zi)} = βk(xitzit − xitzi − xizit + xizi), which produces a completely different
result. Therefore, we first have to generate the interaction term xitzit, cluster mean
center the new variable, and then enter it into the model.

. generate smokeXmage = smoke*mage

. by momid, sort: center smokeXmage if nonmiss==1, prefix(d) mean(m)

. xtreg birwt dsmoke dmage dsmokeXmage msmoke mmage msmokeXmage black, i(momid) re

. estimates store hybrid_inter_correct

Because the correlated random-effects model does not include deviations from the
cluster means but does include the variables in their uncentered form, it is possible to
include the interaction of these variables with the operator #. However, to obtain the
correct within effect of the interaction, we still have to include the respective interaction
terms of the cluster means. This, again, cannot be done with the operator #. We have
to control for xizi, but using # instead results in xizi.

The following specification therefore results in incorrect estimates:

. xtreg birwt i.smoke##c.mage c.msmoke##c.mmage black, i(momid) re

. estimates store corr_re_inter_incorrect

The correct estimates are obtained through the following specification:

. xtreg birwt i.smoke##c.mage msmoke mmage msmokeXmage black, i(momid) re

. estimates store corr_re_inter_correct

An estimation example is provided in table 2. Model 1 shows the estimates from
the standard fixed-effects model. This model estimates the interaction effect of smoking
by mother’s age as 3.79. Models 2 and 3 present estimates from hybrid models, and
models 4 and 5 present estimates from correlated random-effects models. Models 2 and
4 include the incorrect interaction, and models 3 and 5 include the correct interactions.
If we compare the estimated interaction effects of models 2 and 4 with the benchmark,
model 1, we see that both are incorrect. Moreover, the estimated main effects of models 2
and 4 are, of course, also incorrect. Models 3 and 5, on the other hand, estimate the
correct main and interaction effects.5

4. Note that group mean-centered variables are continuous.
5. The magnitude of the difference between the correct and the incorrect estimates is considerably

larger in the hybrid model than in the correlated random-effects model. This is what we would
expect, considering that the difference between the correct and the incorrect interaction terms in
the hybrid model, that is, the difference between (xitzit −xizi) and {(xit −xi)(zit − zi)}, is larger
than the difference in the correlated random-effects model, that is, the difference between xizi and
xizi.
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If we want to exploit the possibility of estimating within effects in random-effects
models via the hybrid specification, we have to include interaction terms in the old-
fashioned way by generating interaction variables. If we use the correlated random-
effects setup, we still have to generate interactions of the cluster mean variables by
hand.

Unfortunately, in the case of the hybrid model, it becomes impossible to use postes-
timation commands such as margins in the usual manner. margins relies on factor-
variable notation. If interactions are not specified via #, Stata will not automatically
take into account both main and interaction effects.

Suppose we are interested in the marginal effect of mother’s age, that is, in the
partial derivate of (6) with respect to mother’s age. Based on the fixed-effects model
(model 1) this is 23.28. However, using margins after the hybrid model (model 3) gives
22.75, which is only the main effect. Using margins after the correlated random-effects
model (model 5), on the other hand, gives the correct estimate of 23.28.6

. estimates restore fe_inter

. margins, dydx(mage)

. estimates restore hybrid_inter_correct

. margins, dydx(dmage)

. estimates restore corr_re_inter_correct

. margins, dydx(mage)

5 Conclusion

I discussed some advantages that correlated random-effects and hybrid models offer. In
either case, a decomposition of within and between effects in a single model increases
flexibility in model setup because it combines advantages of fixed- and random-effects
models. It allows us to estimate the effect of level 2 variables while providing effect
estimates of level 1 variables that are unbiased by a possible correlation with the level
2 error. Moreover, a comparison of within and between effects (or their difference)
provides an assessment of the degree to which unobserved heterogeneity in level 2 char-
acteristics is responsible for an observable relation between the outcome and a level 1
variable, which is not accounted for by our model. Importantly, these advantages apply
when handling any clustered data, whether it is panel data or multilevel data.

Yet there are some aspects to consider. First, within-effect estimates obtained
through random-effects models are not more efficient than those obtained from fixed-
effects models. Second, the approach described here offers no remedy for a possible
correlation of a level 2 variable and the level 2 error (this would require an instrumental-
variables approach; see Hausman and Taylor [1981] when handling panel data). Third,
handling interactions in these models may be cumbersome. Nevertheless, these models
are useful extensions to the standard random-effects and fixed-effects approaches.

6. Note that depending on what margins is used for, predictions based on fixed-effects models may
still differ from those based on correlated random-effects models because the estimated intercepts
differ.
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