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Abstract. I present a new Stata command, simsam, that uses simulation to
determine the sample size required to achieve a given statistical power for any
hypothesis test under any probability model that can be programmed in Stata.
simsam returns the smallest sample size (or smallest multiple of 5, 10, or some
other user-specified increment) so that the estimated power exceeds the target.
The user controls the precision of the power estimate, and power is reported with
a confidence interval. The sample size returned is reliable to the extent that if
simsam is repeated, it will, nearly every time, give a sample size no more than one
increment away.

Keywords: st0282, simsam, sample size, power, simulation

1 Introduction

The statistical power of a research study is the probability that it will find evidence
of an important effect. Power depends on what we mean by “important”, on what
counts as evidence, and on how the study is designed; but given these specifications,
power depends on parameters of the design such as the sample size. In the life sciences,
choosing a sample size on the basis of the power it achieves is an important ethical
consideration when planning research (Newell 1978; Altman 1980).

Many methods for calculating sample size, including those for comparing indepen-
dent samples using a t test or χ2 test, rely on an approximation for the relationship
between sample size and power (Florey 1993; Campbell, Julious, and Altman 1995).
Although the exact power achieved by a given sample size can be estimated for any
hypothesis test using Monte Carlo simulation (Feiveson 2002; Eng 2004), using simu-
lation to determine the sample size required to achieve a given power is slightly more
complicated, necessitating that power be estimated at different sample sizes to find the
one at which the target power is attained. This computational burden may be the
reason simulation is not used more routinely as a tool for sample-size calculation. A
general approach for determining sample size by simulation in Stata has been described
by Feiveson (2002, 2009), and a sample-size calculator of this kind has been developed
by Browne, Golalizadeh Lahi, and Parker (2009) for random-effects models in MLwiN
and R, but practical and versatile software tools have not to date been widely available.

c© 2013 StataCorp LP st0282



22 Versatile sample-size calculation

I describe a new Stata command, simsam, that uses a novel, iterative algorithm
that uses simulation to determine the sample size required to achieve a given power.
The user controls the precision with which power is estimated, but in early iterations,
the algorithm uses less precision to make more rapid progress. simsam assumes that
code for generating and analyzing a single dataset is provided in a separate program;
thus simsam can calculate sample size for any method of analysis under any probability
model that can be programmed in Stata. In fact, although the term “sample size” is
used throughout this article, simsam can be used to determine any design parameter
that, when increased (with all other parameters fixed), causes the power to increase.
There could be more than one parameter, such as duration of recruitment and duration
of follow-up or number of clusters and number of participants per cluster.

2 The simsam command

2.1 Syntax

simsam subcommand n option name, inc(#) prec(#)
[
power(#) alpha(#)

detect(options) null(options) assuming(options) start(#) iter(#)

notable pvalue(name) level(#)
]

or

simsam continue
[
, inc(#) prec(#) null(options) iter(#) notable

]

2.2 Options

inc(#) specifies the sample-size increment. simsam returns a sample size that is a
multiple of the increment. This option is required except with simsam continue,
where if inc() is not specified, it is assumed to be the same as in the previous simsam
command. inc() must be an integer (simsam will only consider integer values for
the sample size).

prec(#) specifies the precision of the final estimate of power. This option is required
except with simsam continue, where if prec() is not specified, it is assumed to be
the same as in the previous simsam command. The precision is the half-width of
the confidence interval for power, whose level is set by the level() option. The
actual confidence interval is calculated using an exact binomial method, so it will
not always match the specified precision exactly.

power(#) specifies the target for statistical power as a decimal fraction. The default
is power(0.9).

alpha(#) specifies the significance level. The default is alpha(0.05).
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detect(options) lists the options to subcommand that specify the effect to be detected.

null(options) lists the options to subcommand that specify the null model.

assuming(options) lists any other options to subcommand that specify additional as-
sumptions.

start(#) specifies the starting value for sample size in the iterative algorithm. The
default is start(100). The algorithm can generally find its way to any required
sample size, large or small, from a starting value of 100, but sometimes a judicious
choice of starting value will ensure quicker convergence.

iter(#) specifies the maximum number of iterations. The default is iter(10), which
will be sufficient in many applications. The largest number that can be specified is
iter(99).

notable suppresses the output table containing results from each iteration.

pvalue(name) identifies the returned scalar containing the p-value. The default is
pvalue(p), which means that after execution of subcommand, simsam looks for the
p-value in r(p).

level(#) specifies the confidence level for estimates of power. The default is level(99)
to ensure good coverage and to emphasize the distinction from sample-based esti-
mates, which would usually be quoted with 95% confidence. The level can be set
to any integer between 90 and 99, but precision will usually be controlled using the
prec() option, so level() can be kept at its default.

2.3 Saved results

simsam saves the following scalars and macros in r(). Some of these are used by
simsam continue to pick up where simsam left off; therefore, users should not use
another rclass command after simsam if they intend to use simsam continue.

Scalars
r(n) required sample size r(tryn) sample size to try next
r(p) estimate of power at sample r(nullp) estimate of power under null

size n r(nullpl) lower confidence limit for power
r(pl) lower confidence limit for power under null
r(pu) upper confidence limit for r(nullpu) upper confidence limit for power

power under null
r(alpha) significance level r(level) confidence level for estimates of
r(power) target power power
r(inc) increment r(prec inc) precision and increment ratio
r(prec) precision
r(reps) number of replications

used to estimate power
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Macros
r(subcomm) subcommand r(assuming) additional options
r(noption) name of option for sample size r(ntried) sample sizes tried so far, at full
r(pvalue) where p-value is returned by precision

subcommand r(exitcond) exit condition
r(detect) specification of the effect to r(phase) phase of algorithm (heuristic or

be detected step-down)
r(null) specification of the null model

3 The subcommand

In the simsam syntax, subcommand is the name of a program containing code to generate
and analyze a single dataset. n option name is the name of an option to subcommand

that controls the sample size. Essential features of the subcommand program are that

(a) options follow standard syntax, and there are no arguments before the comma;

(b) data in memory are cleared before the new dataset is generated; and

(c) it is an r-class command, returning the p-value as a scalar.

Where speed is of the essence, the program should also be as lean as possible.
Requirement (b) also allows subcommand to be used with Stata’s simulate command.

Example

The following program could be used as a subcommand for simsam to calculate
sample size for a two-sample t test (though a faster method in this case would be to use
Stata’s sampsi command). The program generates normally distributed observations
in two independent samples and then applies a t test. It has required options d() (mean
difference), sd() (standard deviation in each group), and npergrp() (sample size per
group).

. program define s_ttest, rclass
1. version 12.0
2. syntax , D(real) SD(real) NPERGRP(integer)
3. drop _all
4. set obs `=2*`npergrp´´
5. gen group=mod(_n, 2)
6. gen x=rnormal(`d´*group, `sd´)
7. capture noisily ttest x, by(group)
8. return scalar p=r(p)
9. end

simsam assumes by default that the p-value will be returned in r(p), but an alter-
native can be specified with the pvalue() option. For example, pvalue(p exact) tells
simsam to look for the p-value in r(p exact). This is useful if the user wants to choose
from more than one returned p-value, for example, exact and approximate or one-tailed
and two-tailed. simsam also assumes that if the p-value is missing—for example, if an
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error was captured during the analysis and a p-value was not returned—the result is to
be considered nonsignificant. This allows for situations where legitimately arising data
cannot be analyzed—for example, a logistic regression on a contingency table with a
zero cell. Once a new program has been checked for syntax errors, errors in the analysis
should be routinely captured so that they do not halt the progress of simsam. In partic-
ular, capture noisily should be captured, as in the example above, so that running
subcommand by itself produces noisy output.

4 Basic use

In basic use, there are two required options to simsam: inc(), which specifies the
increment for sample size, and prec(), which sets the precision of the final estimate
of power (see section 2.2). A certain degree of precision relative to the increment is
necessary for simsam to converge reliably on a solution, though this will also depend on
what the required sample size turns out to be; if during its execution simsam suspects
that there is a problem with precision, it will halt and give further advice (this essentially
involves checking whether successive iterations of sample size are determined to within
one increment, subject to the uncertainty in the power estimate; see section 8.4).

Options for target power and significance and their default values are the same as
for Stata’s sampsi command. The other options likely to be specified are detect() and
assuming(). Their use is best illustrated with an example.

Example

Suppose you want to use the s ttest command defined above to calculate the sample
size required to detect a mean difference of 0.5 between two independent groups using
a t test, with 80% power at the 5% significance level, assuming a standard deviation in
each group of 1.0. As will be seen in a later example, you can play with the increment
and precision once an initial solution has been obtained; to start, you may prefer a fairly
wide increment and precision—in this case an increment of 10 and a precision of 1%.

(Note: All examples in this article were run in Stata version 12. Because of changes
to Stata’s random-number generator, results can be version-dependent even with the
same seed specified.)
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. version 12.0

. set seed 20120301

. simsam s_ttest npergrp, power(0.8) alpha(0.05) detect(d(0.5))
> assuming(sd(1.0)) inc(10) prec(0.01)

iteration npergrp power (99% CI)

1 100 ........... 0.9200 (0.8239, 0.9737)
2 70 ........... 0.8110 (0.7771, 0.8418)
3 70 ........... 0.8368 (0.8274, 0.8459)
4 60 ........... 0.7766 (0.7661, 0.7870)

npergrp = 70
achieves 83.68% power (99% CI 82.74, 84.59)

at the 5% significance level
to detect

d = 0.5
assuming

sd = 1.0

If continuing, use prec/inc < 2.8e-03

The final results show that a sample size of 70 per group achieves an estimated power
of 83.68%. This is the smallest multiple of 10 for which estimated power exceeds 80%.

In the example, options listed inside detect() and assuming() are all passed as
options to s ttest, along with the option npergrp(n), where n is the working sample
size at each iteration. In this situation, detect() and assuming() are essentially inter-
changeable (other than influencing how parameters are reported in the final output).

The output table updates as each iteration is completed. It can be suppressed with
the notable option. The line of dots in each row marks the progress of the iteration. The
interval between dots represents one tenth of the time required for the whole iteration.
This interval gets longer in later iterations; that is, the dots appear more slowly as the
iterations continue (this differs from the simulate command).

The algorithm used by simsam to determine sample size is discussed in more detail
in the next section.

5 The algorithm

5.1 Background

To find the minimum sample size at which power exceeds a given threshold, we have to
estimate power at more than one sample size. In the Stata examples given by Feiveson
(2002, 2009) and in the MLPowSim software developed by Browne, Golalizadeh Lahi,
and Parker (2009), the user specifies an upper and lower limit for sample size together
with a sample-size increment; the algorithm considers every sample size in turn, starting
at the lower limit and increasing by the given increment until the upper limit is reached.
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Williams, Ebel, and Wagner (2007) suggested a more efficient binary search algo-
rithm in which half the possible sample sizes are ruled out at each iteration. Starting
with a range of possible sample sizes (n1, n2), this algorithm estimates the power at the
mid-point of the range nmid and then repeats the process either on the range (n1, nmid)
or on the range (nmid, n2), depending on whether the power at nmid is above or below
the required power. Jung (2008) suggested a binary search in which the number of
replications varies: it starts with 100 replications at each sample size and increases to
1,000 replications once the algorithm has narrowed down the search. simsam develops
these ideas further using an algorithm that combines 1) an intelligent or heuristic search
for sample size and 2) a progressively increasing number of replications.

5.2 Heuristic search

A binary search can rule out half the sample sizes at each iteration because the relation-
ship between sample size and power can be assumed to be an increasing one. If we could
assume something about the form of the relationship between sample size and power,
it might be possible to hone in more rapidly on the desired solution. If we knew the
exact relationship, we could go directly to the solution; but even if we can only guess an
approximate relationship, we should still be able to find a better guess at sample size
and then apply the same process iteratively to converge on a solution.

simsam makes a guess based on a normal approximation: it assumes the hypothe-
sis test is based on a normally distributed estimate of effect size with standard error
decreasing as one over the square root of sample size. With this assumption, simsam
can formulate the relationship between power and sample size from a single estimate of
power at a single sample size and in this way jump to a new, improved guess at sample
size (see section 8.1).

5.3 Increasing the number of replications

simsam starts with 100 replications in the first iteration and multiplies this by 10 at
each iteration until the required maximum is reached, after which it continues using the
maximum number of replications at each iteration. The maximum is calculated from
the precision specified by the user for the power estimate (see section 8.2). Suppose
that the maximum number of replications is 1,000,000. With this scheme, we can
afford to spend the first four iterations converging on a solution. As long as we aim to
have converged by the time we reach 1,000,000 replications, then the earlier iterations
will only have consumed 111,100 replications in total—less than 1/9 of the 1,000,000
required to estimate the power at the final iteration. This is much more efficient than
using the full number of replications to evaluate every different sample size.
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5.4 Terminating the search

The algorithm requires a robust approach to decide when to stop. It proceeds in two
phases: a heuristic phase as described above, followed by a step-down phase in which
the strategy changes to an incremental search.

During the heuristic phase, once the maximum number of replications is reached,
the algorithm maintains a list of the sample sizes it has already tried, a record of the
smallest estimated power exceeding the target, and the sample size that achieved this
(the best sample size so far). When the algorithm determines that the next sample size
is one it has already tried, it reverts to the “best” sample size and switches over from
the heuristic phase to the step-down phase.

In the step-down phase, the algorithm reduces the sample size by one increment at
each iteration. It stops when 1) it reaches a sample size it has already tried (for which
the estimated power must have been below the target); 2) it reaches a sample size of
zero; or 3) it estimates the power to be below the target. The step-down phase ensures
we have found the minimum required sample size by confirming that the power at a
smaller sample size is below the target.

Example

The processes acting behind the scenes in the example above can now be explained.
We are trying to estimate a power of 80% with a 99% confidence interval of +/ − 1%.
This requires 10,620 replications. The first iteration uses 100 replications of sample
size 100 and estimates the power to be 92.00%. This results in a revised guess of 70
for the sample size. The second iteration uses 1,000 replications of sample size 70 and
estimates the power to be 81.10%. This again results in a guess of 70 (rounded up to
the nearest 10) for the required sample size. The third iteration uses the maximum
number of replications (10,620—the algorithm skips 10,000 because this is almost the
maximum anyway) with sample size 70 and estimates the power to be 83.68%.

The revised guess at the required sample size is 70 again (this is not shown in the
table but can be inferred from what simsam does next). Because this is the second
time a sample size of 70 has been suggested at the maximum number of iterations, the
algorithm switches over to the step-down phase and looks instead at a sample size of 60.
Power in this case is estimated to be 77.66%. Because the estimated power at sample
size 70 is 83.68% and at sample size 60 is 77.66%, simsam concludes that the smallest
sample size to the nearest 10 for which power exceeds 80% is 70.
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6 Continuing after a previous command

simsam may halt before a solution has been obtained either because it suspects a problem
that might prevent convergence or because it has completed a prespecified number of
iterations. In fact, simsam will cease iterating under one of five exit conditions:

1. the algorithm has converged according to the criteria defined in the previous sec-
tion;

2. the number of iterations specified in the iter() option has been completed, the
default being 10 (the largest number that can be specified is 99);

3. simsam suspects that given the precision relative to the increment specified, the
sample size cannot be reliably determined to within one increment;

4. the estimated power is unexpectedly low (if the power is less than the significance
level, this could indicate a problem with subcommand—in particular, a power of 0
may indicate the program is consistently failing to return a p-value); or

5. the working sample size is continually increasing, but the power is not being
controlled as expected.

After any of these exit conditions, simsam may be restarted using the simsam

continue command. simsam continue uses saved results to continue where simsam

left off and does not have any required options, though it does allow the user to alter
the increment and the precision before continuing. After exit conditions 1 and 3, simsam
estimates the precision relative to the increment that is required if the user wants to
continue.

Cases 4 and 5 are not considered errors because they could arise legitimately (for
example, through sampling error or poor choice of starting value), but using simsam

continue in these cases is unlikely to solve the underlying problem, and the program is
liable simply to halt again. Continuing after simsam has converged, without changing
the increment or precision, will just cause the previous result to be output again. In fact,
simsam continue is likely to be most useful in three situations, which are illustrated
with examples below: 1) stopping and restarting after a fixed number of iterations; 2)
obtaining a rough solution before proceeding to a higher-precision one; and 3) amending
the precision or increment to allow convergence.
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Example

. version 12.0

. set seed 20120301

. simsam s_ttest npergrp, power(0.8) alpha(0.05) detect(d(0.5)) assuming(sd(1))
> inc(10) prec(0.01) iter(2)

iteration npergrp power (99% CI)

1 100 ........... 0.9200 (0.8239, 0.9737)
2 70 ........... 0.8110 (0.7771, 0.8418)

Warning: did not converge within 2 iterations

. simsam continue, iter(2)

iteration npergrp power (99% CI)

1 70 ........... 0.8368 (0.8274, 0.8459)
2 60 ........... 0.7766 (0.7661, 0.7870)

npergrp = 70
achieves 83.68% power (99% CI 82.74, 84.59)

at the 5% significance level
to detect

d = 0.5
assuming

sd = 1

If continuing, use prec/inc < 2.8e-03

Example

. version 12.0

. set seed 20120301

. simsam s_ttest npergrp, power(0.8) alpha(0.05) detect(d(0.5)) assuming(sd(1))
> inc(10) prec(0.01)

iteration npergrp power (99% CI)

1 100 ........... 0.9200 (0.8239, 0.9737)
2 70 ........... 0.8110 (0.7771, 0.8418)
3 70 ........... 0.8368 (0.8274, 0.8459)
4 60 ........... 0.7766 (0.7661, 0.7870)

npergrp = 70
achieves 83.68% power (99% CI 82.74, 84.59)

at the 5% significance level
to detect

d = 0.5
assuming

sd = 1

If continuing, use prec/inc < 2.8e-03
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. simsam continue, inc(1) prec(0.001)

iteration npergrp power (99% CI)

1 70 ........... 0.8383 (0.8352, 0.8412)
2 64 ........... 0.8010 (0.8000, 0.8020)
3 63 ........... 0.7949 (0.7939, 0.7959)

npergrp = 64
achieves 80.10% power (99% CI 80.00, 80.20)

at the 5% significance level
to detect

d = 0.5
assuming

sd = 1

If continuing, use prec/inc < 3.1e-03

Example

. version 12.0

. set seed 20120301

. simsam s_ttest npergrp, power(0.8) alpha(0.05) detect(d(0.5)) assuming(sd(1))
> inc(1) prec(0.01)

iteration npergrp power (99% CI)

1 100 ........... 0.9200 (0.8239, 0.9737)

Warning: npergrp not reliably determined to within one increment

If continuing, use prec/inc < 2.8e-03

. simsam continue, inc(10) prec(0.01)

iteration npergrp power (99% CI)

1 70 ........... 0.8110 (0.7771, 0.8418)
2 70 ........... 0.8368 (0.8274, 0.8459)
3 60 ........... 0.7766 (0.7661, 0.7870)

npergrp = 70
achieves 83.68% power (99% CI 82.74, 84.59)

at the 5% significance level
to detect

d = 0.5
assuming

sd = 1

If continuing, use prec/inc < 2.8e-03
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7 Validating a sample-size calculation

One of the advantages of simsam as a system for sample-size calculation is that it is
relatively easy to share and to validate. This is useful, for example, if a sample-size
calculation is to be included in a grant proposal.

7.1 Introduction to the example

Suppose there is a proposal for a randomized trial of a community intervention—the
AARDVARK trial—that is to be randomized by household and delivered either to one
adult in the household or to two if there is a married or cohabiting couple living there.
The investigators assume the proportion of households with couples is 0.3; the mean
difference in outcome between intervention and control groups is 0.5; the standard
deviation within each group is 1.0; and the intracluster correlation is 0.5. They intend
to analyze their data using random-effects regression, testing the group difference with
a likelihood-ratio test. They report that a sample size of 58 households per group
achieves 80% power at the 5% significance level and submit the following command,
which they used with simsam to calculate sample size:

. program define aardvark, rclass
1. version 12.0
2. syntax, PCOUPLE(real) ICC(real) D(real) SD(real) NHOUSPERGRP(integer)
3. drop _all
4. set obs `=2*`nhouspergrp´´
5. scalar sigmaa=sqrt(`icc´)*`sd´
6. scalar sigmae=sqrt(1-`icc´)*`sd´
7. gen group=mod(_n,2)
8. gen k=1+(runiform()<`pcouple´)
9. gen ybar=rnormal(`d´*group, sigmaa)
10. gen housid=_n
11. expand k
12. gen y=rnormal(ybar, sigmae)
13. capture noisily {
14. xtreg y group, i(housid) mle
15. estimates store model1
16. xtreg y, i(housid) mle
17. estimates store model0
18. lrtest model1 model0
19. }
20. return scalar p=r(p)
21. end
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7.2 Repeating the calculation and estimating the power under the
null hypothesis

Because simsam only converges on a solution if it can do so reliably, repeating the
simsam command will nearly always give the same answer (or, at worst, a sample size
one increment away). Thus one way for the funding panel to validate the investigators’
calculation is simply to repeat it. simsam also allows the user to estimate the power
under the null hypothesis at the required sample size. This can be specified as an
additional option, null(), when repeating the sample-size calculation. The example
below takes some time to run (over 24 hours, depending on system specification), but
in the timescale of a typical grant application, this should be no great burden (and
without the efficient algorithm used by simsam, it might take weeks to determine the
sample size by simulation).

. version 12.0

. set seed 20120301

. simsam aardvark nhouspergrp, power(0.8) alpha(0.05) null(d(0)) detect(d(0.5))
> assuming(sd(1.0) icc(0.5) pcouple(0.3)) inc(1) prec(0.001)

iteration nhousp~p power (99% CI)

1 100 ........... 0.9900 (0.9280, 0.9999)
2 43 ........... 0.6400 (0.5998, 0.6788)
3 63 ........... 0.8443 (0.8347, 0.8535)
4 56 ........... 0.7919 (0.7885, 0.7952)
5 58 ........... 0.8024 (0.8014, 0.8033)
6 57 ........... 0.7954 (0.7944, 0.7964)

null 58 ........... 0.0523 (0.0512, 0.0533)

nhouspergrp = 58
achieves 80.24% power (99% CI 80.14, 80.33)

at the 5% significance level
to detect

d = 0.5
assuming

sd = 1.0
icc = 0.5

pcouple = 0.3

under null: 5.23% power (99% CI 5.12, 5.33)

If continuing, use prec/inc < 3.4e-03

This reproduces the investigators’ solution of 58 households per group. The power
under the null is estimated to be 5.23%. In general, we would expect power under
the null to equal significance. Here we must consider the validity of the subcommand

program (see section 7.3). If we are satisfied with this (and excluding sampling variation
as an explanation), we must conclude that a likelihood-ratio test in this situation is
slightly biased. If the sample-size calculation is repeated with a nominal significance
level of 4.8% to bring the true significance level closer to 5%, then the required sample
size becomes 59 households per group.
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One note of caution: If power is defined as the probability of correctly rejecting
the null hypothesis under a given alternative, then in a two-sided context, we need to
be clear what we mean by “correctly rejecting”. Power in the two-sided case is often
calculated as the probability that the two-tailed p-value is significant and the observed
effect is in the correct direction. For simsam to calculate this “directional” power, we
need the subcommand to return the relevant one-sided p-value multiplied by two rather
than the two-sided p-value. In this case, the power under the null would be half the
significance level. In practical terms, this distinction turns out to be of little importance:
when the directional power is 80%, the nondirectional power is only around 0.0001%
greater using a normal approximation.

With the null() option in use, the distinction between detect() and assuming()

is clearer. To calculate the required sample size, you pass all options in detect() and
assuming() to subcommand. To calculate power under the null, you pass all options
in null() and assuming() to subcommand. In other words, assuming() contains as-
sumptions that hold under both the null and the alternative.

The null() option can also be used with simsam continue. If the inc() and
prec() options are not set, then power under the null is calculated for the previous
simsam solution.

7.3 Validating the subcommand

The command aardvark certainly appears to have face validity; that is, it seems to do
what is intended. To investigate further what the command is doing, we could run it
separately and follow up with additional checks:

. version 12.0

. set seed 20120301

. quietly aardvark, pcouple(0.3) icc(0.5) d(0.5) sd(1.0) nhouspergrp(58)

. table group, contents(mean y sd y)

group mean(y) sd(y)

0 -.1695986 .9529981
1 .4627651 1.021282
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. bysort group: loneway y housid

-> group = 0

One-way Analysis of Variance for y:

Number of obs = 73
R-squared = 0.9582

Source SS df MS F Prob > F

Between housid 62.658676 57 1.099275 6.04 0.0002
Within housid 2.732109 15 .1821406

Total 65.390785 72 .90820535

Intraclass Asy.
correlation S.E. [95% Conf. Interval]

0.80037 0.07926 0.64501 0.95572

Estimated SD of housid effect .8545366
Estimated SD within housid .4267793
Est. reliability of a housid mean 0.83431

(evaluated at n=1.26)

-> group = 1

One-way Analysis of Variance for y:

Number of obs = 76
R-squared = 0.9120

Source SS df MS F Prob > F

Between housid 71.341771 57 1.25161 3.27 0.0037
Within housid 6.8844844 18 .38247136

Total 78.226255 75 1.0430167

Intraclass Asy.
correlation S.E. [95% Conf. Interval]

0.63477 0.12855 0.38282 0.88673

Estimated SD of housid effect .8153182
Estimated SD within housid .6184427
Est. reliability of a housid mean 0.69442

(evaluated at n=1.31)

We could also run simulations involving aardvark using the simulate command to
investigate its behavior further.

7.4 Comparison with approximate methods

If there were no clustering by household, a conventional sample-size calculation would
indicate that 63 participants per group were required (Campbell, Julious, and Altman
1995). If we use a standard adjustment for the “design effect” introduced by clustering
(see Donner, Birkett, and Buck [1981]), calculated using the average cluster size of 1.3
and the intracluster correlation of 0.5, the required sample size per group becomes 73
participants, or 56 households. Variability in cluster size will reduce the power. An
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alternative adjustment that is based on the coefficient of variation of the distribution
of cluster size and is conservative is discussed by Eldridge, Ashby, and Kerry (2006).
Using this adjustment, we obtain a required sample size of 78 participants per group,
or 60 households. From this, we would suspect that the true required sample size was
somewhere between 56 and 60 households per group, which agrees with the solution
obtained by simsam.

8 Methods and formula

8.1 Successive iterations of sample size in the heuristic phase

In the case where the null and alternative hypotheses differ by one degree of freedom,
we can imagine the hypothesis test to be based on an unbiased estimate of the effect
size δ, which is roughly normally distributed with standard error σ/

√
n, n being the

sample size. Under this assumption of normality, the relationship between sample size
n and type II error probability β is

δ

σ/
√

n
= z1−α/2 + z1−β

where zp is the pth percentile of the standard normal distribution, and α is the type I
error probability, that is,

n = (σ/δ)
2 (

z1−α/2 + z1−β

)2

or equivalently
n

(
z1−α/2 + z1−β

)2 = constant

Suppose at iteration i we are considering sample size ni, at which we estimate the
power to be 1− β̂i. Then we can use the above equation to calculate a new sample size
ni+1 aimed at achieving the target power 1 − β∗:

ni+1 = ni

(
z1−α/2 + z1−β∗

z1−α/2 + z1−bβi

)2

= nif
(
β̂i

)

simsam rounds this up to the next multiple of the chosen increment.



R. Hooper 37

8.2 Number of replications

The maximum number of replications r is calculated from the target power 1 − β∗ (or
the significance if the power under the null is being calculated), the precision δβ (the
half-width of the confidence interval), and the confidence level 1 − λ using standard
methods for estimating proportions:

r = β∗ (1 − β∗)

(
z1−λ/2

δβ

)2

simsam rounds this number up to the nearest multiple of 10.

8.3 Confidence intervals for power

Confidence intervals for power are calculated by the Stata command cii using an exact
binomial method; see [R] ci.

8.4 Required ratio of precision to increment

After each iteration, simsam assesses whether the required sample size can be reliably
determined to within one increment. To do this, it imagines the power to be estimated
as 1−β∗ (confidence interval [1−β∗− δβ, 1−β∗ + δβ]) at the most up-to-date guess at
required sample size ni+1 and looks at what the difference would be between the next
iteration of sample size at the upper and lower confidence limits, respectively. This
difference should be less than the increment m for there to be confidence that the next
iteration of sample size does not change by more than one increment:

{f (β∗ + δβ) − f (β∗ − δβ)}ni+1 < m

If this condition is not met, simsam halts. In this case, and also when it converges on
a solution, simsam provides the user with a suggested precision-to-increment ratio. It
does this by approximating the left-hand side of the above inequality using the derivative
of f with respect to β, which is ḟ , and using its best guess at sample size n̂ (either ni+1

if halted prematurely or the solution on which it has converged). Thus

2δβḟ (β∗) n̂ < m

that is,

δβ

m
< 1/

{
2n̂ḟ (β∗)

}
=

(
z1−α/2 + z1−β∗

)
e−z2

1−β∗/2

4
√

2πn̂
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