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ｍａｐδ（ｘ）ｆｒｏｍｔｈｅｓａｍｐｌｅｓｐａｃｅＸ＝｛ｘ１，ｘ２，…，ｘｎ｝ｔｏｔｈｅａｃｔｉｏｎ
ｓｅｔλ＝｛ａ１，ａ２，…，ａｍ｝ｉｓｃａｌｌｅｄａｄｅｃｉｓｉｏｎｆｕｎｃｔｉｏｎｏｆｔｈｉｓｐｒｏｂ
ｌｅｍ．
２．４　ＥＶＰＩ（ＥｘｐｅｃｔｅｄＶａｌｕｅｏｆＰｅｒｆｅｃｔＩｎｆｏｒｍａｔｉｏｎ）［３］　Ｔｈｅ
ｅｖａｌｕａｔｉｏｎｓｔａｎｄａｒｄｏｆＢａｙｅｓｉａｎｄｅｃｉｓｉｏｎｉｓｔｈｅｍａｘｉｍｕｍｅｘｐｅｃｔｅｄ
ｒｅｔｕｒｎｐｒｉｎｃｉｐｌｅ，ｏｒｔｈｅｍｉｎｉｍｕｍｅｘｐｅｃｔｅｄｌｏｓｓｐｒｉｎｃｉｐｌｅ．Ｉｎｇｅｎ
ｅｒａｌ，ｔｈｅｍｉｎｉｍｕｍｅｘｐｅｃｔｅｄｌｏｓｓｐｒｉｎｃｉｐｌｅｉｓｅｑｕｉｖａｌｅｎｔｔｏｔｈｅ
ｍａｘｉｍｕｍｅｘｐｅｃｔｅｄｒｅｔｕｒｎｐｒｉｎｃｉｐｌｅ．Ａｎｄｔｈｅｒｅｉｓ：


ｊ
ｐ（θｊ）ｖｉｊ＋ｊｐ（θｊ）ｌｉｊ＝ｊｐ（θｊ）（ｍａｘｋ ｖｋｊ） （１）
Ｕｎｄｅｒｔｈｅｃｏｎｄｉｔｉｏｎｏｆｏｂｔａｉｎｉｎｇｃｏｍｐｌｅｔｅｉｎｆｏｒｍａｔｉｏｎ，ｔｈｅ

ＡｓｉａｎＡｇｒｉｃｕｌｔｕｒａｌＲｅｓｅａｒｃｈ２０１５，７（１２）：９－１１



ｇｒｅａｔｅｓｔｅｘｐｅｃｔｅｄｒｅｔｕｒｎｉｓ
ｊ
ｐ（θｊ）（ｍａｘｋ ｖｋｊ）．Ｂｙｆｏｒｍｕｌａ（１），

ｃｏｍｐａｒｅｄｗｉｔｈｔｈｅｍａｘｉｍｕｍｅｘｐｅｃｔｅｄｒｅｔｕｒｎｏｆｈａｖｉｎｇｎｏｔｏｂ
ｔａｉｎｅｄｔｈｉｓｉｎｆｏｒｍａｔｉｏｎ，ｔｈｅｄｉｆｆｅｒｅｎｃｅｂｅｔｗｅｅｎｔｈｅｔｗｏｉｓｐｒｅｃｉｓｅｌｙ
ｔｈｅｍｉｎｉｍｕｍｅｘｐｅｃｔｅｄｌｏｓｓ．


ｊ
ｐ（θｊ）（ｍａｘｋ ｖｋｊ）－ｍａｘｉ ［ｊｐ（θｊ）ｖｉｊ］＝ｍｉｎｉ ｊｐ（θｊ）ｌｉｊ （２）

Ｆｏｒｍｕｌａ（２）ｉｓｄｅｆｉｎｅｄａｓＥＶＰＩ．

３　Ｒｅｓｅａｒｃｈｍｅｔｈｏｄｓ
ＩｎｔｈｅＢａｙｅｓｉａｎｄｅｃｉｓｉｏｎ，ｔｈｅｐｒｉｏｒｉａｎａｌｙｓｉｓｉｓｇｅｎｅｒａｌｌｙｃｏｎｄｕｃｔｅｄ
ａｎｄｔｈｅｎｔｈｅｓａｍｐｌｉｎｇｉｓｄｏｎｅｔｏｉｎｃｒｅａｓｅｔｈｅａｍｏｕｎｔｏｆｉｎｆｏｒｍａ
ｔｉｏｎ．Ａｃｃｏｒｄｉｎｇｔｏｔｈｅｎｅｗｉｎｆｏｒｍａｔｉｏｎ，ｔｈｅｐｒｏｂａｂｉｌｉｔｙｉｓｃｏｒｒｅｃ
ｔｅｄｆｏｒｐｏｓｔｅｒｉｏｒｉａｎａｌｙｓｉｓ．Ｐｏｓｔｅｒｉｏｒｉａｎａｌｙｓｉｓｉｓｔｈｅｍａｉｎｍｅｔｈｏｄ
ｆｏｒＢａｙｅｓｉａｎｄｅｃｉｓｉｏｎｔｏｐｅｒｆｏｒｍｓｔａｔｉｓｔｉｃａｌａｎａｌｙｓｉｓ．
３．１　Ｐｒｉｏｒｉａｎａｌｙｓｉｓ　Ｆｉｒｓｔｌｙ，ｔｈｅｐｒｏｂａｂｉｌｉｔｙＰ（θ１），Ｐ（θ２），
…，Ｐ（θｎ）ｏｆｔｈｅｎａｔｕｒａｌｓｔａｔｅ（θ１），（θ２），…，（θｎ）ｉｓｅｓｔｉｍａｔｅｄ，
ａｎｄｔｈｅａｃｔｉｏｎｓｅｔλ＝｛ａ１，ａ２，…，ａｍ｝ｔｈａｔｃａｎｂｅｕｓｅｄｂｙｄｅｃｉ
ｓｉｏｎｍａｋｅｒｓｉｓｄｅｔｅｒｍｉｎｅｄ．ＴｈｅｐａｙｏｆｆｍａｔｒｉｘＶ＝（ｖｉｊ）ａｎｄｌｏｓｓ
ｍａｔｒｉｘＬ＝（ｌｉｊ）ａｒｅｃａｌｃｕｌａｔｅｄ．Ｉｎａｃｃｏｒｄａｎｃｅｗｉｔｈｔｈｅｍｉｎｉｍｕｍ
ｅｘｐｅｃｔｅｄｌｏｓｓｐｒｉｎｃｉｐｌｅ，ｔｈｅｐｒｉｏｒｉｅｘｐｅｃｔｅｄｌｏｓｓｏｆｖａｒｉｏｕｓａｃｔｉｏｎ
ｐｌａｎｓｉｓｃａｌｃｕｌａｔｅｄ：

Ｅθ（ａｉ）＝
ｎ

ｊ＝１
Ｐ（θｊ）ｌｉｊ，（ｉ＝１，２，…，ｍ） （３）

Ｔｈｅｃｏｒｒｅｓｐｏｎｄｉｎｇｏｐｔｉｍａｌｄｅｃｉｓｉｏｎｓｃｈｅｍｅｉｓａｋ，Ｅ
θ（ａｋ）＝

ｍｉｎ
ｉ
Ｅθ（ａｉ），ａｎｄＥＶＰＩ＝Ｅ

θ（ａｋ）．
３．２　Ｐｏｓｔｅｒｉｏｒｉｒｉｓｋａｎａｌｙｓｉｓ　Ｉｆｔｈｅｒｅｉｓａｄｅｃｉｓｉｏｎｆｕｎｃｔｉｏｎｔｏ
ｍａｋｅｉｔｈａｖｅｔｈｅｍｉｎｉｍｕｍｐｏｓｔｅｒｉｏｒｉｒｉｓｋａｍｏｎｇａｌｌｄｅｃｉｓｉｏｎｍａｋ
ｉｎｇｆｕｎｃｔｉｏｎｓ，ｔｈｉｓｄｅｃｉｓｉｏｎｆｕｎｃｔｉｏｎｉｓｔｈｅｏｐｔｉｍａｌｄｅｃｉｓｉｏｎｆｕｎｃ
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ｘｓ）ｉｓｏｂｔａｉｎｅｄ，ａｎｄｉｔｉｓｊｕｓｔｔｈｅｎｅｗｉｎｆｏｒｍａｔｉｏｎｃｏｌｌｅｃｔｅｄｆｒｏｍ
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ｐｅｃｔｅｄｌｏｓｓｏｆｖａｒｉｏｕｓａｃｔｉｏｎｐｌａｎｓｉｓｃａｌｃｕｌａｔｅｄ．
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ｘ，ａｎｄｔｈｅｍａｒｇｉｎａｌｄｉｓｔｒｉｂｕｔｉｏｎｏｆｓａｍｐｌｅｘｉｓｕｓｅｄｔｏｏｎｃｅａｇａｉｎ
ｃａｌｃｕｌａｔｅｔｈｅｍａｔｈｅｍａｔｉｃａｌｅｘｐｅｃｔａｔｉｏｎｏｎｐｏｓｔｅｒｉｏｒｉＥＶＰＩｔｏｅｌｉｍｉ
ｎａｔｅｔｈｅｒａｎｄｏｍｎｅｓｓａｎｄｇｅｔｔｈｅｅｘｐｅｃｔｅｄｖａｌｕｅｏｆｐｏｓｔｅｒｉｏｒｉＥＶ
ＰＩ．Ｕｎｄｅｒｎｏｒｍａｌｃｉｒｃｕｍｓｔａｎｃｅｓ，ｏｂｔａｉｎｉｎｇｓａｍｐｌｅｉｎｆｏｒｍａｔｉｏｎ
ｗｉｌｌｉｎｃｒｅａｓｅｄｅｃｉｓｉｏｎｍａｋｅｒｓｕｎｄｅｒｓｔａｎｄｉｎｇｏｆｓｔａｔｅθ，ａｎｄｔｈｅ
ｅｘｐｅｃｔｅｄｌｏｓｓｄｕｒｉｎｇｔｈｅｄｅｃｉｓｉｏｎｍａｋｉｎｇｐｒｏｃｅｓｓｗｉｌｌｌｏｗｅｒ．Ｔｈｅ
ａｍｏｕｎｔｏｆｒｅｄｕｃｔｉｏｎｉｓｃａｌｌｅｄＥＶＳＩ（ＥｘｐｅｃｔｅｄＶａｌｕｅｏｆＳａｍｐｌｉｎｇ
Ｉｎｆｏｒｍａｔｉｏｎ）：

ＥＶＳＩ＝ＰｒｉｏｒｉＥＶＰＩＥｘｐｅｃｔｅｄｖａｌｕｅｏｆｐｏｓｔｅｒｉｏｒｉＥＶＰＩ．
ＥＶＳＩｖａｌｕｅｉｓｔｈｅｒｅｔｕｒｎｂｒｏｕｇｈｔｔｏｄｅｃｉｓｉｏｎｍａｋｅｒｓａｆｔｅｒｏｂ
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ｆｏｒｍａｔｉｏｎｉｓｏｆｔｅｎｕｎｃｅｒｔａｉｎ，ｓｏｓｕｃｈｉｎｆｏｒｍａｔｉｏｎｉｓｉｎｃｏｍｐｌｅｔｅ，
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４　Ｅｍｐｉｒｉｃａｌａｎａｌｙｓｉｓ
Ｏｎｅａｇｒｉｃｕｌｔｕｒａｌｅｎｔｅｒｐｒｉｓｅｗａｎｔｓｔｏａｄｄａｎｉｎｖｅｓｔｍｅｎｔｐｒｏｊｅｃｔｒｅ
ｌａｔｅｄｔｏｇｒｅｅｎｏｒｇａｎｉｃａｇｒｉｃｕｌｔｕｒａｌｐｒｏｄｕｃｔｓ．Ｍａｒｋｅｔｅｘｐｅｒｉｅｎｃｅ
ｓｈｏｗｓｔｈａｔｔｈｅｐｒｏｂａｂｉｌｉｔｙｏｆｉｎｖｅｓｔｍｅｎｔｆａｉｌｕｒｅｓｉｎｏｎｅｈｕｎｄｒｅｄｉｎ
ｖｅｓｔｍｅｎｔａｃｔｉｖｉｔｉｅｓｐｅｒｙｅａｒ（θ）ｉｓｓｈｏｗｎｉｎＴａｂｌｅ１．Ｆｏｒｅｖｅｒｙ
ｆａｉｌｕｒｅ，ｉｔｉｓａｓｓｕｍｅｄｔｈａｔｔｈｅｃｏｍｐａｎｙｈａｓｔｏｐａｙａｎａｖｅｒａｇｅｌｏｓｓ
ｏｆ４０００ｙｕａｎ．Ｆｏｒｃａｒｒｙｉｎｇｏｎｔｈｅｐｒｏｊｅｃｔ，ｔｈｅａｎｎｕａｌｆｉｘｅｄｃｏｓｔｉｓ
１０００００ｙｕａｎ．Ｉｎｅｖｅｒｙｉｎｖｅｓｔｍｅｎｔａｃｔｉｖｉｔｙｏｆｔｈｉｓｃｏｍｐａｎｙ，ｉｔｗｉｌｌ
ｇｅｎｅｒａｔｅｐｒｏｆｉｔｏｆ３５０ｙｕａｎ，ａｎｄｉｔｃａｎｍａｋｅｉｎｖｅｓｔｍｅｎｔ１０００
ｔｉｍｅｓａｎｎｕａｌｌｙ．ＴｈｅＥＶＰＩｖａｌｕｅｉｓｃａｌｃｕｌａｔｅｄ．Ｉｎａｄｄｉｔｉｏｎ，ｉｎｖｅｓ
ｔｏｒｓｓａｍｐｌｅｔｈｒｅｅｉｎｖｅｓｔｍｅｎｔａｃｔｉｖｉｔｉｅｓｆｒｏｍｏｎｅｈｕｎｄｒｅｄｉｎｖｅｓｔ
ｍｅｎｔａｃｔｉｖｉｔｉｅｓｆｏｒｓｕｒｖｅｙ，ａｎｄｄｅｃｉｄｅｗｈｅｔｈｅｒｔｏｐｒｏｃｅｅｄｗｉｔｈｔｈｅ
ｉｎｖｅｓｔｍｅｎｔｐｒｏｊｅｃｔａｃｃｏｒｄｉｎｇｔｏｔｈｅｎｕｍｂｅｒｏｆｉｎｖｅｓｔｍｅｎｔｆａｉｌｕｒｅｓ
（ｘ），ｔｏｆｉｎｄｔｈｅｏｐｔｉｍａｌｄｅｃｉｓｉｏｎｆｕｎｃｔｉｏｎａｎｄｃａｌｃｕｌａｔｅＥＶＳＩ．
４．１　ＣａｌｃｕｌａｔｉｎｇＥＶＰＩ　Ｂａｓｅｄｏｎｔｈｅａｃｔｕａｌｓｉｔｕａｔｉｏｎ，ｔｈｅ
ｃｏｍｐａｎｙｉｓｆａｃｅｄｗｉｔｈｔｈｅｃｈｏｉｃｅｏｆｔｗｏｐｒｏｇｒａｍｓｏｆａｃｔｉｏｎ：ａ１ｄｏ
ｎｏｔｉｎｃｒｅａｓｅｔｈｅｉｎｖｅｓｔｍｅｎｔｐｒｏｊｅｃｔ；ａ２ｉｎｃｒｅａｓｅｔｈｅｉｎｖｅｓｔｍｅｎｔｐｒｏ
ｊｅｃｔ．Ａｆｔｅｒｃａｌｃｕｌａｔｉｏｎ，ｉｔｉｓｅａｓｙｔｏｇｅｔｔｈｅｐａｙｏｆｆｍａｔｒｉｘＶ＝（ｖｉｊ）
ａｎｄｌｏｓｓｍａｔｒｉｘＬ＝（ｌｉｊ）：

Ｖ＝ ０ ０ ０ ０( )５００００ １００００ －３００００ －７００００
；

Ｌ＝ ５００００ １００００ ０ ０( )０ ０ ３００００ ７００００
．

　　Ｔｈｅｐｒｉｏｒｉｅｘｐｅｃｔｅｄｌｏｓｓｏｆａ１ａｎｄａ２ｉｓａｓｆｏｌｌｏｗｓ：

Ｅθ（ａ１）＝∑
４

ｊ＝１
Ｐ（θｊ）ｌ１ｊ＝５００００×０．３＋１００００×０．４＋０＋０

＝１９０００；

０１ ＡｓｉａｎＡｇｒｉｃｕｌｔｕｒａｌＲｅｓｅａｒｃｈ ２０１５



Ｅθ（ａ２）＝∑
４

ｊ＝１
Ｐ（θｊ）ｌ２ｊ＝０＋０＋３００００×０．２＋７００００×０．１

＝１３０００．
Ｕｎｄｅｒｔｈｅｐｒｉｏｒｉｅｘｐｅｃｔａｔｉｏｎｃｒｉｔｅｒｉａ，α２ｉｓｔｈｅｂｅｓｔｐｒｏｇｒａｍｏｆ

ａｃｔｉｏｎ，ｓｏｔｈｅＥＶＰＩ＝１３０００ｙｕａｎ／ｙｅａｒ．
４．２　Ａｄｄｉｎｇｎｅｗｉｎｆｏｒｍａｔｉｏｎ　Ｉｎｖｅｓｔｏｒｓｓａｍｐｌｅｔｈｒｅｅｉｎｖｅｓｔ
ｍｅｎｔａｃｔｉｖｉｔｉｅｓｆｏｒｓｕｒｖｅｙ，ａｎｄｔｈｅｐｏｓｓｉｂｌｅｎｕｍｂｅｒｏｆｆａｉｌｕｒｅｓ（ｘ）
ｉｓ０，１，２，３，ｔｈｅｎｘｆｏｌｌｏｗｓｔｈｅｂｉｎｏｍｉａｌｄｉｓｔｒｉｂｕｔｉｏｎａｎｄＰ（ｘ／θ）

＝Ｐ（Ｘ＝ｘ／θ）＝Ｃｘ３（
θ
１００）

ｘ（１－θ１００）
３－ｘ，ｘ＝０，１，２，３．Ａｎｙｍａｐ

δ（ｘ）ｆｒｏｍ｛０，１，２，３｝ｔｏ｛ａ１，ａ２｝ｉｓａｄｅｃｉｓｉｏｎｆｕｎｃｔｉｏｎ．
４．３　Ｒｅｖｉｓｉｎｇｐｒｏｂａｂｉｌｉｔｙ　Ａｃｃｏｒｄｉｎｇｔｏｐｒｉｏｒｉｐｒｏｂａｂｉｌｉｔｙ
Ｐ（θ）ｉｎＴａｂｌｅ１，ｗｅｃａｎｃａｌｃｕｌａｔｅｔｈｅｍａｒｇｉｎａｌｐｒｏｂａｂｉｌｉｔｙｏｆｘ，
ａｎｄｔｈｅｒｅｓｕｌｔｓａｒｅｓｈｏｗｎｉｎＴａｂｌｅ２．Ｆｒｏｍｔｈｅｍａｒｇｉｎａｌｐｒｏｂａｂｉｌｉ
ｔｙｉｎＴａｂｌｅ２ａｎｄｆｏｒｍｕｌａ（４），ｗｅｃａｎｃａｌｃｕｌａｔｅｔｈｅｐｏｓｔｅｒｉｏｒｉ
ｐｒｏｂａｂｉｌｉｔｙＰ（θ／ｘ）ｕｎｄｅｒｘ＝ｘｉ，ａｓｓｈｏｗｎｉｎＴａｂｌｅ３．
４．４　Ｄｅｔｅｒｍｉｎｉｎｇｔｈｅｏｐｔｉｍａｌｄｅｃｉｓｉｏｎｆｕｎｃｔｉｏｎ　Ａｃｃｏｒｄｉｎｇｔｏ
Ｔａｂｌｅ３ａｎｄｆｏｒｍｕｌａ（５），ｗｅｃａｌｃｕｌａｔｅｔｈｅｐｏｓｔｅｒｉｏｒｉｅｘｐｅｃｔｅｄｌｏｓｓ
ｏｆｅａｃｈａｃｔｉｏｎｐｒｏｇｒａｍ，ａｎｄｔｈｅｒｅｓｕｌｔｓａｒｅｓｈｏｗｎｉｎＴａｂｌｅ４．Ａｃ
ｃｏｒｄｉｎｇｔｏｔｈｅｍｉｎｉｍｕｍｅｘｐｅｃｔｅｄｌｏｓｓｐｒｉｎｃｉｐｌｅ，ｗｅｄｅｖｅｌｏｐｔｈｅ
ｂｅｓｔｐｏｓｓｉｂｌｅｒｅｓｕｌｔｓｆｏｒｅａｃｈｐｏｓｓｉｂｌｅｓａｍｐｌｉｎｇｒｅｓｕｌｔｘ，ｔｏｇｅｔｔｈｅ
ｏｐｔｉｍａｌｄｅｃｉｓｉｏｎｆｕｎｃｔｉｏｎ：

δ０（ｘ）＝
ａ１，ｘ＝２，３
ａ２，ｘ＝０，{ １

４．５　ＣａｌｃｕｌａｔｉｎｇｐｏｓｔｅｒｉｏｒｉＥＶＰＩａｎｄＥＶＳＩ　Ｆｒｏｍｔｈｅｐｏｓｔｅ
ｒｉｏｒｉｅｘｐｅｃｔｅｄｌｏｓｓｒｅｓｕｌｔｓｉｎＴａｂｌｅ４，ｗｅｃａｎｃａｌｃｕｌａｔｅｐｏｓｔｅｒｉｏｒｉ
ＥＶＰＩ，ｎａｍｅｌｙｔｈｅｍｉｎｉｍｕｍｐｏｓｔｅｒｉｏｒｉｅｘｐｅｃｔｅｄｌｏｓｓｕｎｄｅｒｅａｃｈｘ
ｖａｌｕｅｉｎＴａｂｌｅ４：ｗｈｅｎｘ＝０，ｐｏｓｔｅｒｉｏｒｉＥＶＰＩ＝１２４０６；ｗｈｅｎｘ＝
１，ｐｏｓｔｅｒｉｏｒｉＥＶＰＩ＝１５６１５；ｗｈｅｎｘ＝２，ｐｏｓｔｅｒｉｏｒｉＥＶＰＩ＝
１３８７５；ｗｈｅｎｘ＝３，ｐｏｓｔｅｒｉｏｒｉＥＶＰＩ＝１４７８５．Ｔｈｅｅｘｐｅｃｔｅｄｖａｌｕｅ
ｏｆｐｏｓｔｅｒｉｏｒｉＥＶＰＩｉｓｏｂｔａｉｎｅｄｂｙｃａｌｃｕｌａｔｉｎｇｍａｒｇｉｎａｌｐｒｏｂａｂｉｌｉｔｙ
ｏｆｘｉｎＴａｂｌｅ２ａｎｄｐｏｓｔｅｒｉｏｒｉＥＶＰＩｅｘｐｅｃｔａｔｉｏｎ：

ＥＶＰＩ＝１２４０６×０．８２８１８６３＋１５６１５×０．１６０８７１１＋１３８７５×
０．０１０６９８９＋１４７８５×０．０００２３４７≈１２９３８．５；

ＥＶＳＩ＝１３０００－１２９３８．５＝６１．５．
Ｔｈｉｓｓｕｇｇｅｓｔｓｔｈａｔｔｈｅｏｐｔｉｍａｌｄｅｃｉｓｉｏｎｆｕｎｃｔｉｏｎδ０（ｘ）ｍａｄｅ

ｂａｓｅｄｏｎｔｈｅｓａｍｐｌｉｎｇｒｅｓｕｌｔｘｗｉｌｌｒｅｄｕｃｅｌｏｓｓｅｓ６１．５ｙｕａｎｃｏｍ
ｐａｒｅｄｗｉｔｈｔｈｅｏｐｔｉｍａｌａｃｔｉｏｎｂｅｆｏｒｅｓａｍｐｌｉｎｇ，ａｎｄｉｔｉｓｔｈｅｇａｉｎ
ｂｒｏｕｇｈｔｂｙｓａｍｐｌｉｎｇｔｏｄｅｃｉｓｉｏｎｍａｋｅｒｓ．

Ｔａｂｌｅ１　Ｔｈｅｐｒｏｂａｂｉｌｉｔｙｏｆｆａｉｌｕｒｅｓｉｎｏｎｅｈｕｎｄｒｅｄｉｎｖｅｓｔｍｅｎｔａｃｔｉｖｉｔｉｅｓ
ｐｅｒｙｅａｒ（θ）

θ ５ ６ ７ ８

Ｐ（θ） ０．３ ０．４ ０．２ ０．１

Ｔａｂｌｅ２　Ｍａｒｇｉｎａｌｐｒｏｂａｂｉｌｉｔｙｏｆｘ

ｘ ０ １ ２ ３

Ｐ（ｘ） ０．８２８１８６３ ０．１６０８７１１ ０．０１０６９８９ ０．０００２３４７

Ｔａｂｌｅ３　Ｐｏｓｔｅｒｉｏｒｉｐｒｏｂａｂｉｌｉｔｙｕｎｄｅｒｖａｒｉｏｕｓｘｖａｌｕｅｓ

ｘ ０ １ ２ ３

θ１＝５ ０．３１０６ ０．２５２４ ０．１９９８ ０．１５３９
θ２＝６ ０．４０１２ ０．３９５５ ０．３７９５ ０．３５４５
θ３＝７ ０．１９４２ ０．２２５８ ０．２５５６ ０．２８１５
θ４＝８ ０．０９４０ ０．１２６３ ０．１６５１ ０．２１０１

Ｔａｂｌｅ４　Ｐｏｓｔｅｒｉｏｒｉｅｘｐｅｃｔｅｄｌｏｓｓｏｆａｃｔｉｏｎｐｒｏｇｒａｍｓｕｎｄｅｒｖａｒｉｏｕｓｘｖａｌ
ｕｅｓ

ｘ ０ １ ２ ３

Ｅθ／ｘ（ａ１） １９５４２ １６５７５ １３８７５ １４７８５
Ｅθ／ｘ（ａ２） １２４０６ １５６１５ １９２２５ ２３１５２

５　Ｃｏｎｃｌｕｓｉｏｎｓ
Ｉｎｍａｒｋｅｔｅｃｏｎｏｍｙ，ｍａｎｙｐｒｏｂｌｅｍｓａｒｅｄｉｆｆｉｃｕｌｔｔｏｃｏｍｐｌｅｔｅｌｙａｃ
ｃｕｒａｔｅｌｙｐｒｅｄｉｃｔ，ａｎｄｔｈｅｉｎｖｅｓｔｏｒｓｏｆｔｅｎｍａｋｅｄｅｃｉｓｉｏｎｓｉｎａｎｕｎ
ｃｅｒｔａｉｎｓｔａｔｅ．Ｉｎｖｅｓｔｏｒｓａｌｗａｙｓｈｏｐｅｔｈａｔｔｈｅｉｒｄｅｃｉｓｉｏｎｉｓｍｏｒｅ
ｃｏｎｖｉｎｃｉｎｇ，ｔｈｅｅｘｐｅｃｔｅｄｒｅｔｕｒｎｓａｒｅｈｉｇｈｅｒ，ａｎｄｅｘｐｅｃｔｅｄｌｏｓｓｅｓ
ａｒｅｌｏｗｅｒ．Ｂａｙｅｓｉａｎｍｅｔｈｏｄｉｓａｎｅｆｆｅｃｔｉｖｅｍｅｔｈｏｄｔｏｓｏｌｖｅｓｕｃｈ
ｐｒｏｂｌｅｍｏｆｄｅｃｉｓｉｏｎｍａｋｉｎｇｕｎｄｅｒｒｉｓｋ．Ｔｈｒｏｕｇｈｔｈｅｄｉｓｃｕｓｓｉｏｎｉｎ
ｔｈｉｓｐａｐｅｒ，ｉｔｃａｎｂｅｆｏｕｎｄｔｈａｔｔｈｅＢａｙｅｓｉａｎｍｅｔｈｏｄｍａｋｅｓｆｕｌｌ
ｕｓｅｏｆｔｈｅｇｅｎｅｒａｌｉｎｆｏｒｍａｔｉｏｎ，ｓａｍｐｌｅｉｎｆｏｒｍａｔｉｏｎ，ｐｒｉｏｒｉｉｎｆｏｒｍａ
ｔｉｏｎａｎｄｌｏｓｓｆｕｎｃｔｉｏｎ，ｔｏｃａｌｃｕｌａｔｅｔｈｅｏｐｔｉｍａｌｄｅｃｉｓｉｏｎｆｕｎｃｔｉｏｎ
ａｎｄｍｉｎｉｍｕｍｐｏｓｔｅｒｉｏｒｉｅｘｐｅｃｔｅｄｌｏｓｓ，ａｓｗｅｌｌａｓｔｈｅｇａｉｎｂｒｏｕｇｈｔ
ｂｙｓａｍｐｌｉｎｇｔｏｄｅｃｉｓｉｏｎｍａｋｅｒｓ，ｔｈｅｒｅｂｙｍａｋｉｎｇｔｈｅｗｈｏｌｅｄｅｃｉ
ｓｉｏｎｍａｋｉｎｇｐｒｏｃｅｓｓｍｏｒｅｃｏｎｖｉｎｃｉｎｇａｎｄｓｃｉｅｎｔｉｆｉｃ．

Ｒｅｆｅｒｅｎｃｅｓ
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