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Survival Analysis of U.S. Meat and Poultry Recalls, 1994-2001

Victoria Salin,1 Neal H. Hooker, and Ratapol Teratanavat

Introduction

There were hundreds of voluntary recalls of meat and poultry in the United

States during 1994-2001.  What can be learned from this experience to improve the

industry’s ability to safeguard the food supply?  This study applies statistical methods

that explore the dynamics of food recalls, rather than examining a particular point in

time or aggregating over periods of time.  It is an approach that adds to the research

base in economics and business decision-support and will contribute to the effort to use

risk analysis as the foundation for U.S. food safety policy.

Risk assessment is the first step in the risk analysis process that underlies the

U.S. policy approach to food safety.  Risk assessments are followed by risk

management and risk communication programs to complete the three-part risk analysis

process.  Both government and industry participate in the risk analysis process.  Given

the limitations on government’s direct role in food handling and processing, it is

important to fully understand business incentives for food safety enhancement.

Business managers, surveillance personnel, and policymakers can only implement

effective risk management programs if they have complete information about the

probability of harm and the severity of food contamination incidents at the business and

industry level.

                                           

1 Contact:  Dr. Victoria Salin, Asst. Prof., Dept. of Agric. Econ., Texas A&M University, College Station,
TX  77843-2124, (979) 845-8103, v-salin@tamu.edu
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Risks related to bacterial contamination of food are dynamic in nature.

Conditions at any stage in the farm-to-table food chain could generate contamination.

For example, the factors controlling microbial populations in seafood are temperature,

pH, organic acid levels, water activity, and preservatives (Ross, Dalgaard, and

Tienungoon), many of which change with time, particularly given the differences in

handling technology along the food chain.  A model in the field of predictive

microbiology would incorporate some or all of the factors and provide information about

exposure assessment, in terms of time required for a 1,000-fold increase in pathogen

numbers, or total microbial populations, for example.  In order for the information on

exposure to be most useful in economic decision-making, it must be translated from

microbiological terms into disease incidence and, finally, into costs of illness and death.

There is substantial uncertainty regarding the relationship between pathogen levels and

health, and the economic benefits of improved health (Antle).  Given the current state of

knowledge, economic researchers should explore a variety of measures that may be

useful in assessing costs or benefits of food safety programs.  At the firm level, one set

of readily available information reflecting business risks related to food safety is the

recall.  Recalls are likely to be a function of all the microbiological and food production

factors that arise during handling, storage, and preparation.  Business management and

regulatory decisions also likely affect the probability of recalls.  For example,

investments in testing technology or the effectiveness of surveillance programs would

impact recalls.  Therefore, we would expect that the dynamics of food recalls are

complex and multifaceted.
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Other researchers have analyzed the descriptive statistics on food recalls, using

Food Safety and Inspection Service (FSIS) data (Teratanavat and Hooker).  Descriptive

statistics are a necessary starting point in risk assessment or evaluations of risk

management activities, but they cannot accurately portray the complete time series

characteristics.  Means and standard deviations are derived from data pooled over time,

thus obscuring information about timing.  A researcher can further subset the data and

compute descriptive statistics to isolate important time periods, but the disaggregation

procedure may lead to the loss of degrees of freedom and can impair statistical

inference.  Thus, the aggregate statistics must be supplemented with other approaches.

The analysis of survival data provides the basis for such an alternative

perspective on food safety risk assessment and risk management.  This paper fills a

gap in our knowledge about the dynamic properties of food recalls.  The objective is to

contribute to the understanding of the time series processes that underlie the risks

businesses face as a result of food contamination.

The method is to use models for duration data and estimate survival functions.

Survival functions describe the time until failure or, in its broadest sense, the time

before occurrence of an event.  In engineering statistics, and in many statistics texts,

survival functions are applied to such things as light bulbs and machinery (Pitman).  In

medical science and biostatistics, survival functions are commonly used to describe

effectiveness of treatments (Lee).  In social science, survival analysis has been used to

analyze worker strikes, unemployment spells, time until business failure, and intervals

between purchases. (See Greene for a general description; Agarwal and Mahmood

present applications to small business failures.)
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In this application to FSIS meat and poultry recall data, the time before failure is

defined as the time elapsed before a recall occurs.  We examine time before a recall,

for the firms that experienced a recall within the 1994-2001 period.  This application of

survival data analysis to the FSIS recall database gives statistical results that must be

interpreted in a precise way.  An analogy to medical science will clarify.  Consider a

group of patients with terminal illness.  If some patients have received an experimental

medical treatment, survival data analysis can determine if the treatment had an effect

on survival times.  If all patients remain in the study until death, exact survival times for

all the subjects are known.  It is useful to know whether the treatment had an effect, but

the results say nothing about the health of people not included in the study.

The implications we can glean from the recall database are likewise limited to the

subjects being observed—only those firms that had a recall.  In spite of this limitation,

some information can be obtained with analysis of times before recall.  First, dynamics

can be examined directly.  The dynamics could answer questions such as whether

recalls are coming faster in certain seasons, or in particular years.  Second, if a policy

change has occurred, the distributions of time until failure with and without the policy

can be compared, analogous to the evaluations of medical treatment.  It should not be

overlooked that hundreds of firms are included in this dataset, which is a useful source

for a preliminary examination of the effectiveness of HACCP.  While the data set clearly

does not constitute a random sample, it is not necessarily non-representative and may

be helpful in drawing conclusions about food safety.  
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Keeping in mind the limitations on our data, the objectives of this investigation

are to:

• Improve understanding of the dynamics of food recall risk, and

• Investigate whether policy regimes are associated with any differences in the time

series process of food recall risk.

This paper demonstrates the use of non-parametric methods to estimate survival

functions for meat and poultry recalls during 1994-2001.  The results from non-

parametric and parametric methods are compared to determine the relative utility of the

two approaches in the context of the economics of food safety.  The results of this

research shed some light on food safety policy and can serve as useful information to

drive other economic analysis of food safety.  Dynamics are important to many business

decisions, as the financial event studies in the literature on the economics of food safety

have demonstrated (Salin and Hooker, Thomsen and McKenzie, Wang, et al., and

Henson and Mazzochi).  Other predictive economic and business models that rely on

risks related to food contamination may also be developed and applied using the results

from this survival analysis.

Models of Survival Data 

In this section, the conceptual basis for the duration models of food recalls is

explained.  The statistical foundation for the estimations is also presented, drawing

mainly upon the work of Lee.  Procedures to estimate functions of interest are

presented both parametric models that are estimated with maximum likelihood

procedures and non-parametric models that are simpler to estimate and well suited for

analysis of relatively small samples.
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Conceptual framework

Analysis of survival times can be applied to any processes in which the duration

of a condition is of interest.  The survival time, or time before failure in this research, is

defined as the time that passes before a Class 1 food recall event occurs.  The data

that measure the time to the event of interest is survival time (T), measured in days.

We define two regimes for consideration of the effects of food safety policy.  The

first begins January 1, 1994, with modern/industrial food processing under FSIS

continuous inspection.  Thus survival time T=24 signifies a food recall case that opened

on January 25, 1994.  In early1994, a major incident of food contamination was

attracting the attention of U.S. businesses, policy makers, and consumer activists.  The

policy regime in place at that time was the FSIS system of continuous visual inspection

at every meat processing plant.  Notices of the regulatory changes to come under

Hazard Analysis Critical Control Points (HACCP) were published in the Federal

Register.  Large meat processing plants (those with more than 500 employees) were

required to have HACCP systems in place by January 26, 1998.  On that date the

second policy regime was defined to begin with the HACCP requirement in large meat

packing facilities.  The regulation for smaller plants had implementation dates of

January 25, 1999 or January 25, 2000 (Teratanavat and Hooker).

Functions of survival time

Three equivalent functions are used to describe the distribution of survival time:

the survivorship function, the probability density function, and the hazard function.

These functions can be derived from each other mathematically.  The survivorship

function (also called survival function or cumulative survival rate) is defined as:
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t) leastatisfailurebefore(timePr S(t) =

t(T Pr  >= )

The survivorship function depicts the probability that the failure has not occurred at time

t.  By definition of the cumulative distribution function (CDF) of any random variable,

survivorship functions are related to CDFs such that 

t)(TPr -1 S(t) <=

CDFthedenotesF(t)whereF(t),-1=

Graphically, survivorship functions are usually decreasing in time, and in

biostatistics applications, they are often found to be decreasing at an increasing rate

(convex).  Steep survival curves represent short survival times.

The probability density function for survival times is defined in the usual way for a

density of a continuous random variable:

∆t
∆t)}t,interval(tinP{failurelimf(t)

0∆t

+
=

→

Density curves illustrate the proportion of failures that occur in any time interval, as well

as any peaks in the number of failures during the time period under study.

Hazard functions describe the conditional failure rate, or the probability of failure

during a very small interval, given survival up to the beginning of the interval.  The

hazard function is defined as:

∆t
∆t)} t (t, interval time the infails  t age to survival with {subject P lim  h(t)

0∆t

+
=

→
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Another definition of the hazard function uses the relationship between the probability

density and CDF of survival time, as follows: 

F(t)- 1
f(t) h(t)=

Data

The data are from the U.S. Department of Agriculture FSIS database

(Teratanavat and Hooker).2  The incidence of Class 1 meat and poultry recalls from

1994 to 2001 is shown in figure 1.  The scatter plot shows that most recalls are

relatively small in terms of pounds of product affected.  It also appears that the density

of recalls is greater in the years following the HACCP requirement for large plants.

Aggregate statistics show evidence of increasing number of recalls over time.  There

were 86 Class 1 recalls in the 1994-January 25, 1998 period, the period before HACCP

was required for large meat and poultry processors.  From January 26, 1998, to the end

of 2001, there were 219 Class 1 recalls, two and one-half times more recall events than

in the pre-HACCP period.  These data on the increasing number of recalls over time

could lead to concerns that the food supply is becoming less safe.

This study includes only the firms that have experienced a recall, which

eliminates the potential problem of censoring.  Censoring occurs when subjects have

not experienced the failure event during the time of the study.  For example, in medical

studies, if treatment was successful for a number of patients, their true time before

                                           

2 The data used here differ from that used in Teratanavat and Hooker in the following ways:  Only Class 1
recalls are used in this research; the full set of observations for 2001 became available; the date on one
observation was corrected, and observations for a given firm that were dated within a 5-day period were
considered a single recall event.
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failure is not known exactly.  Special statistical procedures are required to account for

censoring (Lee, and Greene, chapter 22.3).

Estimation Procedures

Parametric estimation requires that the researchers assume a functional form, 

then estimate the parameters of the function using maximum likelihood procedures.  For

instances in which no particular distribution is known to fit the data, non-parametric

techniques are useful in estimating functions of survival time.  Both non-parametric and

parametric estimation are undertaken in this research.  Because there are no censored

observations, the techniques are straightforward.

Non-parametric methods for estimating survival distributions

According to Lee, non-parametric methods are “...less efficient than parametric

methods when survival times follow a theoretical distribution and more efficient when no

suitable theoretical distributions are known” (pg. 66).  It is suggested to use the non-

parametric methods before attempting to fit a theoretical distribution.

The observations are not grouped, following Lee’s recommendation for a simple

case with no censored data.  Defining t1, t2, …, tn (i = 1, 2,…,n) to be the exact times

before failure of the n recall events, the survivorship function  )(tŜ i is the estimated

probability that the time before failure is at least t.  Because there are no censored

observations, the estimated survival function is defined as the proportion of subjects for

which time before failure is greater than t.

The survival distributions were estimated in SAS using the Lifetable procedure.

This employs the Kaplan-Meier product limit method of estimating survival functions

based on actual survival times, without grouping times into intervals.  The Kaplan-Meier
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product limit procedure is based on the fact that the probability of surviving k or more

periods from the beginning of the time observed is the product of k survival rates,

defined as the proportion of subjects surviving at least to year k.  The equation for the 

survivorship function is:

,ˆ ∏
≤ +−

−
=

tt(r)
1rn

rn(t)S

where n is the total number of observations and r is the rank of the n survival times, in

increasing order in this application because there are no censored observations.  Once

the survivorship function is estimated, hazard rates can be obtained from the

mathematical relationship between the survivorship and hazard functions.

Parametric methods for estimating survival distributions

Analytical methods are used to estimate the parameters of some common

statistical functions and assess their fit to the time before food recalls.  The exponential

distribution is often used in biomedical applications.  The Weibull distribution has the

advantage of being flexible to accommodate a variety of shapes and it is considered

here along with the normal and exponential distributions.  The equations of the normal

distribution are well known and not presented in this section.

Exponential.  The exponential distribution is characterized by one parameter, λ.

Its density function is:

{
0,0,

0,0)(
>≥

<=
λteλ

ttf
tλ

The cumulative distribution function is:

,01)( ≥−= tetF tλ

and the survivorship function is then:
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.0,)( ≥= − tetS tλ

Using the mathematical relationships developed previously, the hazard function is

constant:

0t λ,h(t) ≥=

Weibull.  The Weibull distribution is flexible to accommodate multiple possible

shapes.  The probability density function and cumulative dist functions are,

respectively,

γ0,teλγ(λt) f(t)
γt)λ(- 1γ ≥= −

γtλetF )(1)( −−=

Given that S(t) = 1- F(t), the survivorship function is easy to c

estimated parameters are provided.

Results
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entire 1994-2001 period (figure 2).  The horizontal axis shows time before failure in

days.  The vertical axis is the probability of survival.  The concave shape, with steeper

portions of the survival function occurring later, suggests that failures occurred faster in

the years following HACCP.

After subdividing the sample and estimating survival functions for the pre- and

post-HACCP periods, a more detailed picture of the dynamics emerges.  The pre-

HACCP survival function (figure 3) is steepest in the early part of the period and flattens

beginning in 1996, suggesting a high rate of failure around 1994-1995.  Recalls occur

less often beginning in late 1995, as is shown by the flatter portion of the survival

function.  This improvement in the duration of time before failure could have resulted

from firms preparing to implement HACCP.

The post-HACCP period begins with a similarly flat portion of the survival

function (figure 4), again possibly suggesting some success of the program in slowing

failures.  During 2000 (days 700-1000), however, the picture changes, with an

increasing pace of recalls for the year.  The cluster of recalls during 2000 could have

been an anomaly that contributed to higher aggregate numbers of recalls post-HACCP,

since it is clear that the survival function does not maintain that steep slope through the

end of 2001.

A non-parametric statistical test was used to evaluate the hypothesis that

survival distributions pre-HAACP were below those following HACCP implementation.

The Wilcoxon test is based on a comparison of the ranks of each observation in the

distributions being compared.  The test statistic W is large when survival times, post-

HACCP, are larger than the survival times pre-HACCP.  A normal distribution is
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assumed for W (asymptotically), thus Z scores )(
W

WZ
σ

=  are used as the statistical test.

We use the Mantel procedure for calculating Gehan’s Generalized Wilcoxon test

statistic, recommended in Lee (page 106-108).  Results are reported in table 2, and

provide a strong basis for rejection of the null hypothesis that the distributions are equal.

Thus, on the basis of non-parametric estimation, there is support for the hypothesis that

times before recall are longer following implementation of the HACCP program.

In addition to the statistical test comparing the full distributions, two other

statistics from the survival estimation support the improved food supply hypothesis.

According to Lee, median survival time is the single most commonly used statistic to

describe a survival distribution.  Median survival time corresponds to the 50th percentile

of the survival distribution.  Median time before recall is 846 days following the HACCP

program, compared with median time pre-HACCP of 514 days, which is well below the

95% confidence interval around the corresponding post-HACCP median time. Another

summary statistic, the percent that survive one year, gives a similar result, with the

probability of surviving one year at 83% post-HACCP and 66% pre-HACCP.

The date used for subdividing the sample into the pre- and post-HACCP periods

reflects regulatory requirements for large firms.  The use of a cut-off date implies that

HACCP is turned on immediately, which of course is a simplification.  It is possible that

many of the large firms implemented HACCP before the date in question, while smaller

firms were given longer time to adopt HACCP.  Because smaller firms had more time to

adopt HACCP, it may be more appropriate to contrast the distributions only for large

firms.  Most firms that experienced recalls during 1994-2001 were not large, thus the

sample size falls considerably when attention is limited to large firms (table 3).  The
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relatively small sample size for large firms results in survival distributions with wide

confidence intervals, and thus we can expect statistical evidence to be less compelling

than with the preceding comparison based on the full dataset of Class 1 recalls.

The pre-HACCP survival function for large firms, estimated with the non-

parametric approach (figure 5), is flatter before 1996 than in the years approaching full

implementation.  Immediately following HACCP (figure 6), recalls were relatively slow in

coming, but a period of rapid failure for large firms occurred in 1999.  Median survival

times post-HACCP were 717 days for large firms, below the median of 929 days in the

period prior to HACCP.  However, the 95% confidence interval around the pre-HACCP

estimate is from 502 to 1,248 days, so there is no statistically significant difference in

the two estimates.  The means of the pre-and post-HACCP distributions for large firms

are likewise not statistically different, based on a z-test for comparison of the means of

two independent populations.  Overall, the subsample of large firms does not offer

strong evidence regarding a difference in dynamics of recalls for these two periods.

Hazard rates derived from the survivorship functions estimated with the non-

parametric methods are reported in table 4.  Recall that hazard rates are defined as the

probability of a recall, conditional on the time elapsed since a food safety regime was in

effect.  They provide information about the likelihood of a recall as a function of time.

For example, machinery that wears out with age would have an increasing hazard rate.

Hazard rates associated with accidental death or other purely random factors are

typically estimated as constant.  Figures 7-8 indicate that there is some variation in

hazard rates for meat and poultry recalls, but for most of the period, a constant hazard

rate model would approximate the data fairly well.  The reason for the rapid increase in
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hazard rates at the end of the two time periods is not clear.  Annual hazard functions

(figure 9) suggest more clearly a pattern of increasing hazard rates associated with food

recalls.

Pre- and Post-HACCP Dynamics of Recalls Using Parametric Estimation

Probability density functions were fit to the data on survival times before and

after HACCP to identify which, if any, distributions represent the data well.  The

parameters from the well-known mathematical forms can be utilized in a variety of

models for risk analysis (table 5).

Normality was rejected for all of the distributions, based on the tests calculated in

SAS (Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling

test statistics).  The goodness of fit tests for the distributions of all Class 1 recalls did

not provide strong support for any theoretical distribution.  The peak in the right tail of

the histogram (figure 10) can explain the poor fit .  This tendency toward a bi-modal

empirical distribution is not well represented by the theoretical forms that were fitted.

Based on the test procedures described by Lee, the Weibull, lognormal, and

exponential distributions are rejected for the distributions for all firms.  Only the Weibull

was not rejected as a model of the distribution for large firm's subsample.  Using the

Kolmogorov test in SAS, the Weibull was not rejected for the pre-HAACP distribution of

time before failure, for all firms.

A closer look at the estimated parameters of the fitted Weibull distributions is

warranted.  The graphs of the density functions for the fitted distributions are unimodal

and slightly positively skewed.  The shape of the Weibull distribution curve is

determined by the value of γ.  When γ =1, the Weibull distribution becomes the
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exponential case, with a constant hazard rate.  The parameters estimated all find γ >1

(table 6), which would come from a population with increasing risk, or “positive aging.”

This result is consistent with the hazard rates estimated with the non-parametric

procedures, in which hazard rates increased at the end of the time periods.  Very small

values of λ, such as those found here, are a result of the scaling being over fairly large

numbers which occurs when time until failure is denoted in days.

The plot of the survival function from the fitted Weibull distribution is contrasted

with the corresponding function estimated from the non-parametric Kaplan Meier

procedure (figures 11-12).  The results of decreasing survival are fairly consistent, but

the rate of decline in survival is increasing in the parametric estimation, but not

according to the non-parametric result.  This result occurs because the fitted Weibull

cannot accommodate the skewness evident in the distributions, and the non-parametric

method is flexible to accommodate the data while a theoretical distribution is not. 

Seasonal Dynamics of Recalls

Survival functions for each calendar year from 1994-2001 were examined in

order to investigate seasonal patterns in the timing of food recalls.  Flat survival

functions during the mid-winter (days 0-60) indicate longer time before failure in winter,

for six of the 8 years examined (1994, 1996, 1997, 1998, 2000, and 2001).  There is a

steep drop in the graph, meaning more frequent recalls, during the second half of the

year (days 250-350) for 1994, 1995, 1997, 1998, 2000 (weakly) and 2001.

Statistical tests of annual survivorship distributions were conducted to determine

if there is evidence of increasing or decreasing risk with time.  The only statistically

significant result is that the distribution of recalls in 1994 is below that of 2001,
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indicating that time before recall was longer in 2001 (table 2).  This is another piece of

evidence in support of an improvement in food safety.  Median survival time was

greatest in 1998, the year that HACCP was required for large plants, but median

survival times did not increase consistently in each year following HACCP (table 7).

Conclusions

This research is an initial inquiry into the application of survival data analysis to

the industry statistics on recalls of meat and poultry.  To our knowledge, it is the first

such analysis conducted in the literature on food safety and quality.  The methods are

well-known in biostatistics and can easily be transferred from the medical and

engineering applications to allow investigation of the dynamics of food recalls, which is

the food safety event that is most relevant to business decisions.

The analysis of the recall data provided some insight into the effectiveness of

food safety programs by examining dynamics of recalls before and after implementation

of HACCP.  Even if the recall is initiated because of a “zero tolerance” or an

unrealistically low pathogen level that would not have caused significant illness, the

recall means that the businesses in the distribution system experience direct costs and

perhaps less tangible costs as a result of loss of reputation with customers.  The most

significant finding from a policy perspective is that survival data analysis does not

consistently support the concern that the food supply is becoming less safe.  The pre-

and post-HACCP survival functions estimated with non-parametric methods indicate

that times before failure are longer since the program went into place.  The differences
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in survivorship functions are statistically robust and provide some support for the

effectiveness of HAACP.

The efforts to fit theoretical distributions to the time before recalls were less

successful.  Weibull distributions emerged as the most plausible among the functional

forms considered, and their parameters led to the conclusion that probability of recall is

increasing with time.  The lack of statistical support for many functional forms occurred

because the distribution of times before failure had bimodal shapes, skewness, and fat

tails, features that most mathematical forms used in statistics do not share.  This result

illustrates the importance of developing predictive models that are flexible and not tied

to a particular mathematical distribution.

One can envision many ways in which survivorship functions of recalls or other

industry-level indicators can be useful for surveillance programs, decision support

models, and evaluation of regulations.  For example, the evidence of clustering of

recalls and seasonal patterns would be useful in formulating a baseline against which

monitoring information can be compared in real time.  Data such as these could also be

used in some form of dynamic performance standards to evaluate benefits of food

safety programs.

The main limitation of survival data analysis is that it is not possible to define an

event with a differential measure of severity.  That is, the recall event is defined as a

failure whether the recall encompassed 25,000 pounds or 25 million pounds.  By limiting

the analysis to Class 1 recalls, this study targeted only those recalls considered most

significant by FSIS.  It would be possible to re-define failure as recalls over a certain

threshold severity in terms of pounds, or in terms of illness and death.  But the
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researcher would potentially face problems with statistical comparisons of the two

survival functions estimated with small sample size, similar to the problems experienced

with the subsample of large firms examined in this paper.

Next steps in this research area include refinements of the data and the

application of econometric procedures such as the Cox regression to investigate the

relationship of hazard rates to explanatory factors other than time.  The data set of FSIS

recalls could be augmented with FDA recalls.  A broader industry-level perspective

would be obtained by including all plants, in addition to those experiencing recalls.
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Table 1. Pounds Recalled in Class 1 Recalls, 1994-2001

N Mean Std Dev Minimum Maximum
1994 - Jan. 25, 1998 86 390,848 2,711,501 36 25 million
Jan. 26, 1998 - 2001 219 565,421 3,649,998 4 35 million

Table 2. Results From the Comparison of Survival Distributions Before and
After HACCP, Using Wilcoxon Test

W Var(W) Z Test Result
All class 1 4,753 1,965,024 3.39 Reject Ho
Large firms -69 11,530 -0.643 Cannot reject Ho
2001 versus 1994 1,972 64,414 7.77 Reject Ho
Ho : S1(t)=S2(t), Ha : S1(t)<S2
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Table 3. Summary Statistics for Class 1 Recalls by All Firms and Large Firms.
Recalls by All Firms Recalls by Large Firms
Pre-

HACCP
Post-

HACCP Pre-HACCP Post-HACCP Total Large
From raw data:
N 86 219 16 36 52
Mean pounds 390,847 565,424 1.7 million 1.3 million 1.4 million
Maximum pounds 25 million 35 million 25 million 35 million 35 million

From non-parametric estimation:
Median days before
failure 

514 8461 929 7172

Mean days before failure 638 8121 843 7302

1 Statistically different from the corresponding pre-HACCP estimate at the .05 level.
2 Not statistically different from the corresponding pre-HACCP estimate.
Source:  Author's calculations using FSIS data
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Table 4. Estimated Hazard Functions, Annual 1994 - 2001

Interval of Time Before Failure, in Days

0~0 1~90 91~180 181~270 271~360 361~450
Hazard Rate

1994 0 0.004 0.002 0.004 0.022
1995 0 0.004878 0.006222 0.006349 0.022222
1996 0 0.002299 0.006667 0.016667 0.022222
1997 0 0.001481 0.003704 0.009524 0.022222
1998 0 0.001481 0.003704 0.007407 0.022222
1999 0 0.001481 0.003704 0.007407 0.022222
2000 0 0.002222 0.007046 0.009687 0.022222
2001 0 0.002593 0.002573 0.006496 0.018667 0.011111
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Table 5. Results From Parametric Density Estimation

All Class 1 Recalls
Pre-HACCP (n = 86) Post-HACCP (n = 219)

µ/θ σ Mode Z µ/θ σ Mode Z
Normal 637.60 428.87 637.60 812.47 389.36 812.47 -
Lognormal 0 1.02 158.92 6.11 0 0.70 413.05 6.52
Exponential 0 637.60 0 - 0 812.47 0 -
Weibull 0 696.58 292.85 1.42 0 912.46 685.67 2.17

Class 1 Recalls by Large Firms (n = 16) Post-HACCP (n = 36)
µ/θ σ Mode Z µ/θ σ Mode Z

Normal 843.31 423.81 843.31 - 729.72 434.35 729.72 -
Lognormal 0 1.28 114.30 6.39 0 0.89 247.22 6.31
Exponential 0 843.31 0 - 0 729.72 0 -
Weibull 0 915.03 544.92 1.70 0 810.17 459.49 1.65

Note:  Results are in days before failure.
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Table 6. Parameters of Weibull distributions, time before recall, in
days

Shape Scale
(γ) (λ)

All firms, pre-HACCP 1.42 .0014356
Large firms, pre-HACCP 1.70 .0010929
All firms, post-HACCP 2.17 .0010959
Large firms, post-HACCP 1.65 .0012343
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Table 7. Recall Data by Year

Year

Number of
recalls

(Class 1)
Average

pounds recalled

Average
duration of

case in days

Average
survival time

in days

Median
survival time

in days

1994 28 50,068 117 199 186
1995 25 192,944 163 147 134
1996 16 21,962 188 169 165
1997 16 1,687,875 246 206 212
1998 32 1,348,484 218 218 235
1999 55 712,273 NA 181 167
2000 66 308,361 NA 172 165
2001 67 316,104 NA 204 210

NA:  not available because some cases are still open as of February, 2002
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Figure 1. Meat and poultry recalls, Class 1, 1994-2001.
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Figure 2. Survival function for all Class 1 recalls, in days, 1994-2001.
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Figure 3. Survival function for pre-HACCP period, all Class 1 recalls, 1994-Jan. 25,
1998.
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Figure 4. Survival function for post-HACCP period, all Class 1 recalls, Jan. 26,1998-
2001.
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Figure 5. Survival function for large firms, pre-HACCP period, 1994-Jan. 25, 1998.



31

Figure 6. Survival function for large firms, post-HACCP period, Jan. 26, 1998 – 2001.



32

Figure 7. Hazard function for pre-HACCP period, all Class 1 recalls, 1994-Jan. 25,
1998.
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Figure 8.Hazard function for post-HACCP period, all Class 1 recalls, Jan.
26, 1998-2001.
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Figure 9. Hazard functions for all Class 1 recalls, 1994-2001, by year.
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Figure 10. Parametric distributions fit to survival times for pre-HACCP period, all Class
1 recalls, 1994-Jan. 25, 1998.
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Figure 11. Survival function from fitted Weibull distribution compared with non-
parametric estimation, for Class 1 recalls by large firms, 1994-Jan. 25, 1998.
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Figure 12. Survival function from fitted Weibull distribution compared with non-
parametric estimation, for Class 1 recalls by large firms, Jan. 26, 1998-
2001.
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