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Abstract  

Are spatially specific agricultural input use recommendations more profitable to smallholder 

farmers than broad recommendations?  This paper provides a theoretical and empirical modeling 

procedure for determining the optimal spatial scale at which agricultural researchers can make 

soil fertility recommendations. Theoretically, the use of Bayesian decision theory in the spatial 

economic optimization model allows the complete characterization of the posterior distribution 

functions of profits thereby taking into account spatial heterogeneity and uncertainty in the 

decision making process. By applying first order spatial scale stochastic dominance and Jensen’s 

inequality; theoretically and empirically, this paper makes the case that spatially specific 

agricultural input use recommendations will always stochastically dominate broad 

recommendations for all non-decreasing profit functions ignoring the quasi-fixed cost 

differentials in the decision itself. 

These findings are consistent with many economic studies that find precision agriculture 

technologies to be more profitable than conventional fertilizer (regional or national 

recommendations based) application approaches. The modeling approach used in this study 

however provides an elegant theoretical justification for such results. In addition, seasonal 

heterogeneity in maize responses was evident in our results. This demonstrates that broad 

recommendations may not only be wrong spatially but also seasonally. Further research on the 

empirical aspects of spatio-temporal instability of crop responses to fertilizer application using 

multi-location and multi-season data is needed to fully address the question posed initially. The 

decision making theory developed here can however be extended to incorporate spatio-temporal 

heterogeneity and alternative risk preferences. 

Keywords: Bayesian decision theory, spatial scale stochastic dominance, spatial heterogeneity, 

Malawi.  
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1.0 Introduction 

Soil fertility is regarded as the most limiting factor to crop productivity in Africa. In terms of 

inorganic fertilizer application for example, sub-Saharan Africa (SSA) lags behind with average 

application rates at 13 kilograms per hectare (ha) against the 94 kilograms per ha in other 

developing countries (Sheahan, Black and Jayne 2012). In addition, soils in SSA are losing 

nutrients at an alarming rate. Studies in the 1990s estimated an annual  average  loss  of  22  

kilograms of Nitrogen (N),  2.5  kilograms of  Phosphorus (P)  and  15  kilograms of  Potassium 

(K)  per  hectare  for  the  whole  SSA.  Malawi experiences similar challenges. In Malawi, it is 

reported that N is the most deficient nutrient in nearly all soils and P is the second most limiting 

nutrient especially in light soils.  A nutrient depletion status study indicated that Malawi soils 

lose nutrients at annual rates of not less than 40 kg N per ha, 6.6 kg P per ha, and 33.2 kg K per 

ha; these rates are higher than average for Sub-Saharan Africa (Makumba 2003).   

These twin challenges coupled with weak markets, poor infrastructure and other challenges have 

led to perpetual low levels of crop productivity.  Given  the  strong  linkage  between  soil  

fertility, crop productivity and  food  security;  addressing  the  decline  in  soil  fertility  remains  

an  important  challenge  for  policy  makers Ojayi et al.(2011). Initiatives to improve soil 

fertility have been at the pinnacle of all Malawi’s political and economic discourses for more 

than half–century. At any particular time during Malawi’s post-independence era (i.e. 1964 to 

date), there have been various large scale agricultural research efforts to improve soil fertility. 

These include country wide area-specific fertilizer experimental trials (1995-98) and legume 

trials (1998-99). In the last decade, integrated soil fertility management technologies have been 

touted as the solution to the soil fertility problem. In addition to inorganic fertilizers and legume 

integration; agricultural researchers have also recommended agro-forestry and conservation 

agriculture. All these recommendations however have proved futile in increasing fertilizer 

adoption.  

According to Zingore et al. (2007),  soil  fertility  varies  considerably  at  the  farm  and  

landscape  levels  in  many  smallholder  farming  systems,  leading  to  variability  in  crop  

productivity  and  crop  response  to  additions of fertilizer and organic nutrient resources.  Suri 

(2011), using observational data in Kenya, argued that heterogeneity is the reason for the 

empirical puzzle of low adoption of notably profitable technologies like hybrid seeds and organic 

soil fertility technologies. The major finding of Suri’s study was that farmers with higher returns 

to the technology adopt it while those with a lower return do not. Another related argument by 

Duflo, Kremer and Robinson (2008) is that while fertilizer can be very profitable when used 

correctly, farmers may not use fertilizer and hybrid seeds because official recommendations are 

not adapted to many farmers in that particular region or country.  

This study deals with this spatial aspect of heterogeneity in profits using experimental data from 

Malawi. The general hypothesis in this study, as other scholars (e.g. Giller et al., 2010; Smale, 

Byerlee & Jayne, 2011) have also argued, is that broad or blanket recommendations fail to 
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account for the significant spatial variation and heterogeneity in the environmental and economic 

circumstances faced by farmers that do (and should) influence their crop production decisions.  

There is consensus among researchers that practices must be adapted to local conditions in order 

to account for agro climatic circumstances, population pressure, labor availability and the stage 

of infrastructural and institutional development (Smale, Byerlee and Jayne 2011). While this 

conjecture remains strong, evidence in many countries suggests that single and nationally based 

recommendations are still common.  

Until 1995 for example, there was a single fertilizer recommendation for all hybrid maize grown 

in Malawi: 

“The farmer is to apply 87 kg of Diammonium phosphate (DAP ) per hectare by dolloping 10 

cm away from the planting station and 10 cm deep soon after emergence. This is to be 

followed two to three weeks later by an application of 175 kg of urea per hectare using the 

same method. The nutrients applied using these amounts of these fertilizers amount to 96 kg 

of nitrogen and 40 kg of phosphate per hectare.”  

This recommendation was used throughout the whole country by field assistants prior to the 

initiation of area-specific fertilizer verification trials during the 1995/6 growing season. The 

trials were initiated to juxtapose the use of this single-blanket recommendation for mainly two 

reasons. Firstly, it was realized that the geographical, climatic and soil conditions were extremely 

heterogeneous within the country and that any simplistic recommendation across the board did 

not provide higher maize yields across all areas. Secondly, it was noted that the dynamics of 

fertilizer and maize prices in the country made the single-blanket recommendation inefficient as 

the price differentials during the time the recommendation was made changed dramatically as of 

1995/96 growing season. Area specific recommendations based on the analysis of these trials 

were developed in 1999 and documented in the guide to agricultural production in Malawi 

(Government of Malawi 2012). However, Malawi’s policies rooted in the broad recommendation 

ideology remain prevalent.  One such example is the farm input subsidy program that provides 

the same amount of fertilizer across the whole country regardless of the spatial economic 

circumstances of the poor smallholder farmers. Assuming recommendations are adopted prima 

facie and that policies to support them can be developed; this study addresses the question of 

whether spatially specific recommendations are more profitable to smallholder farmers and 

society.  

This study makes three main contributions. Firstly, it provides an alternative and simple theoretic 

framework as to why specific recommendations and precision agriculture are mostly found to be 

profitable when quasi-fixed cost differentials are ignored. This framework relies on spatial scale 

stochastic dominance and Jensen’s inequality. Secondly, this paper is among a few (e.g. Brorsen 

2013) that casts the determination of optimal nitrogen recommendations into a Bayesian decision 

theoretic framework that takes into account parameter uncertainty. Finally, we suggest an 

empirical strategy that naturally comes out from the theory by using spatially varying coefficient 
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models so as to determine spatially optimal nitrogen recommendations. To the best of our 

knowledge, this model has never been used in agricultural economics literature before.  The rest 

of the paper is organized as follows. Chapter 2 summarizes the scope and objectives of the study. 

Chapter 3 summarizes the data issues and proposes the theoretical and empirical models that are 

used. Chapter 4 provides the results and discussion. Finally, conclusions are offered in chapter 5. 

2.0 Objectives 

The main agricultural research and economic problem addressed in this study is that of 

developing fertilizer recommendations to be used by farmers based on a sample of plots. This 

problem has statistical, agronomic and economic dimensions. In a statistical sense, it concerns 

the uncertainty and heterogeneity of parameters in model estimation across space and thus the 

optimal decisions recommended to smallholder farmers. It is mostly forgotten in the presentation 

of agricultural research results and development of recommendations that point estimates are not 

known with certainty. In terms of agronomy, it is a well-known fact that responses to fertilizer 

application vary by topography, soil type and so on. This is why precision agriculture has been 

gaining ground in developed countries. Unfortunately, agricultural experimental research in 

Malawi and other African countries is still one aimed at finding “silver bullets” e.g. best variety 

for all places or least cost legume combinations for all seasons.  

These two dimensions of the problem (statistical and agronomic) result in a fundamental 

economic decision making challenge as any deviance due to these problems results in suboptimal 

decision rules. This study therefore provides a conceptual and theoretical model based on 

decision-theoretic tools particularly Bayesian decision theory that helps in developing the 

optimal decisions that researchers can use to provide relevant research recommendations to 

smallholder farmers given the uncertainty in their soil fertility research results. However, the 

study does not attempt to provide prescriptive recommendations for smallholder farmers to use 

in Malawi as this would require a complex process beyond the scope of the current study. The 

general objective of this study is to analyze the economically optimal spatial scales for targeting 

soil fertility recommendations in Maize based farming systems in Malawi.   The specific 

research objectives are: 

i. To analyze the regional and temporal heterogeneity in maize response to fertilizer 

application in Malawi;  

ii. To analyze the regionally disaggregated, economically optimal nitrogen rates for 

Malawi; and 

iii. To determine the differences between using broad recommendations and spatially 

specific recommendations. 
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3.0 Methods 

3.1 Data 

The study uses area specific fertilizer verification trials data for the 1995/96 and 1997/8 growing 

seasons. The experimental protocol was documented in the manual for extension workers 

developed to guide the implementation of the trials (Government of Malawi 1995).  The trials 

were carried out under the guidance of a Maize Productivity Task Force (MPTF) consisting of 

national and international experts. After the successful implementation of the 1995/96 

verification trials, area specific recommendations were developed for each of the Extension 

Planning Areas (EPAs) in the country. The variations were based on soil structure/texture and 

the objectives of the farmer (home consumption or for market). The Fertilizer Verification Trials 

were modified in 1997/98 to improve the collection of data. The modifications were compiled in 

a manual that was developed to guide the implementation of the trials (Government of Malawi 

1997).  

3.1.1 Design of the Trial 

In 1995/6, 1,676 of 1,919 agronomic trials rolled out across the country were successfully 

implemented to evaluate six different inorganic fertilizer packages for hybrid maize grown by 

smallholders.  The distribution of successful trials was unbalanced across the sites. The map 

(Figure 1) below shows the distribution of trials across the extension planning areas in the 

country. The maximum number of trials per Extension Planning Area was 25 while the lowest 

was 1. The map also illustrates the differences in the number of trials planted for each of the 

seasons.  In terms of treatments, six treatments were tested in 1995/96 trials while four 

treatments were tested in the 1997/98 as shown in Table 1. 

Table 1: Six fertilizer treatments were tested in 1995/96 and four in 1997/98 

Treatment Nutrients Fertilizer 

 Nitrogen 

(kg per ha) 

Phosphate 

 (Kg per ha) 

Sulphur 

 (Kg per 

hectare) 

Basal 

 (50kg bags per ha) 

Top 

dressing 

(50kg bags 

per ha) 

1995/96 Growing Season 

1 96 40 0 1.75DAP 3.5Urea 

2 0 0 0 0 0 

3 35 0 0 0 1.5Urea 

4 35 10 2 1 (23:21:0+4S) 1 Urea 

5 69 21 4 2 (23:21:0+4S) 2 Urea 

6 92 21 4 2 (23:21:0+4S) 3 Urea 

1997/98 Growing Season 

2 0 0 0 0 0 

4 35 10 2 1 1 

5 69 21 4 2 2 

6 92 21 4 2 3 
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Figure 1: Distribution of fertilizer trials across the country. 

In each of the two seasons, two hybrid maize varieties were planted; MH17 was planted in 

upland sites with historically good rainfall conditions and MH18 was supplied for trials in 

lowland areas and at those upland sites in rain-shadow areas. A few sites also tested composite 

varieties. 
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3.2 Conceptual Framework  

The spatial scale economic decision problem, that of identifying the economically optimal spatial  

scale for targeting agricultural recommendations,  requires a conceptual framework that takes 

into account the spatial nature of the problem, the biological and agro-ecological processes 

associated with agricultural systems, and the associated socio-economic factors.  Figure 2 

illustrates the different levels of analyzing the problem. Broad recommendations and precision 

agriculture are considered as the two polar ends. The former have been the common 

characteristic of recommendation guidelines from agricultural research.  For instance, it is 

common to find a soil fertility improvement research program directed towards finding that 

superior legume integration system that increases yields in all regions.  

At the other end of the spectrum, there have been studies directed towards maximizing the 

potential of targeting technologies or inputs to their most suited finer points within the field 

using geographical information systems (GIS) and precision agriculture technology. With 

precision agriculture it is well known that costs of information, extension and research and 

development for fine-tuning the recommendations are higher. Thus a decision maker or 

researcher faces a tradeoff between the potential yield benefits due to better specific 

recommendations and the higher costs expected to be incurred to generate the recommendations.    

 

Figure 2: Levels of spatial scaling from precision agriculture to blanket recommendations  
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This conceptual framework is consistent with the concept behind the development and testing of 

recommendation domains by different agencies of the CGIAR (Consultative Group of 

International Agriculture Research Institutes) especially CIMMYT (International Maize and 

Wheat Improvement Center). A recommendation domain is defined as a group of farmers facing 

a set of agronomic circumstances similar enough for the same recommendation to be appropriate 

for all the farmers in the group (Jauregul and Sain 1992). In order to develop a recommendation 

domain, one faces the problem of aggregation bias. Can the aggregate bio-economic relations 

reflect individual bio-economic relations? The problem of aggregation has been and is still the 

most elusive in economics and statistics.  King et al. (1993) argued that without appropriate 

aggregation of site specific responses, serious biases can be introduced into a policy analysis.  

3.3 Theory 

3.3.1 Spatial Bio-Economic Optimization model  

A spatial bio-economic optimization framework is the appropriate integrated strategy for 

modeling heterogeneous agricultural processes. Several scholars (Liu, Swinton, and Miller 2006; 

Bullock, Lowenberg-DeBoer, and Swinton 2002; and Oishi 2006) have presented the spatial 

profit maximization problem for spatially specific input application. It can be conceptualized as 

optimization problem for each individual farm plot i in each spatial unit j (e.g. particular country, 

District, Village) such that each plot within a respective spatial configuration can be indexed as 

ij. This formulation is consistent with the use of plot specific response functions to develop 

recommendation domains (Jauregul and Sain 1992). Equation (1) shows the general spatial input 

management optimization model: 

 Max X E(π) = ∑ ∑ (PyYij
N
i=1 − PxXij) − G − FCM

j=1   subject to  Yij ≤ f(Xij, Z, C). 

 
(1) 

 In Equation (1),  Py is the output price, Px is the vector of input prices, Y is the yield and 𝑋𝑖𝑗 is a 

vector of variable inputs (e.g. inorganic fertilizer use, organic fertilizer use, seeds) . For the 

farmer, it is assumed that profit is increasing in yield and that crop yield is a function of managed 

variable inputs  𝑋𝑖𝑗 (e.g. fertilizer, seeds, pesticides), unmanageable stochastic inputs, Z (e.g. 

rainfall) and unmanageable, but non-stochastic site characteristics (e.g. topography), C (Bullock, 

Lowenberg-DeBoer, and Swinton 2002). The last two terms in the objective function are 

additional costs to the variable inputs: G is quasi-fixed costs of collecting and analyzing 

downscaled spatial information, and FC are other fixed costs. 

The key assumptions for using the biological response relation Yij = f(Xij, Z, C) in equation (1)  

are: continuous smooth causal relation between the inputs and yield, diminishing returns prevail 

and decreasing returns to scale (Dillon and Anderson 1990).  The classic economic rule says that 

the optimal X
*
 is obtained when the marginal cost is equal to the marginal revenue (Hurley, 

Malzer and Kilian 2004): 

 PY
∂Y(X∗ ,Z,C)

∂X
− Px ≤ 0 with equality for X∗ > 0.  (2) 
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One important aspect in the use of this response relation concerns the functional form. The 

common examples include quadratic, Cobb-Douglas, Translog, linear response plateau and 

Spillman-Mitscherlich functional forms. Among these, the quadratic functional form is the most 

extensively used form because it’s simple and consistent with the agronomic theory.  For a 

quadratic functional form, the economically optimal input rate  X∗ for a single input (N fertilizer 

in this case) and single output is X∗ =
𝑅−𝛽1

2𝛽2
  where  𝑅 =

PX

PY
.  

The optimal amount of the variable input depends on the output price, the input price and the 

fixed inputs through implicit function theorem (Hurley, Malzer and Kilian 2004): 

 ∂X∗

∂Z
= −

∂2Y(X∗, Z, C)

∂X ∂Z

∂X2

∂2Y(X∗, Z, Z)
≠ 0 

 if 
∂2Y(X∗,Z,C)

∂X ∂Z
≠ 0. 

 

(3) 

 

If however,  
∂2Y(X∗,Z,C)

∂X ∂Z
= 0 , it implies that there is no interaction between the variable and fixed 

input as the optimal amount of variable input does not change with the amount of fixed input 

such that there is no value in varying the variable input.  This condition summarizes the precision 

agriculture hypothesis which asserts that, “farmers or the environment can benefit from varying 

management within or between fields.”  Thus, confirming the precision agriculture hypothesis 

without knowledge of important fixed inputs is useful because it indicates whether searching for 

such inputs is worth an effort. If the precision agriculture hypothesis cannot be confirmed 

generally or the value of discovering which fixed inputs are important is small, then it makes 

sense to devote research effort elsewhere (Hurley, Malzer and Kilian 2004). 

 According to Byerlee and Anderson (1969), in the absence of perfect knowledge, the decision 

maker or producer is unable to choose the levels of the variable input which will necessarily be 

optimal ex-post and the decision maker may incur a loss i.e. a cost of uncertainty. Thus, the 

interaction between controlled and un-controlled factors is the necessary condition for additional 

information on the uncertain factors to have economic value.  For this study, the economic value 

of going with specific recommendations will be evident if and only fertilizer response varies 

across locations.  

In addition to the validation of the necessary condition for site-specific crop response functions 

or site-specific crop economic return functions, it is also important to understand that the 

management activities are usually related to the farmer specific individual characteristics some 

of which may be observable while others are not.  Precision agriculture for smallholder farmers 
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therefore has to incorporate both the management activities; factors not managed by the farmer 

which are typically site-specific; and farmer specific random factors.  In this framework, there 

are therefore a myriad of factors to consider.  It has been argued in the recent literature that point 

estimates of the response rates and thus the economically optimal input (nitrogen) rates have 

uncertainty which is normally ignored (Hernandez and Mulla 2008). Our framework addresses 

this concern by considering the whole distribution of parameters. 

3.3.2 Aggregation Theory and Optimal Spatial Scaling 

In this section, we review the theory of aggregation of economic relations and thus justification 

for or against the use of broad recommendations. This theory is based on the seminal work by 

Henry Theil in the 1954 book “Linear Aggregation of Economic Relations.” While much of the 

theory in the book was on linear relations, Theil also provided an introduction to generalizations 

in the case of nonlinear economic relations e.g. the quadratic relation.  

In an ideal case, one would want a response function estimated at a finer scale as much as 

possible from as many replicates at each of those points.  But the reality is that only a coarser 

scale than the naturally occurring soil microclimatic processes can be used. Assume that such 

ideal equations or micro level equations are a set of M quadratic micro equations represented by 

an index 𝑗  where j = 1, … , M  (disregard the seasonal dimension t =  1, … , T   and the other 

controls for now): 

 Yj = β0j + β1jXj + β2jXj
2 + εj for j=1,…, M   (4) 

 

where Yj is shorthand for Yij  and εj is the conventional error term.  

Then consider an aggregate model represented by a single quadratic macro-equation: 

 Y = β0 + β1X + β2X2 + ε. (5) 

 

The macro-variables being 𝑌 = ∑ 𝑌𝑗
𝑀
𝑗=1   and 𝑋 = ∑ 𝑋𝑗

𝑀
𝑗=1 . Note that the macro-variables can also 

be expressed as expectations or quantities per hectare.  According to Theil, we can use the rule of 

perfect aggregation to determine if the macro-equation perfectly aggregates the micro-equations.  

The rule of perfection is that  

“ There is no contradiction between the macro-equation and the micro-equations 

corresponding to it, for whatever values and changes assumed by the micro-variables 

and at whatever point or period of time” (Theil 1954, p. 140). 

In order to determine conditions under which the aggregate model or the broad model perfectly 

corresponds to the micro-equation results, let’s assume that the micro-variables increase by 
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certain infinitesimally small amounts represented by  Δ𝑋𝑗 so that 𝑋 increases by Δ𝑋 = ∑ Δ𝑋𝑗
𝑀
𝑗=1 . 

The increase in 𝑌 due to the change in X is; 

 ∂Y

∂X
= β1 + 2β2X. 

 
(6) 

 

And for the micro-equations: 

 
∑

 ∂Yj

∂Xj

m

j=1

= ∑(β1j + 2β2j

m

j=1

Xj) 

 

(7) 

 

where again β1 = ∑ β1j
m
j=1  and β2 = ∑ β2j

m
j=1 . 

Thus, Theil’s rule of perfection implies that the expression 
∂Y

∂X
= ∑

 ∂Yj

∂Xj

m
j=1  must be identical for 

whatever values of the micro-changes and hence of the macro-variables as soon as Δ𝑋 =

∑ Δ𝑋𝑗
𝑀
𝑗=1 . In order to investigate the possibility of this perfection, let’s assume that all the 

changes in X are zero for all other locations except one location j such that  Δ𝑋 = Δ𝑋𝑗. Then the 

equality 
∂Y

∂X
= ∑

 ∂Yj

∂Xj

m
j=1  simplifies to 

 β1 + 2β2X = β1j + 2β2jXj. 

 
(8) 

This is achieved for all values of Δ𝑋𝑗 if the corresponding parameters are equal. The following 

proposition can thus stand as both necessary and sufficient for the possibility of a perfect 

aggregate/broad quadratic response function: 

Proposition I-Perfect aggregation of a quadratic response function:  Perfect aggregate 

quadratic response function is achieved if and only if; 𝛽1 = 𝛽1𝑗 and 𝛽2 = 𝛽2𝑗 for all locations j  

(Theil 1954, p. 142).  

The proof for the more general polynomial case which also includes the quadratic case is 

provided in (Theil 1954). The main conclusion derived from the condition is that the perfect 

aggregate quadratic response function can be achieved under very stringent circumstances. One 

can consider multiple weighted moments to achieve a perfect representation of the micro-

equations. This result thus justifies the consideration of precision agriculture and the quest for 

conditions under which specific recommendations based on the micro-equations are better than 

the broad recommendations based on the macro-equation.  
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Since proposition I entails an obvious deviation between broad recommendations based on the 

macro-equation and the specific recommendations based on the micro-equations, we can 

consider the difference as a potential aggregation bias.  When we attach prices of inputs and 

outputs to this bias, we get economic benefits or losses of broad recommendations.  How does 

this knowledge help in determining the optimal spatial scale of making N recommendations? 

Here, let’s first use pooled/aggregate estimated quadratic response function and by first order 

conditions get the solution, 𝑋∗ =
𝑅−𝛽1

2𝛽2
  where 𝑅 =

PX

PY
. 

Inserting this optimal nitrogen rate into the yield response equation and hence the profit 

equation, gives the maximum profits that can be attained at that particular price ratio for all real-

values of X.  This result is consistent with Jensen’s inequality of expectations which in modified 

form states that: 

Proposition II-Jensen’s inequality of a quadratic profit function:  “if 𝜋: ℝ → ℝ is a concave 

function defined on ℝ and 𝐸[|𝑌|] < ∞, then; 𝜋[𝐸(𝑌|𝑋)] ≥ 𝐸[𝜋(𝑌)|𝑋]  for all X in a set that has 

probability equal to 1 (Wooldridge 2010, p.31) .”  

Let’s consider two distinct locations 1 and 2 for expository purposes, then by Jensen’s inequality 

it should be the case that 

 𝜋1[𝐸(𝑌1|𝑋1)] ≥ 𝐸[𝜋1(𝑌1)|𝑋1] and 

 
(9) 

 𝜋2[𝐸(𝑌2|𝑋2)] ≥ 𝐸[𝜋2(𝑌2)|𝑋2]. 
 

(10) 

We can thus write the aggregate or broad profit equation as: 

 𝜋[𝐸(𝑌1 + 𝑌2)|(𝑋1 + 𝑋2)] ≥ 𝐸[𝜋(𝑌1 + 𝑌2)|(𝑋1 + 𝑋2)] 
 

(11) 

The challenge of determining the spatial scale of making recommendations is therefore that of 

determining whether;  

 π[E(Y1 + Y2|X1 + X2)] >/=/< 𝐸[π1[E(Y1|X1)] + π2[E(Y2|X2)]] 
 

(12) 

Inserting the optimal levels 𝑋∗, 𝑋1
∗, 𝑋2

∗ into this profit expression we get; 

 𝑃𝑌 [β0 + β1X∗ + β2X∗2] − 𝑃𝑋[𝑋∗] >/=/
<  𝐸[(𝑃𝑌(β01 + β11X1

∗ + β21X1
∗2) − 𝑃𝑋[𝑋1

∗])
+ (𝑃𝑌 (β02 + β12X2

∗ + β22X2
∗2) − 𝑃𝑋[𝑋2

∗])] 
 

or 

(13) 

 

 



12 

 

 
𝑃𝑌  [β0 + β1 {

𝑅 − 𝛽1

2𝛽2
} + β2 {

𝑅 − 𝛽1

2𝛽2
}

∗2

] − 𝑃𝑋 [{
𝑅 − 𝛽1

2𝛽2
}] 

  >/=/<  𝐸[(𝑃𝑌 (β01 + β11 {
𝑅 − 𝛽11

2𝛽21
} + β21 {

𝑅 − 𝛽11

2𝛽21
}

∗2

) − 𝑃𝑋 [{
𝑅 − 𝛽11

2𝛽21
}])

+ (𝑃𝑌  (β02 + β12 {
𝑅 − 𝛽12

2𝛽22
} + β22 {

𝑅 − 𝛽12

2𝛽22
}

∗2

)

− 𝑃𝑋 [
𝑅 − 𝛽12

2𝛽22
])] 

 

(14) 

where 𝑃𝑌 and 𝑃𝑋 are assumed to be constant scalars such that the form of the whole expression 

depends on values of β0, β1, β2, β01, β11, β21, β02, β12 and β22 .  Instead of using the expectation 

operator, one may also assume any other convex combination of the two objective functions.   It 

is apparent from the expression that a quest for an analytical solution to this problem can be 

daunting.  Most importantly, each of the fitted parameters 

β0, β1, β2, β01, β11, β21, β02, β12 and β22 have some estimation uncertainty due to a lack of fit of 

the quadratic function to the data, making the optimal 𝑋∗, 𝑋1
∗ and 𝑋2

∗  ratios of two normally 

distributed functions whose means and variances were determined from the regression 

estimations (Jaynes 2011). Although optimal levels are defined by a ratio of two normal 

distributions, the distribution of the economically optimal nitrogen is not typically normal, but 

depends on the coefficients of variation and the correlation coefficient of the parameters 

(Shanmugalingam 1982).  If we however assume normality of the expected profits, we can 

characterize the form of the analytical solution to this problem. Firstly, we assume a well-known 

property of normal distributions as stated in proposition III. 

Proposition III-Normality: If 𝜋 is normally distributed, 𝜋~𝑁(𝜇, 𝜎) with 𝜇  as the mean and 𝜎  as 

the variance; then a linear combination such as, 𝜋𝛼 = 𝛼𝜋1 + (1 − 𝛼)𝜋2 , where 𝜋2 is a constant 

and for all 𝛼 > 0, will also be normally distributed: 𝜋𝛼~𝑁(𝛼𝜋1 + (1 − 𝛼)𝜋2), 𝛼𝜎).  (adapted 

from Levy 2006, p.199).  

This proposition then allows us to compare the two profit distributions. It is important to note 

that Proposition III has received mixed debates on its appropriateness especially when the 

functions are not independent (Rosenberg 1965). In our framework however, we assume that 

profit functions in two different locations are independent. Assuming a riskless decision 

problem, decision makers/researchers will choose using Theorem 1. 

Theorem 1: First Order Spatial Scale Stochastic Dominance - Let 𝜋∗ and 𝜋 , be the profits 

attained when two distinct recommendations are made with the former being site specific while 

the latter being broad. The cumulative distribution functions are 𝛷∗ and 𝛷′ respectively. Assume 

that 𝜋∗ and 𝜋 ,, the two random variables, are normally distributed with the following 

parameters:𝜋∗ = 𝑁(𝜇1, 𝜎1), 𝜋 , = 𝑁(𝜇2, 𝜎2). Then 𝛷∗ will dominate 𝛷′ by First Order Spatial 
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Scale Stochastic Dominance, if and only if the following holds: (a)   μ1 > μ2  and (b)    σ1 = σ2 

(adapted from Levy 2006,  p. 200). 

Proof. The informal proof for this theorem is straightforward. One important property of normal 

distributions is that whenever   𝜎1 = 𝜎2 for two different distributions, the cumulative 

distribution functions do not intercept. In addition, the condition 𝜇1 > 𝜇2 implies that Φ∗(𝜋) <

Φ′(𝜋) for all 𝜋 hence Φ∗ stochastically dominates Φ′. The other side of the proof is also similar 

as Φ∗ stochastically dominates Φ′ implies that Φ∗ and Φ′ will not intercept. This completes the 

proof (adapted from Levy 2006). □ 

The normality assumption on the distribution of profits may be questionable thereby warranting 

distribution free decision rules. Theorem II provides the general criterion for first order spatial 

scale stochastic dominance.  

Theorem II: General First Order Spatial Scale Stochastic Dominance- Let F(.) and G(.) be two 

cumulative distributions of profits defined based on different spatial scales at which they were 

optimized. The distribution of profits F(.) will first order stochastically dominate the distribution 

of profits G(.) if and only if F(π) is less than or equal to G(π) for every π and there is at least one 

π for which a strong inequality holds  (adapted from Levy 2006,  p. 56). 

This theorem essentially means that for every amount of profit we get by applying the optimal 

amount of fertilizer; the probability of getting at least a certain level of profits is higher under the 

distribution of profits for the maximal spatial scale than any other spatial scale. The proof for this 

theorem can be found in (Mas-Colell, Whinston and Green 1995). Some of the important 

properties of first order spatial scale stochastic dominance include (i) it does not imply that every 

possible location’s profit of the superior spatial scale is larger than every possible profit of the 

inferior spatial scale of making recommendations and (ii) although it implies that the mean under 

F(.) is greater than the mean under G(.), a ranking of the means of the two distributions does not 

imply one stochastically dominates the other, rather the entire distribution matters.  Figure 3 

shows three hypothetical cumulative distribution functions: F(.), G(.) and Q(.). In the figure, F(.) 

first order stochastically dominates G(.) since F(.) < G(.). However, other higher order stochastic 

dominance criteria are needed to compare F(.) and Q(.) or G(.) and Q(.). We only consider first 

order stochastic dominance in this paper because the analysis of second order stochastic 

dominance requires further assumptions on risk preferences, a complexity that is beyond the 

scope of this study. If one makes other risk assumptions, then higher order spatial scale 

stochastic dominance decision rules may apply.  
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Figure 3: First order “spatial scale” stochastic dominance 

Proposition II and Theorem II lead to Proposition IV which is the heart of the study and makes 

conclusive arguments about the nature of the relationship between broad recommendations and 

specific recommendations. 

Proposition IV: If a profit function 𝜋(𝜃, 𝑋) is a concave function of X for all states of 

nature/uncertain parameters 𝜃, then the optimized levels of profits 𝜋(𝜃, 𝑋∗) from using specific 

recommendations 𝑋∗ will always be the same or stochastically dominate optimized levels of 

profits 𝜋(𝜃, 𝑋′) from using broad recommendations 𝑋′ assuming zero cost to the decision itself
1
. 

Proof. The proof for this proposition relies on the first order stochastic dominance theorem and 

Jensen’s Inequality stated previously.  Let F(.) be the cumulative distribution function of profits 

from using specific recommendations and let G(.) be the cumulative distribution function (cdf) of 

profits from using a broad recommendation. Without loss of generality, assume F(.) dominates 

G(.) as stated in the conclusion of the proposition IV. Then by definition, 𝐹(. ) ≤  𝐺(. )  for every 

𝜋.  Since we are considering different spatial scales, the profit function from using specific 

recommendations is essentially a convex combination of the location specific profits. Therefore, 

𝐹(𝜋) is the cdf for 𝜋(𝜃, 𝑋∗). The profits from a broad recommendation are a direct 

characterization of the profits and can be represented as 𝜋(𝜃, 𝑋′) with a cdf, 𝐺(𝜋). Let 𝑋∗ = 𝑃𝑋′ 

where 𝑃 is a sufficient statistic for 𝜃  (i.e. the conditional distribution of X is independent of 𝜃) 

By Jensen’s Inequality, if  𝜋 is a concave function of 𝑋; then  

𝜋(𝜃, 𝑋∗) = 𝜋(𝜃, 𝑃𝑋′) ≥ 𝑃[𝜋(𝜃, 𝑋′)]  

                                                 
1
 This proposition is similar to the Blackwell’s theorem as stated and proved in Berger (1985). The reader is refered 

to pages 35 to 41 of the book for details.  
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which is also an implication of the definition of first order spatial scale stochastic dominance 

𝐹(. ) ≤  𝐺(. ) . One can also use complex and compelling results on preservation of log-

concavity of cumulative distribution functions as reported by Bagnoli and Bergstrom (2004) in 

proving this proposition   □ 

It is imperative to note that the assumption of zero cost to the decision itself can be relaxed so 

that a lower bound cost can be defined and compared to the differences in the two distributions. 

How can these theoretical results be used in practical empirical settings given uncertainty over 

the parameter space and the distribution of the expected profits?  This is where we turn to 

numerical methods particularly the Monte Carlo approach. Precisely, we develop a Bayesian 

method for calculating the optimal nitrogen rate which can then be directly compared to make a 

judgment as to which spatial scale is most profitable.  

3.3.3 Determining the Optimal Nitrogen Rate using Bayesian Decision Theory 

The literature on Bayesian estimation of yield response to nitrogen is quite recent and relatively 

rare in being used to determine optimal allocation of limiting resources in production economics 

(Ouedraogo and Brorsen 2014). However, Bayesian estimates via Markov Chain Monte Carlo 

(MCMC) have more intuitive and correct interpretation in spatial studies since the draws from 

MCMC sampling can be used to produce posterior distributions for functions of the parameters 

that are of interest thereby making the testing of complicated parameter relationships like the one 

we are concerned with in this study quite easy (Lesage and Pace 2009; Gelfand et al., 1990). 

It is imperative to note that Bayesian decision theory is not just an alternative to frequentist 

statistics as is bayesian statistics
2
; it is rather an alternative to the plug in approach showed in 

Section 3.3.1. According to Dorfman(1997), Bayesian decision theory differs from the plug in 

approach in that in the latter the researcher takes estimates of unknown parameters as if they 

were certain and ignores the effect that uncertainty may have on choosing the optimal set of the 

control variables or independent variables. The former however is regarded as decision making 

under estimation risk in that it works with uncertain parameter estimates in the solution of an 

optimal decision problem. When do these two approaches give the same result? These two 

approaches will give the same answer when the certainty equivalence principle holds. The 

certainty equivalence principle states that 

“Ignorance of parameter uncertainty as assumed by the plug in approach will lead to the 

same solution as a bayesian approach that fully accounts for the parameter uncertainty if 

and only if the posterior distribution of the parameters is normal and the objective 

function is linear-quadratic in the unknown parameters”- (Dorfman 1997). 

The general procedure in Bayesian decision theory is that one chooses the values of the control 

variables (nitrogen in this case) that minimize the expected loss of that decision, where the 

                                                 
2
 For a complete treatment of spatial Bayesian statistics and/or econometrics employed in this study, interested 

readers are encouraged to consult (Banerjee, Carlin and Gelfand 2015). 
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expectation is taken with respect to the posterior distribution of the unknown parameters (Berger 

1985).  We cast the Bayesian decision theory as a decision problem of determining the optimal 

level of nitrogen and then which spatial scale (broad or specific) is the most profitable. Let the 

unknown parameters involved in the decision problem be 𝜃 and assume they have a posterior 

distribution defined by 𝑝(𝜃|𝑌, 𝑋) where 𝑋 is the vector of independent variables and 𝑌 is the 

dependent random variable with a probability density given x defined as  𝑝(𝑌|𝑋, 𝜃) . The optimal 

level of nitrogen or any control variable is determined by the loss equation 

 
X∗ = argmin ∫ ∫ F(Y, X|θ) p(Y|X, 𝜃)p(𝜃|Y, X)dYdθ

Yθ

 

 

(15) 

The expected loss of choosing a particular value of the control variable 𝑋 is evaluated by 

integrating out uncertainty concerning the unknown parameters 𝜃 and any residual uncertainty 

about the endogenous variables Y (Dorfman 1997). Since our aim is to maximize profits, we can 

define the loss function 𝐹(𝑌, 𝑋|θ) as; 

 F(Y, X|θ) = πmax − π(Y|θ) 

 
(16) 

where π(Y|θ) is the profit earned from selling 𝑌 at a particular price ratio conditional on 

parameters θ .The value of πmax is however unknown and can be assumed to be a constant such 

that the loss function reduces to F∗(Y, X|θ) = −π(Y|θ) which is to be minimized by the same 

value of Y as the original loss function F(Y, X|θ). Minimizing a negative of profit is equivalent to 

maximizing profit such that we choose the optimal nitrogen (X∗) by 

  

X∗ = argmax ∫ ∫ F′(Y, X|θ) p(Y|X, θ)p(θ|Y, X)dYdθ
𝑌𝜃

 

 

(17) 

where F′(Y, X|θ) = π(Y|θ). In this case, the integrals are taken to eliminate the agent’s 

uncertainty regarding the true but unknown vector of parameters 𝜃. In our analysis, we assume 

the value of 𝑌 is deterministic given 𝑋 and 𝜃 such that p(Y|X, θ) is degenerate and thus will not 

affect the calculation of the expected profits. If 𝐹∗(𝑌, 𝑋|𝜃) is bounded above which is trivially 

true by definition of the functional form, Fubini’s theorem can be invoked to interchange the 

order of integration and use Bayes rule to get: 

 
X∗ = argmax ∫[∫ 𝐹′(𝑌, 𝑋|θ)

𝜃𝑌

p(θ|Y, X)dθ]p(Y)dY 

 

(18) 

Since 𝑌 is degenerate given 𝑋 and 𝜃, we can drop 𝑌 in the subsequent derivations. With this 

derivation, we get a similar result to that reported by (Brorsen 2013; Byerlee and Anderson 

1969) in which using Bayesian decision theory, the optimal level of nitrogen is determined by 

maximizing expected profits as follows: 
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MaxX≥0 ∫ E[F′(X|θ)]p(θ|X)dθ 

MaxX≥0 ∫ Eπ(X|θ)p(θ|X)dθ 

(19) 

where 𝐸𝜋(𝑋|𝜃) is the expected profit, 𝜃 is the vector of relevant parameters including the 

coefficient vector 𝛽 for the variable input of interest, and 𝑝(𝜃|𝑋) is the posterior distribution 

for 𝜃.  Muus, Scheer & Wansbeek (2002) argued that the plug in decision rule in section 3.3.1 is 

simply a half space approximate of the Bayesian decision region and may lead to suboptimal 

level of profits. The Bayesian method has the advantage that it uses the whole distribution of the 

parameters other than just point estimates.  This method explicitly takes into account the 

estimation uncertainty (Muus, Scheer and Wansbeek 2002) when the decision maker or 

researcher does not know the parameter vector. If the integral of the cumulative distribution 

function over the posterior density of the parameters can be evaluated, then a closed form and 

analytical solution can be derived.  The normality assumption is usually imposed to get an 

analytical solution. The general result from the derivation of an analytical solution is that a 

Bayesian decision rule (i.e. that takes into account the uncertainty) leads to higher profits 

whenever there is greater uncertainty about the parameters. This is the case because the expected 

profit from the plug-in approach is simply a subset of the set of optimal rates determined by the 

Bayesian decision rule.  Instead of this abstract analytical solution one can use a Bayesian 

statistical approach through Monte-Carlo integration. Define �̃�1, … , �̃�𝑛 as the random vectors of 

parameters drawn from the posterior distribution using the Metropolis-Hastings algorithm.  The 

optimum is obtained by approximating the integral with Monte Carlo method to get the 

expectation form (equation 20) that converges to equation 19 when n goes to +∞  according to 

the law of large numbers   

 MaxX≥0(
1

n
) ∑ Eπ(X|θ̃i)

n
i=1 . 

 
(20) 

This can then be solved by conventional nonlinear optimization. The advantage of the functional 

form used (a quadratic response function) is that whether with stochastic or non-stochastic 

parameters one gets the same analytic solution because the random parameters enter the profit 

function linearly (Tumusiine, et al. 2011). Thus, having determined the spatially specific optimal 

levels 𝑋∗ across the whole distribution of θ̃, this can be compared to the broad optimal 𝑋′ given 

the whole distribution of θ̃:  

 
MaxX∗≥0(

1

n
) ∑ Eπ(X∗|�̃�𝑖) 

n

i=1

 

vs.  

MaxX′≥0(
1

n
) ∑ Eπ(X′|�̃�𝑖) 

n

i=1

 

(21) 
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The resultant expected profits are then compared using the first order spatial scale stochastic 

dominance rule. Based on the theoretical results, the first expression will stochastically dominate 

the last expression. The main reason for this is Jensen’s inequality with a concave profit 

function. This conclusion is similar to what Bullock et al. (2009) asserted: “assuming 

information and technology are free, given any information structure the farmer cannot lose from 

solving a less constrained problem. ” In our case, the first expression results in a less constrained 

informational problem. In fact, establishing that the first expression first order stochastically 

dominates the last expression implies that the former is more informative than the latter.  Our 

approach nevertheless has several advantages. Firstly, it combines theory with empirics on 

incorporating parameter uncertainty. Secondly, our approach does not require a lot of 

assumptions regarding preferences. By using profit maximization which is well known among 

economists and agronomists, our approach allows cross-disciplinary understanding of the value 

of taking into account parameter uncertainty in developing N recommendations. 

3.3.4 Summary of Theoretical Results 

The main conclusion from the theory above is that for the concave profit functions normally used 

in literature, specific recommendations and hence precision agriculture always stochastically 

dominates broad recommendations. This has been established in Proposition IV using Jensen’s 

Inequality and first order spatial scale stochastic dominance. The application of this proposition 

is possible by following a Bayesian decision theoretic approach which accounts for parameter 

uncertainty and through MCMC allows a direct characterization of cumulative distribution 

functions for making stochastic dominance comparisons. This novel way of establishing the 

theoretical advantages of specific recommendations allows us to easily fit econometric models to 

directly test the theory. These theoretical results are however consistent with advocates of 

precision agriculture. The results are also consistent with theoretical results reported by Bullock 

et al. (2009) that used an information theoretic approach to determine utility and profit 

maximizing levels of nitrogen under variable rate technology and uniform rate technology. The 

main finding was that given any information structure, the farmer cannot lose (or in general will 

gain) from variable rate technology as compared to uniform rate technology because the problem 

with variable rate technology is less constrained than that with uniform rate technology. Before 

presenting the empirical strategy, it has to be pointed out that the question of whether to rely on a 

single estimate or confidence bounds or whole distribution in making optimal N 

recommendations has been under constant debate in the literature since the 1960s.
3
 This debate 

can be interpreted as that of using Bayesian decision theory or plug-in-approach in economic 

optimization and the theoretical results in this paper illustrate that there is value to using the 

whole distribution of parameters.  

 

                                                 
3
 For more details, read the American Journal of Agricultural Economics (AJAE) commentaries in Anderson and 

Dillon (1968, 1970) and Seagraves (1970). 



19 

 

3.4 Review of Econometric Models and Specification  

Table 2 summarizes the various econometric models that have been used in the literature as 

candidates for determining the optimal input recommendations. These models are categorized 

into single equation and system estimation models.  The difference between the two is in the way 

the crop response function is estimated where for single equation models you have a single crop 

response averaged over all sample points considered while system estimation has site specific 

crop responses within a single model. There has been extensive use of the single equation models 

in the economics of crop response literature and less on system estimation. We provide a review 

of these models in the sections that follow. 

Table 2: Specification of Empirical models in response function estimation 

Category Model
4
 Advantage Weakness 

Single N 

response 

coefficient 

models 

Pooled models with 

spatial fixed effects 

It’s parsimonious ignores individual within 

equations 

and correlation across 

equations  heterogeneity, 

the spatial correlation 

Pooled models with 

spatial random effects 

It’s parsimonious Ignores individual 

heterogeneity 

Geo-statistical Models) 

 

In comparison with spatial error and lag 

models, the continuous covariance is 

arguably more suitable for variables 

such as crop yield whose variation in 

space is clearly continuous (Pringle, et 

al. 2010) 

Computationally 

inefficient 

Spatial error and lag 

models 

- computationally efficient 

- concerned with areal spatial data 

Ignores individual 

heterogeneity within areal 

spatial units. 

Heterogeneous 

N response 

coefficient 

models 

(system 

estimation) 

Quasi-spatial SUR Captures cross equation correlation 

Allows cross equation hypothesis tests 

Ignores individual 

heterogeneity and spatial 

correlation within 

equation 

Spatial SUR Incorporates spatial correlation within 

equation and error correlation between 

equations.  

Ignores individual 

heterogeneity 

Spatial 

Cluster/Regionally 

Varying Coefficient 

Models: 

Captures heterogeneity across the spatial 

clusters 

 

Assumes homogeneity in 

response function within a 

spatial cluster 

Spatially Varying 

Coefficient Models 

Incorporates all complex correlation 

structures and individual heterogeneity 

Computationally 

inefficient but there are 

alternatives 

 

The literature on the economics of precision agriculture has concentrated on the use of single 

equation ordinary least squares models, generalized least squares models, geo-statistical (Bullock 

                                                 
4
 Categorization into single N and heterogeneous N mostly reflects specification choices. For heterogeneous N 

models however, the natural specification of the model considers heterogeneity apriori.  



20 

 

and Lowenburg-DeBoer, 2006; Hurley, Malzer and Kilian, 2004) and spatial econometric 

models (Anselin, Bongiovanni and Lowenberg-DeBoer,2004).  A comparative review of spatial 

econometric and geostatistical models for response function estimation can be found in Hurley, 

Malzer and Kilian (2004). In this paper, we focus on the system models.  

3.4.1 Quasi-Spatial Seemingly Unrelated Regression Models 

The Seemingly Unrelated Regression (SUR) estimation approach is proposed for the research 

questions posed in this study on the grounds that the error terms might be correlated across the 

locations i.e. the equations due to omission of variables. This is Zellner’s original justification 

for considering a SUR framework. SUR is able to provide estimates of how relationships can 

potentially vary over the data dimensions as well as providing a convenient vehicle for testing 

hypotheses about these relationships (Fiebig 2003). According to Srivastava and Giles (1987), a 

common situation which may suggest a SUR specification is where regression equations 

explaining a certain economic activity in different geographical locations are to be estimated.  

The consideration for using a quasi-spatial seemingly unrelated regression model and a full 

spatial seemingly unrelated regression unlike a pooled model is that the pooled model does not 

account for spatial and temporal heterogeneity (Elhorst 2014). Spatial units are likely to differ in 

their background variables which are usually space specific, time invariant variables that do 

affect the dependent variables but which are difficult to measure. In the case of crop and soil 

fertility management recommendations, the spatial units may differ in rainfall, topography and 

other biophysical characteristics.  

The application of SUR models explaining economic activities in different geographical 

locations have been rather sparse. However, typical examples include Munnell (1990). The 

important question pursued by Munnell was whether it is valid to assume that the coefficient 

vector is the same for all states (individuals) in the sample. Greene (2012) named a SUR based 

model that has data matrices that are group specific datasets on the same set of variables as a 

“multivariate regression model.” In this paper, we use the term quasi-spatial SUR because it 

reflects that the specific equations represent spatial units though within spatial unit correlation is 

not explicitly analyzed.  The quasi-spatial seemingly unrelated regression model consists of M 

equations which can be written as: 

 Y1 = X1B1 + ε1 

X2 = X2B2 + ε2 

X3 = X3B3 + ε3 

…  
YM = XMBM + εM. 

 

(22) 

This is a quasi-spatial model because M equations represent M spatial units (i.e. distinct and 

mutually exclusive districts or regions).  In each spatial unit, there are N trials representing 

individual observations. The number of observations in each spatial unit does not necessary have 

to be equal. However, the computational requirements for the seemingly unrelated regression 
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models with unequal number of observations were considered beyond the scope of this study. If 

we assume same number of observations and thus match the individual trials in each location, we 

can represent the quasi-spatial seemingly unrelated regression model as: 

 

[

Y1

Y2

⋮
YM

] = [
X1   0        …  0
0   X2       …  0
0    0       … XM

] + [

ε1

ε2

⋮
εM

] 

Yj = XjBj + εj ,   j = 1, … , M 

 

(23) 

 

We assume strict exogeneity of 𝑋𝑗 such that E[ε|X1, X2, … , XM] = 0. Also, assume that the 

disturbances are uncorrelated across observations but correlated across equations, 

E [εjiεij′
′ |X1, X2, … , XM] = σjj′ , if t = s and 0 otherwise for all spatial clusters j and j’. This un-

correlation assumption is unrealistic in the case of farm production as such spatial SUR is 

considered in the next section. However, proceeding with the SUR derivation, the disturbance 

formulation (i.e., non-spherical variance-covariance matrix under homoscedasticity) can 

therefore be represented as: 

 E [εjεj′
′ |X1, X2, … , XM] = σjj′IT 

E[εε′|X1, X2, … , XM] = Ω = [

σ11I             σ12I         … σ1MI
σ21I σ22I      … σ2MI  

⋮ ⋮ ⋮
σM1I σM2I … σMMI  

] 

Ω =    [

σ11             σ12 … σ1M

σ21 σ22       … σ2M

⋮ ⋮ ⋮
σM1 σM2 … σMM

] ⨂ I 

Ω = Σ⨂ I 
Ω−1 = Σ−1⨂ I 

 

(24) 

According to Zellner (1962), the generalized least squares estimator is the most efficient 

estimator. The GLS estimator can be written as: 

 β̇ = [X′Ω−1X]−1X′Ω−1Y = [X′(Σ−1⨂ I)X]−1X′(Σ−1⨂ I)Y 

 
(25) 

Since Ω is unknown, it is common to use its estimate Ω̇, the feasible generalized least squares 

estimator (FGLS).  

Scaling Tests 

According to Anselin (1988), there are two aspects of this SUR specification that need particular 

attention in a scaling problem. These are regional homogeneity and spatial aggregation and 
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testing spatial dependence of an unspecified form. The hypothesis of particular interest in the 

SUR framework is the homogeneity restriction of equal coefficient vectors (Greene 2012). The 

regional homogeneity problem deals with coefficient stability across regions (e.g., to assess the 

extent to which all regions/districts in a spatial system respond to a certain application of 

fertilizer).  Thus in a SUR framework the response function of each location can be modeled as a 

separate equation, related to the rest of the system by error covariance. A test of regional 

coefficient homogeneity can then be carried out as a hypothesis test on equality of parameters in 

the SUR model.  If the joint null hypothesis of equality for all parameters in the model cannot be 

rejected, the data for all regions can reasonably be pooled.  

The homogeneity restriction is that 𝛽𝑖 = 𝛽𝑚 for i = 1,…,M - 1. The hypothesis would be tested 

as 

 

RB = [

I 0 … 0 −I
0 I … 0 −I
⋮ ⋮ ⋮ ⋮ ⋮
0 0 … I −I

] [

β1

β2

…
βM

] = [

β1 − βM

β2 − βM

…
βM−1 − βM

] = 0. 

 

(26) 

 

This form of restriction states that the micro-units (individual smaller spatial units) are 

homogeneous insofar as their regression coefficient vectors are concerned. Further if valid, there 

is no aggregation bias such that the expectation of the macro/aggregated estimator (broad) will 

be equal to the micro (specific) parameter vector (Zellner, 1962).   Finally, when the different 

equations in a SUR system pertain to regions, a test on spatial autocorrelation of an unspecified 

form is equivalent to a test on the diagonality of the inter-equation error covariance matrix. 

3.4.2 Spatial Seemingly Unrelated Regression Models 

Anselin (1988) developed and coined the term “spatial SUR” to a SUR specification containing 

regression equations that pertain to cross sections at different times or cross sections of cross 

sections. Most of the illustrations however concerned a spatial SUR in which the response 

coefficients varied over time rather than across space. In the context of this study, the spatial 

SUR is meant to exploit the spatial dependence of crop responses across spatial clusters. Thus, 

this would be considered a fully spatial SUR in that it considers both within and between spatial 

unit variations as well as having two spatial dimensions (i.e., cross sections of cross sections). In 

addition to the spatial dependences estimated via a spatial lag component and the weight matrix 

based spatial error component, one would study explicitly the error terms for each spatial cluster 

to determine if they are correlated across equations, implying a seemingly unrelated regression 

(SUR) structure.  This kind of a framework was also used by Zhou and Kockelman (2009) in an 

employment study. Following Zhou and Kockelman (2009), a SUR model specification, with 

spatial lag and spatial error processes is a multi-equation extension of the equation: 

 ym = ρmW1ym + XmBm + εm; εm = λmW2εm + μm. (27) 
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According to Anselin(1988), when spatial units are grouped and estimation is carried out on a 

cross section in each group, plus the errors between the elements of the two groups show 

dependence, then a particular form of spatial SUR results. Thus, if the errors within each cluster 

equation show spatial dependence, a certain form of nested spatial effects is present, in the sense 

of within and between cluster dependence. The elements in each spatial cluster needed to be 

matched to those in the other, such that each is related to only one in the other cluster due to the 

assumption that 𝐸[휀𝑟𝑖휀𝑠𝑗] = 0 for 𝑖 ≠ 𝑗 for all clusters 𝑠 and 𝑗.  This is indeed a restrictive 

structure as Anselin (1988) noted and has very few applications. 

In our framework, the coefficients can be constant across extension planning areas (EPAs ) but 

vary over Agricultural Development Divisions (ADDs) for the first set of models and over 

districts for the other set of models. Since estimation is based on aggregate spatial units with 

arbitrary boundaries, spatial error autocorrelation could be present within each cross section. If 

the clusters are of unequal size, the simplifying Kronecker product results of the SUR model no 

longer apply, although the situation can still be considered as a case on non-spherical error 

variance (Anselin 1988).  

If we assume a general case in which both intra- as well as inter-spatial cluster dependence is 

present, the model becomes a special case of a non-spherical error covariance matrix models 

(Anselin 1988). For instance, consider two spatial clusters/equations. A nested spatial error SUR 

can have error dependence with the following characteristics: 

 εm = λmW2εm + μm for m = 1,2 

E[μ1sμ2t] = σ12for all s, t. 
 

(28) 

According to Anselin(1988), this implies a constant variance between the errors of two spatial 

clusters for each pair of spatial units s, t. 

The error covariance is therefore 

 Ω = [I − (λ⨂W)]−1U[I − (λ⨂W′)]−1 

 
(29) 

 

with  

U = [
σ11. I σ12. E
σ21. E σ22. I

] 

where E is T  T matrix of ones and I is an identity matrix of order T. 

It was noted that using quasi-spatial seemingly unrelated regression model and the full spatial 

seemingly unrelated regressions can be satisfactory in the development of recommendations if 

unequal number of observations can be allowed for each spatial unit. The computational 
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demands of this kind of analysis were too demanding for the study period. Thus, an alternative 

that is computationally lighter and allows unequal number of observations was considered. It can 

be established that the quasi-spatial SUR is equivalent to a GLS multivariate multi-level model 

while spatial SUR is equivalent to a GLS multivariate model with spatial correlation. 

3.5 Alternatives to SUR and Spatial SUR 

3.5.1 Region and Season Varying Coefficient Process  

In many applications, the objective is to build regression models to explain a response variable 

over a region of interest under the assumption that the responses are spatially correlated. In 

nearly all of this work, the regression coefficients are assumed to be constant over the region. 

However, in some applications, coefficients are expected to vary at the local or sub-regional 

level (Gelfand et al., 2003).  One important application is the determination of the appropriate 

scale of soil fertility recommendations since it is expected that input coefficients to maize 

production in each sub-region or sub-plot are different. For these types of problems, we can use a 

modeling approach called mixed effects modeling or hierarchical modeling. The justification for 

using this class of models is that a policy maker or agricultural researcher is not interested in a 

single plot but rather in a region or more generally population of plots, and thus the wider 

statistical problem is to optimize fertilizer amount for the population while also including the 

possibility of recommending different amounts for different plots in the population, as a function 

of some plot characteristics (Wallach 1995). These models are all estimated using the standard 

ordinary least squares (OLS) as such we presume all OLS assumptions (as discussed in Greene 

2012) apply. 

A region specific, varying coefficient model allows the parameter matrix to be region specific or 

spatially indexed. Consider a region specific, varying coefficient model  

 Yim = β0 + Β0m+ B1X𝑖𝑚 + B2Xim
2 + ⋯ + ϵim 

 
(30) 

where 𝜖𝑖𝑚~𝑁(0, Λ), m = 1,... M, Λ is the variance covariance matrix.  This is a model where the 

regression coefficients depend on the location of the observation and thus can be seen as an 

application of the varying-coefficient models. The variation of the regression coefficients B 

through space enables greater adaptation by the model to changes unaccounted for by the 

covariates used in the model. It also means that there are many more parameters in the model. 

This poses a modeling challenge and additional elements are required to relate them (Gamerman 

and Moreira 2004).  

By using different levels of spatial clustering to define the regions (i.e., Extension Planning 

Areas, districts/RDPs or Agricultural Development Divisions) we make comparisons of the 

models and ascertain whether further lower level spatial clusters are needed or whether broad 

regions are enough to explain the variation in the response functions.  
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Similarly a season specific coefficient model allows the parameter matrix to be season specific 

just as the region specific model above: 

 Yt = β0 + Β0t+ B1X1t + B1X2t
2 + ⋯ + ϵt 

 
(31) 

 

where 𝜖𝑡~𝑁(0, Λ), t = 1,... T. 

Finally, we can consider a case where the coefficients vary by region and season: 

 Yrt = β0 + Β0rt+ B1X1rt + B1X2rt
2 + ⋯ + ϵrt 

 
(32) 

where 𝜖𝑟𝑡~𝑁(0, Λ), r = 1,..., R and t = 1,...,T.  This final model was not estimated due to data 

limitations during the implementation of the analysis. 

3.5.2 Spatially Varying Coefficient Models via the Bayesian Modeling Approach 

The modification to the generic geostatistical model is the incorporation of spatial random 

effects which can be set at different spatial clusters (e.g., Districts, Rural Development 

Programme or Agricultural Development Division) including the individual points. When we use 

spatial clusters or regions, as in the regionally varying coefficient models, we get into the same 

concerns about the arbitrariness of the scale of resolution, the lack of smoothness of the surface, 

and the inability to interpolate the value of the surface to individual locations (Banerjee, Carlin 

and Gelfand 2015). In a spatially varying coefficient model process, we aim to allow coefficients 

to vary by each point at which the trial was done thereby creating a spatial surface of response 

rates.  

Before delving into the spatially varying coefficient model which is normally estimated using 

Spatial Bayesian Statistics, it is appropriate to explain why a Bayesian modelling framework is 

the most appropriate in the context of this study. For a start, the output we get from a Bayesian 

analysis is different from the point estimates that we seek to get with the “classical or 

frequentist” approaches. Instead of producing a point estimate of the parameters, a Bayesian 

analysis produces as its prime piece of output a density function for the parameters called 

“posterior” (Kennedy 1992).  This has the advantage that we can be able to incorporate 

parameter uncertainty in the economic decision making by using the whole distribution of the 

parameters which is impossible with the frequentist methods. This is essentially the thrust of 

Bayesian decision theory which has been discussed before in Section 3.3.3. 

The spatially varying coefficient model is a special class of spatial models that use Bayesian 

techniques for computational and numerical benefits.  The spatially varying coefficient model 

can thus be written as (Cressie 1991; Gelfand et al., 2003):  

 Y(s) = u(s) + W(s) + δ(s), δ(s)~ G(0, Σ(θ)) 

 
(33) 
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where u(s) is the mean process, 𝑢(𝑠) = 𝑥(𝑠)𝑇𝛽. The residual comprises a spatial process W(s), 

capturing spatial association and independent white noise process 𝛿(𝑠) which is often called the 

nugget. The white noise process has these assumptions: E(δ(s)) = 0, var(δ(s)) = τ2 and 

cov(δ(s), δ(s′)) = 0. W(s) is a second order stationary mean 0 process independent of the white 

noise process: E(W(s)) = 0, var(W(s) ) = σ2, cov(W(s), W(s′ ) ) = σ2 ρ(s, s′; φ),  where ρ is a 

valid two-dimensional correlation function and φ is the decay parameter. 

𝑊(𝑠) captures spatial random effects and implicitly defines a hierarchical model providing local 

adjustment (with structured dependence) to the mean, interpreted as capturing the effect of 

unmeasured or unobserved covariates with spatial pattern. Letting 𝑌(𝑠) = 𝛽0 + 𝛽1𝑥(𝑠) +

𝛽2𝑥(𝑠)2 + 𝛽3𝑇 + 𝛽4𝑆𝑇 + 𝛽5𝑉 + 𝛿(𝑠), write W(s) = 𝛽0(𝑠) and define 𝛽0(𝑠) = 𝛽0 + 𝛽0(𝑠). 

Here,  𝑥(𝑠) is amount of Nitrogen, 𝑇 is season, 𝑆𝑇 is soil type and 𝑉  is variety.  Then 𝛽0(𝑠) can 

be interpreted as a random spatial adjustment at location 𝑠 to the overall intercept 𝛽0. 

Equivalently, 𝛽0(𝑠) can be viewed as the random intercept process.  

Following Banerjee, Carlin and Gelfand (2015) for an observed set of locations 𝑠1, 𝑠2, … , 𝑠𝑛, 

given 𝛽0, 𝛽1,…,, {𝛽0(𝑠𝑖)} and 𝜏2, 𝑌(𝑠𝑖) for i=1,…, n, are conditionally independent. During the 

implementation of this modeling framework, it however turned out that the data were too large 

for this process to produce results. We thus considered an alternative model that preserves the 

advantages of the spatially varying coefficient process but can efficiently reduce the 

computational burden.  Banerjee, Carlin and Gelfand (2015) proposed the predictive process 

models in which the N spatial random effects 𝑊(𝑠) where n is the total number of observations 

are replaced with M spatial random effects �̅�(𝑠) with 𝑚 < 𝑛 as a way of dealing with large 

spatial datasets. The locations used for reduced model are called knots. The predictive process 

model was empirically implemented instead of the full spatial varying coefficient process model. 

The model then becomes 

Y(s) = u(s) + W̅(s) + δ(s). 

The analysis was conducted using spBayes package (Finley & Banerjee, 2013)  in R 

programming environment. We estimated the model using Markov Chain Monte Carlo in which 

Gibbs sampling updates were used to estimate the regression equation parameters 𝛽. The 

remaining parameters were updated using blocked random walk Metropolis steps using 

multivariate normal proposals. This process was made possible by first obtaining ordinary least 

squares (OLS) residuals which were then used to estimate a Gaussian empirical semi-variogram. 

We obtained estimates of the parameters (partial sill, 𝜎2; nugget, 𝜏2; and decay parameter, 𝜑) 

from this process to be used as starting values. We used K means approach to knot selection and 

selected 200 knots. The results were invariant to other knot selection algorithms and numbers of 

knots.  

The modified predictive process model was then estimated by specifying (i) the knots, (ii) 

model type: we use the spatially varying univariate model and bias adjusted predictive process, 
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(iii) starting values, (iv) tuning values, (v) number of iterations, and (vi) priors. The analysis in 

this paper uses a flat or a non-informative prior which is already embedded in the spBayes R 

Package for the coefficient parameters 𝛽. Therefore, we specified the priors for the hyper 

parameters only (nugget and sill). The priors included a uniform distribution (3/1000,3/50) for 

the 𝜑,  inverse gamma (2,0.08) for the 𝜎2  and inverse gamma (2,0.02) for the 𝜏2. These hyper 

priors have been better at allowing faster convergence in most of previous analyses using this 

model (e.g. Banerjee et al., 2015; Finley et al., 2011).  Trace plots were used to assess 

convergence. Two MCMC chains were run for 1000 iterations each at different initial values and 

each started mixing at 200’th iteration. We then discarded the initial 250 as burn in and 

recovered the remaining posterior samples in the subsequent analysis. The standard Deviance 

Information Criterion was used to choose the best model. 

Computational Issues 

While some of the computational challenges are explained for each respective model, this section 

provides a summary of the challenges that were met. The simple OLS and GLS models were 

easily implemented in R. Implementing the SUR and Spatial SUR failed because of two issues. 

Firstly, models that involve unequal number of observations are not yet fully implementable in 

the conventional statistical packages. The geostatistical models via the frequentist approaches 

were not converging in large sparse datasets. We thus considered Bayesian geostatistical 

approaches since the computations were more efficient. In addition, this modeling approach 

provided a direct link with Bayesian decision theory which is ideal for decision making under 

parameter uncertainty.  
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4.0 Results and Discussion 

4.1 Descriptive Statistics and Yield Maps 

This section provides the results for the exploratory analysis of yield variations against the 

different covariates that were considered in the experiments. Figure 4 shows the distribution of 

experimental maize yields for each of the treatments. It is apparent from the density plots that the 

zero N treatment had the lowest mean yield which was expected considering that nitrogen 

fertilization is considered yield increasing. The structuring of treatments may suggest that 

Nitrogen and Phosphorus effects may be confounding. However, since Nitrogen is regarded as 

the most limiting macro-nutrient, all the interpretation is on the differing levels of Nitrogen.  

 

Figure 4 : Maize yields density plots by for each treatment  

The important aspect in the density plot is however the differences in the variation and kurtosis 

of yields across the different treatments.   The variability observed can be attributed to many 

factors including location, weather, and topography.  The focus for this study is on spatial 

aspects of the variation.  In order to explore the inherent heterogeneity of the soils across the 

country; maize yields with the no fertilizer treatment were mapped.  It was expected that with 

zero fertilizer, the yields would not vary much across the country.  Figure 5 shows that there was 

variation in yield even without fertilizer application signifying the inherent spatial heterogeneity.   

The control treatment (no fertilizer) was the least performing treatment in almost all locations. It 
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is also evident that while there are wide differences between 35N treatment and 69N treatment; 

there are few differences between 69N, 92N and 96N treatments (Figure 6).  

 

 

Figure 5: Zero N treatment Yields across the country 
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Figure 6: Yield maps for all others treatments except 0N
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4.2 Fixed N Response Coefficient Models  

4.2.1 ADD Fixed and Random Effects Models 

It is evident from the results in Table 3 that location as defined by ADD, season (1 = 1997/8), 

maize variety (MH17, MH18 and Composite), soil texture (medium and light), nitrogen (N) and 

nitrogen squared (NSquared) are important factors affecting the yield of maize. These account 

for about 31 percent of total variation.  

Table 3: Fixed N Response Coefficient Models 

 
OLS GLS with FE GLS with RE 

(Intercept) 1236.00
***

 1236.00
***

 1147.72
***

 

 
(118.68) (118.68) (125.00) 

add KADD -84.05
**

 -84.05
**

  

 
(32.61) (32.61) 

 
addKRADD -71.84 -71.84 

 

 
(36.96) (36.96) 

 
addLADD 29.64 29.64 

 

 
(30.38) (30.38) 

 
addMADD -268.66

***

 -268.66
***

  

 
(28.59) (28.59) 

 
addMZADD -286.25

***

 -286.25
***

  

 
(31.34) (31.34) 

 
addSLADD 37.86 37.86 

 

 
(35.19) (35.19) 

 
addSVADD -55.51 -55.51 

 

 
(33.70) (33.70) 

 
Season (1997/98=1) -255.67

***

 -255.67
***

 -255.64
***

 

 
(16.41) (16.41) (16.41) 

Variety-MH17 50.38 50.38 49.49 

 
(116.87) (116.87) (116.85) 

Variety-MH18 245.16
*

 245.16
*

 245.78
*

 

 
(116.28) (116.28) (116.27) 

Soil texture(Medium=1) 152.35
***

 152.35
***

 152.86
***

 

 
(15.87) (15.87) (15.86) 

N 29.40
***

 29.40
***

 29.40
***

 

 
(0.84) (0.84) (0.84) 

N Squared -0.12
***

 -0.12
***

 -0.12
***

 

 
(0.01) (0.01) (0.01) 

R
2

 0.31 
  

Num. obs. 15690 15690 15690 

AIC 
 

260609.91 260687.59 

BIC 
 

260724.81 260756.53 

Log Likelihood 
 

-130289.95 -130334.79 

Num. groups 
  

8 
***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05 
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4.2.2 RDP Fixed Effects Models 

When the results are disaggregated by RDPs or Districts, it is evident that location is still an 

important factor to yield but variety is not.  This is so because of the nature of the trial in which 

the varieties were not randomized but rather targeted to specific locations. The table in appendix 

A shows the parameter estimates of a RDP fixed effects model.  When the fixed effects and 

random effects models were compared, the fixed effects model was performing better in terms of 

having smaller Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

values.   

4.3 Regionally and Seasonally Varying Slope and Intercept Models 

In this section, a specific class of models that consider varying the N response coefficient across 

locations and seasons are presented and discussed. These models are of importance in the 

determination of the optimal scale of making research recommendations because it is easier to 

make crop location or spatial level comparisons.  

4.3.1 ADD Varying Slope and Intercept 

Figure 7 provides ADD-specific OLS models.  It is apparent that Shire Valley ADD (SVADD) 

provides quite a different N coefficient than all the other ADDs. Though the other N coefficients 

are not exactly the same, they are within overlapping confidence intervals.  This result is 

counterintuitive to the agro-ecological interpretation of the delineation of the ADDs. It is 

however a logical result in the sense that ADDs are huge and there is no evidence that they were 

developed on the basis of agro-ecologies. Each of the ADDs has varying topology and climatic 

conditions; such that one would expect an averaging out of high and low responsive sites within 

each of the ADDs. This will be investigated by evaluating the response rates at a lower level: the 

Rural Development Programme (RDP) level. It is however important to note that the intercepts 

show marked differences across the ADDs illustrating that while the ADDs are not significantly 

different from each other in N response, they are still inherently different.  

Table 11 in the appendices provides a more detailed ADD varying intercept and slope coefficient 

model. The model presentation in the table allows us to make formal tests of hypothesis which 

are impossible using the separate regressions presented in Figure 7.   
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Figure 7: Separate ADD Specific Crop Response Functions 

Linear Hypothesis Tests 

When a single response model is disaggregated across the ADDs, it is possible to test linear 

hypotheses regarding the equality of N response across ADDs which substantially helps 

determine whether having a single N response relationship is optimal.  Linear hypothesis tests of 

equality of each of the agricultural development N coefficients to the N coefficient for the pooled 

model showed that only Shire Valley ADD has a significantly different N coefficient.  This 

therefore implies that using this level of spatial clustering in comparison to the pooled model, 

one would expect that only a single region would be given a markedly wrong recommendation in 

statistical sense. However, this would be under the assumption that crop response functions 

within each of the ADDs are homogenous. In order to substantiate this assumption, we consider 

a lower level of spatial aggregation, i.e. Rural Development Programs (RDP) or alternatively 

Districts.  

4.3.2 RDP Intercept and Slope Varying Coefficient Model 

When we consider an agronomic policy defined at RDP or district level, subtle aspects of the 

response functions start to emerge. Figure 8 shows the model estimates and confidence intervals 

for separate RDP equation models.  When RDP is considered the spatial level of making the 

agronomic recommendations, all the RDPs are responsive to N application just as it was found in 
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the case of ADDs. Obviously, the RDPs in Shire Valley ADD have N response functions 

significantly different from those of the other RDPs (Table 12). It is also apparent that the 

quadratic N parameter shows no significance in some of the RDPs unlike in the ADD intercept 

and slope varying coefficient model in Table 11.  As indicated for the ADD varying model, the 

confidence intervals for the intercepts of the RDP models are not overlapping for most locations 

implying that while the fertilizer response may be different; these areas are markedly different in 

terms of their yield potential. 

 

Figure 8: Separate RDP Specific Crop Response Functions 

One other important feature when comparing Figure 7 and Figure 8 is the width of the 

confidence intervals i.e. standard errors. By modeling at lower spatial levels, we are doing this at 

the expense of sample size and precision.  

4.3.3 EPA Varying Intercept and Slope Coefficient Model 

We further considered the case in which the N fertilizer recommendations are made at the EPA 

level. There were 151 EPAs in the data. Because of space, this table is not appended to this 

paper. However, various descriptive statistics were computed to determine how making 

recommendations at this spatial level would differ from making recommendations at RDP and 

ADD levels. Table 4 shows the summaries computed from the model results after fitting an EPA 

varying intercept and slope coefficient model.  
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Table 4: Summary Statistics for EPA Intercept and Slope Coefficient Model 

  Significance at 5% level Total 

Variable Statistic Insignificant Significant 

N Percentage number of EPAs 11.26 88.74 100.00 

 Average N coefficient  18.81 31.39 29.97 

 Standard Deviation of the N coefficients 7.00 6.40 7.58 

 Average Standard Error 11.93 9.97 10.19 

N Squared Percentage number of EPAs 88.00 12.00 100.00 

 Average N coefficient -0.11 -0.22 -0.12 

 Standard Deviation of the N coefficients 0.05 0.05 0.06 

 Average Standard Error 0.10 0.09 0.10 

 

If making broad recommendations is not different from making recommendations at any other 

level below it, it would be expected that the descriptive statistics in  

Table 4 would reflect the results in the models presented previously. However, it is evident that 

the average standard error is much higher when the response functions are evaluated at EPA 

level. This basically means that there is still a lot of variation within the individual trials in an 

EPA. Of course, this reflects the sample size problem. Nonetheless, it also implies that while N 

may be responsive when the data is pooled across the country, this may not be the case when 

each individual EPA is considered separately. This has research and experimental design 

implications particularly since locations are normally used as replicates in most studies. Is it 

better to have multiple replications of the experiment within one EPA (or other spatial unit)?  

4.3.4 Seasonally Varying Intercept and Slope Process 

Since the trials were done in two seasons, it is also of importance to determine whether N 

response functions are different across seasons. Table 5 illustrates the N response functions for 

the two seasons. The results for the two seasons are different with 1995/96 which was a good 

year with a higher N response. A linear hypothesis test of equality between N response in 

1995/96 (N96) and N response in 1997 (N97) was rejected with a p-value of 0.0096. The 

seasonality of N response is an important finding as it affects the nature of decisions that can be 

made from static or single period agronomic trials. These findings are consistent with Liu, 

Swinton, and Miller (2006) who also found that the maize yield functions were not consistent 

across time thereby concluding that while crop yield response to applied fertilizer may be site 

specific in some years, it is neither consistently site specific across years nor is the effect of 

individual variables consistent across years.  
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Table 5: Seasonally Varying Coefficient Models
5
  

 
OLS GLS with FE GLS with RE 

(Intercept) 1370.11
***

 1370.11
***

 1353.30
***

 

 
(39.66) (39.66) (52.70) 

MZADD -214.40
***

 -214.40
***

  

 
(35.90) (35.90) 

 
KADD -12.20 -12.20 

 

 
(36.89) (36.89) 

 
LADD 101.48

**

 101.48
**

  

 
(34.89) (34.89) 

 
SLADD 109.70

**

 109.70
**

  

 
(41.91) (41.91) 

 
MADD -196.82

***

 -196.82
***

  

 
(35.93) (35.93) 

 
BLADD 71.84 71.84 

 

 
(36.94) (36.94) 

 
SVADD 16.34 16.34 

 

 
(40.66) (40.66) 

 
Variety-MH18 194.78

***

 194.78
***

 196.28
***

 

 
(20.63) (20.63) (20.46) 

Variety-Composite -50.38 -50.38 -49.50 

 
(116.80) (116.80) (116.79) 

Soil Texture (Light=1) -152.35
***

 -152.35
***

 -152.86
***

 

 
(15.86) (15.86) (15.85) 

Year (1997=1) -261.00
***

 -261.00
***

 -260.97
***

 

 
(34.78) (34.78) (34.78) 

N_1997 26.09
***

 26.09
***

 26.09
***

 

 
(1.37) (1.37) (1.37) 

Nsq_1997 -0.08
***

 -0.08
***

 -0.08
***

 

 
(0.01) (0.01) (0.01) 

N_1996 30.59
***

 30.59
***

 30.59
***

 

 
(1.09) (1.09) (1.09) 

Nsq_1996 -0.14
***

 -0.14
***

 -0.14
***

 

 
(0.01) (0.01) (0.01) 

R
2

 0.31 
  

Adj. R
2

 0.31 
  

Num. obs. 15690 15690 15690 

AIC 
 

260599.40 260677.07 

BIC 
 

260729.61 260761.34 

Log Likelihood 
 

-130282.70 -130327.54 

Num. groups 
  

8 
***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05 

                                                 
5
 GLS with FE=Generalized Least Squares with Fixed Effects, GLS with RE=Generalized Least Squares with 

Random Effects. 
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4.4 Spatial Predictive Process Model 

While the models above demonstrate how broad agronomic recommendations can be 

substantially different from “statistically optimal” lower spatial level recommendations, they 

implicitly still assume homogeneity of N response within the spatial units at that level. This 

assumption is potentially wrong as literature shows that soil fertility may vary in very small 

distances. In order to determine whether this hypothesis holds, we develop spatially varying 

coefficient models that consider each independent trial as a realization of a spatial process.  

In the results that follow, we considered a flat prior or non-informative prior by using priors that 

have large variances in order to appeal to those who hold frequentist ideals to statistical 

estimation while also getting a better interpretation of the results.  The posterior estimates are 

therefore in principle similar to the conventional spatially varying geo-statistical model. 

However, the goal of the analysis is to obtain estimates with associated measure of uncertainty as 

a continuous surface over the domain (Banerjee, Carlin & Gelfand 2015).  

It is important to note that we are now not only dealing with individual trials but rather the whole 

spatial process within Malawi therefore we consider a surface plot other than just a yield map. It 

is evident from the Figure 9 that there is spatial variation in the yields across country with yields 

ranging from about 1000kg/ha to 4000kg/ha.  

 

Figure 9: Surface plot of Maize Yields 
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 The predictive spatial process model requires setting initial and tuning parameter values that are 

obtained from empirical semi-variogram. Figure 10 shows the semi-variogram of the yields. It is 

apparent in the figure that yields vary quite a lot across locations. It is also apparent that 

maximum variation is reached at about 50km though the semi-variance is as high as 1,000,000 in 

the limit of distance to the positive side of zero. Figure 11 shows the knot selection for the case 

with 200 knots using the different algorithms for choosing the location of the nodes. It is 

apparent from the figure that the k- means approach is over the entire space of the country 

thereby being favorable for the subsequent analyses.   

 

Figure 10:The semi-variogram plot of experimental maize yields 
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Figure 11: Map of Malawi showing the Knot selection algorithms and the points selected 
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4.4.1 Knots Sensitivity Analysis and Convergence  

The Figure 12 illustrates the posterior predictive distributions for the different numbers of knots. 

It is apparent that the yield distributions are almost identical which indicates that for this dataset 

using knots does not affect the results that much.  

 

 

Figure 12: Cumulative posterior distributions of predicted yields at different numbers of 

knots 

In terms of convergence, the general and most conventional approach to checking convergence is 

to see how well the chains with different starting values are mixing or moving around the 

parameter space. We can visually see this for each parameter using trace plots. The appendices 

show the trace plots for three of the parameters using two chains with different starting values. 

The two chains started to mix after 200 iterations such that 250 of the samples was burn in and 

the remaining 750 were used in subsequent inferences. 
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4.4.2 Posterior parameter estimates  

Table 6 and Table 7 show posterior summaries and the quintiles of the posterior estimates of 

each of the parameters respectively. The results are quite similar to the results presented for other 

frequentist based models presented in preceding sections. It is apparent that the spatial variance 

(sigma.sq) and non-spatial variance (tau.sq) equally affect the results of the model.  

Table 6: Posterior summaries at 200 knots  

 Mean SD Naive SE 

(Intercept) 1123.00 121.30 3.13 

N 29.36 0.87 0.02 

N squared  -0.12 0.01 0.00 

Variety-MH17 42.30 120.30 3.10 

Variety-MH18 253.20 120.70 3.12 

Soil texture (Medium=1) 178.90 16.22 0.42 

Season (1997/98=1) -253.10 16.80 0.43 

sigma.sq 489200.00 489400.00 12630.00 

tau.sq 488500.00 488700.00 12610.00 

Phi 0.04 0.02 0.00 

SD=Standard Deviation, SE= Standard Error 

 

Table 7: Posterior quintiles at 200 knots 

 2.50% 25% 50% 75% 97.50% 

(Intercept) 892.80 1040.37 1121.00 1206.00 1369.00 

N 27.72 28.76 29.33 29.96 31.05 

N squared -0.14 -0.13 -0.12 -0.12 -0.11 

Variety-MH17 -202.60 -38.69 43.96 125.60 273.50 

Variety-MH18 4.50 172.69 256.30 337.30 484.00 

Soil texture (Medium=1) 147.30 168.55 179.00 189.60 211.80 

Season (1997/98=1) -285.80 -263.94 -253.90 -241.80 -220.40 

sigma.sq 0.17 0.94 471500.00 975900.00 999800.00 

tau.sq 0.01 0.09 474400.00 975700.00 992200.00 

Phi 0.01 0.02 0.03 0.05 0.06 

 

Table 8  shows N coefficients varying by regions. The credibility intervals for N coefficient for 

SVADD (15.12 to 26.48) do not overlap with those for BLADD (27.45 to 35.90) and LADD 

(28.24 to 35.72). This implies that using the same recommendation would result in suboptimal 

decision rules. The model in Table 8 was the best model using the Deviance Information 

Criterion (DIC). 



42 

 

Table 8: Hierarchical Model with 200 knots 

 2.50% 25% 50% 75% 97.50% 

(Intercept) 1350.00 1429.00 1474.00 1515.00 1597.00 

Season (1995/96) 222.80 242.80 253.90 264.60 285.50 

MH18 Variety 157.80 182.60 196.30 209.70 235.40 

Composite Variety -286.60 -124.10 -47.94 27.35 156.50 

Soil texture (Light=1) -182.80 -162.30 -151.30 -140.40 -120.80 

addidKRADD -360.50 -242.60 -185.90 -126.00 -12.01 

NKRADD 19.95 23.86 25.84 28.06 31.93 

NsqKRADD -0.18 -0.14 -0.12 -0.10 -0.06 

addidMZADD -755.00 -659.30 -607.20 -556.50 -468.30 

NMZADD 23.61 26.43 27.85 29.36 32.16 

NsqMZADD -0.13 -0.11 -0.09 -0.08 -0.05 

addidKADD -594.00 -495.80 -440.70 -394.70 -298.90 

NKADD 26.23 29.53 31.03 32.52 35.28 

NsqKADD -0.17 -0.14 -0.13 -0.11 -0.08 

addidLADD -497.10 -404.50 -354.80 -307.10 -212.20 

NLADD 28.24 30.69 32.06 33.36 35.72 

NsqLADD -0.17 -0.14 -0.13 -0.12 -0.10 

addidSLADD -492.00 -377.40 -318.00 -254.90 -146.60 

NSLADD 24.25 27.93 30.01 32.25 36.44 

NsqSLADD -0.17 -0.14 -0.11 -0.09 -0.06 

addidMADD -724.80 -631.50 -578.80 -528.40 -434.20 

NMADD 26.30 29.00 30.43 31.73 34.52 

NsqMADD -0.17 -0.14 -0.13 -0.12 -0.09 

addidBLADD -464.70 -367.80 -315.30 -263.20 -164.50 

NBLADD 27.45 30.17 31.57 32.99 35.90 

NsqBLADD -0.19 -0.16 -0.14 -0.13 -0.10 

NSVADD 15.12 19.21 21.22 23.01 26.48 

NsqSVADD -0.15 -0.12 -0.10 -0.08 -0.04 

sigma.sq 939200.00 949100.00 955200.00 962500.00 973400.00 

tau.sq 0.69 1.48 2.94 5.39 10.35 

Phi (decay parameter) 0.00 0.00 0.01 0.02 0.04 
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4.5 Economic Optimization and Spatially Specific Recommendations 

The economic question we ask is similar to that which economists concerned with precision 

agriculture ask. Whether the benefits of accuracy in the response functions are huge enough to 

make a profit difference with the conventional broad estimations? By incorporating price ratio 

information into the response function estimates, we are able to decipher the economic optimum 

for N application. In addition, by changing the objective function to be that of yield 

maximization we can find the optimal agronomic yields. We find the aggregation bias and thus 

the (dis)advantage of broad recommendations by comparing the optimal results from using a 

broad optimal level to a spatially disaggregated model. In carrying out the analysis, a range of 

prices, as reported in different studies in Malawi from 1970s to 2010, were considered (Table 9). 

We used a 2.35 fertilizer to maize price ratio in all the subsequent analyses unless stated 

otherwise.  

Table 9: Average, minimum and maximum prices of maize and fertilizer 

Year Variable Mean Standard 

Deviation 

Min Max 

2009/10 

(Kwacha/Kg) 

Maize Prices 43.39 6.68 32.67 63.28 

(Integrated 

Household 

Survey, 2009) 

DAP Prices 106.19 10.89 90.00 153.00 

 NPK Prices 102.32 8.45 80.00 120.00 

 Urea Prices 97.52 5.28 89.47 110.00 

 Average Fertilizer Prices 102.01 8.21 86.49 127.67 

 Average N prices 34.20 2.19 29.78 39.10 

 Fertilizer: Maize Price Ratio 2.35 1.23 2.65 2.02 

 N:Maize Price Ratio 0.79 0.33 0.91 0.62 

1997 Analysis Urea Prices 6.84       

 Maize Producer Price  1.94       

 Maize Consumer Price 3.12       

 Urea: Maize Producer Price Ratio 3.53       

 Urea: Maize Consumer Price Ratio 2.19       

Heisey and 

Mwangi (1997) 

Nitrogen: Maize Price Ratio 

1977-87 

1988-1994 

Median 

10.7 

7.7 

   

Meertens 2005 Value-Cost Ratio 

 

    

 Early 1980s 7.4    

 Mid 1990s 3.3    

 Early 2000s 1.3    
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4.5.1 Spatial Profit Maximization with the Plug-in Approach 

The strategy used in the study was to determine the optimal set of input and output prices for the 

pooled or general model. Then insert this into the yield response equation to get predicted yields 

that are then inserted into the objective function to get the profits for each individual trial. Note 

that this entails imposing a broad or average optimal N rate to all individual trials or locations. In 

order to make a comparison with the case where different N levels are recommended, we simply 

take the recommended N levels and insert it into the spatial disaggregated model. The difference 

in predicted yields and profits show the (dis)advantage of the disaggregated model (i.e., with 

regionally specific N recommendations) and thus the potential benefits or losses to spatially 

varying recommendations. Figure 13 illustrates the cumulative probability step functions for the 

different regions.  

 

Figure 13: Cumulative distribution of profits for broad vs. specific recommendations 
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Figure 14: Overall yield loss/gain to specific recommendations  

The terraces in the cumulative distribution functions are a result of categorical variables that 

were included in the model. These included: soil texture, maize variety, and season. Using the 

optimal regional specific recommendations, we can deduce the predicted yields at these optimal 

levels. The conditional density plot
6
 shows how soil texture is distributed over the predicted 

yields at the optimum rate. It is apparent from the figure that medium textured soils were at the 

optimum higher yielding than light textured (coarse textured) soils.  

 

                                                 
6
 Conditional density plot shows the conditional densities of the random variable given levels of a categorical 

variable weighted by the marginal distribution of the categorical variable. The densities are derived cumulatively 

over the levels of the categorical variable. 
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Figure 15: Conditional density plot on the conditional distribution of soil texture over 

predicted yields at ADD Specific Optimal N Levels 

 

Figure 16: Conditional density plot on the conditional distribution of maize variety over 

predicted yields at ADD Specific Optimal N Levels 

In terms of maize variety, Figure 16 shows that MH 17 had both extremes of high yields and low 

yields at the optimum. It is apparent that in general MH18 had the highest yields.  

 

Figure 17: Seasonality and Predicted Yields at National and ADD Optimal N Levels 

It is apparent in the Figure 17 that seasonality had an effect on the yields at the optimal N levels. 

For both broad and specific recommendations, 1995/96 had the highest yields than 1997/98.  
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4.5.2 Spatial Profit Maximization with Bayesian Methods 

When using the Bayesian approach, we are integrating the profit function under the whole 

distribution using Markov Chain integration.  Thus, the equation in the Bayesian model uses the 

economically optimal N rates at each sample location.  In the analysis, we simply used the results 

from the MCMC chains to make conclusions as to whether broad or specific recommendations 

are better.  

 

Figure 18: Optimal N for each MCMC Sample equation by ADD 

It is evident from Figure 18 that the optimal specific N rates are different across regions. In 

addition, the figure shows that there is always a distribution of optimal N rates that make it may 

be misleading to simply use a single recommendation for any of the regions.  Figure 19 

compares the expected profits from applying an optimal broad recommendation with estimation 

risk accounted for against average expected profits from applying ADD specific 

recommendations with estimation risk accounted for. 
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Figure 19: Posterior probability distribution of expected profits  

The key result from the figure is that specific recommendations stochastically dominate 

broad recommendations. This is consistent with proposition IV which says that specific 

recommendations will always stochastically dominate broad recommendations for all increasing 

profit functions. It’s also possible to make stochastic dominance interpretations about the 

differences of profits attained in some of the regions. For example, profits in SLADD clearly 

stochastically dominate profits in KRADD. This comparison of profit distributions across space 

illuminates interesting aspects in understanding the parameter uncertainty. As it can be seen, 

while considering only the coefficient on the N may suggest that the optimal levels are similar 

across regions, cumulative distribution functions above demonstrate that this interpretation may 

be misleading. The profit distributions depend on the stochastic magnitudes of the other variables 

included in the model including soil type and season. These results are consistent with the 

suggestion that precision agriculture/specific recommendations may have risk management 

potential (Lowenberg-DeBoer, 1999). 
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Optimal N Levels at Varying Prices 

The Figure 20 shows the results of varying the price ratio of nitrogen to maize output. This is 

done by holding the maize output as numeraire and varying the prices of nitrogen upwards and 

downwards.  

 

Figure 20: Posterior probability distribution of expected profits at different prices. 

 

It is apparent from price ratio comparisons that while the optimal levels of nitrogen and 

profits are dependent on the price ratios; the decision on the spatial scale to make 

recommendations is independent of price ratio once we assumed the same price ratio across 

locations. This is consistent with the invariance property of stochastic dominance which says that 

stochastic dominance is preserved under multiplication with a constant or addition of another 

independent random variable. This conclusion applies in this context because we have assumed 

risk neutrality. An extension of the analysis with non-neutral risk preferences would be an 

important part of further research.  
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5.0 Conclusion 

Though the agricultural economics literature is full of research papers on the economics of 

precision agriculture and site-specific crop response functions, the theory has been lacking. In 

most cases, it has been found that variable rate technology and other precision agriculture 

technologies are more profitable, yet only one paper, Bullock et al. (2009), to the knowledge of 

the author provided a theory on the value of precision agriculture and why this is normally the 

case. This study however develops an easier and direct approach to empirically testing the value 

of using specific recommendations.  

In summary, this paper has analytically and numerically demonstrated that profits from using 

specific recommendations will always either be the same or first order stochastically dominate 

profits from using broad recommendations when ignoring the quasi-fixed cost differentials. This 

result has been proven directly by applying the theorem of first order spatial scale stochastic 

dominance and Jensen’s Inequality assuming the profit function is concave. The paper has also 

shown that it is almost impossible in agriculture to achieve perfect aggregation of economically 

optimal nitrogen rates which implies that any broad recommendation cannot exactly reproduce 

specific recommendations unless the locations concerned are homogenous in all parameters. This 

logically means that specific recommendations will strictly stochastically dominate broad 

recommendations. In terms of agricultural research policy, these findings illustrate the 

importance of collecting better information on costs of generating specific recommendations and 

in defining a lower bound cost that can be provided together with the recommendations so that 

farmers are aware of the comparative benefits of using regional/national recommendations or 

searching for locally specific recommendations. Finally, it is apparent that agricultural 

researchers should first identify the key factors that drive yield responses in each particular 

location concerned and then determine the optimal level based on enough sample in that location 

other than relying on an optimal broad recommendation.   

In practical situations, a specific recommendation would be adopted if the ex-ante costs of 

generating the specific recommendations are small enough not to offset the gains in profitability. 

This thesis did not attempt to quantify the costs of such information. This area of research 

remains of practical value to economists working on the value of precision agriculture. The 

likely avenue for that research is the calculation of lower bound costs that would offset these 

dominance results. Another research avenue would be using multi-location and multi-season data 

to exploit the spatio-temporal heterogeneity which inevitably adds a layer of complexity. The 

major weakness of the model presented is that it assumes exogenous input and maize output 

prices. This assumption is potentially problematic in the context of Malawi. Therefore, models 

that consider endogenous demand and supply relations in determining soil fertility 

recommendations are required. In our model, we also assumed a risk-neutral producer. Further 

research is needed for the case where farmers are assumed to be risk averse.  
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Appendices  

Table 10: Results for different model specifications with RDP Fixed Effects 

 
OLS GLS with FE GLS with RE 

(Intercept) 1243.72
***

 1243.72
***

 1162.75
***

 

 
(129.94) (129.94) (123.40) 

rdpBlantyre Shire Highlands 173.76
**

 173.76
**

  

 
(58.34) (58.34) 

 
rdpBwanje 410.99

***

 410.99
***

  

 
(66.73) (66.73) 

 
rdpCentralMzimba -259.13

*

 -259.13
*

  

 
(103.22) (103.22) 

 
rdpChikwawa 163.96

**

 163.96
**

  

 
(55.31) (55.31) 

 
rdpChitipa -203.45 -203.45 

 

 
(106.40) (106.40) 

 
rdpDedza Hills 0.12 0.12 

 

 
(106.54) (106.54) 

 
rdpDowa East -149.23

*

 -149.23
*

  

 
(75.20) (75.20) 

 
rdpDowa West 26.30 26.30 

 

 
(62.90) (62.90) 

 
rdpKaronga 91.06 91.06 

 

 
(59.84) (59.84) 

 
rdpKasungu -142.02 -142.02 

 

 
(108.31) (108.31) 

 
rdpKawinga -522.32

***

 -522.32
***

  

 
(64.64) (64.64) 

 
rdpLilongwe East 111.94 111.94 

 

 
(58.36) (58.36) 

 
rdpLilongwe West 68.41 68.41 

 

 
(101.41) (101.41) 

 
rdpMangochi 61.64 61.64 

 

 
(65.10) (65.10) 

 
rdpMchinji -119.09 -119.09 

 

 
(106.68) (106.68) 

 
rdpMulanje -84.51 -84.51 

 

 
(71.89) (71.89) 

 
rdpMwanza 136.62

*

 136.62
*

  

 
(68.30) (68.30) 

 
rdpNamwera -875.18

***

 -875.18
***

  

 
(110.29) (110.29) 

 
rdpNkhata Bay -391.40

***

 -391.40
***

  

 
(65.91) (65.91) 

 
rdpNkhotakota -152.36

*

 -152.36
*

  

 
(67.66) (67.66) 
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rdpNsanje -274.37
***

 -274.37
***

  

 
(68.81) (68.81) 

 
rdpNtcheu -247.06

***

 -247.06
***

  

 
(68.82) (68.82) 

 
rdpNtchisi -30.21 -30.21 

 

 
(109.12) (109.12) 

 
rdpPhalombe 155.01

*

 155.01
*

  

 
(63.70) (63.70) 

 
rdpRumphi / North Mzimba -75.35 -75.35 

 

 
(60.92) (60.92) 

 
rdpSalima 152.63

*

 152.63
*

  

 
(66.55) (66.55) 

 
rdpSouthMzimba -431.55

***

 -431.55
***

  

 
(105.38) (105.38) 

 
rdpThiwi-Lifidzi 125.55 125.55 

 

 
(109.25) (109.25) 

 
rdpThyolo 20.95 20.95 

 

 
(67.35) (67.35) 

 
rdpZomba 35.44 35.44 

 

 
(56.89) (56.89) 

 
Season (1997/98=1) -258.92

***

 -258.92
***

 -259.55
***

 

 
(16.22) (16.22) (16.20) 

Variety-MH17 88.85 88.85 45.60 

 
(124.77) (124.77) (120.42) 

Variety-MH18 130.11 130.11 166.20 

 
(120.37) (120.37) (117.79) 

Soil texture (Medium=1) 161.95
***

 161.95
***

 162.53
***

 

 
(16.00) (16.00) (15.98) 

N 29.40
***

 29.40
***

 29.40
***

 

 
(0.82) (0.82) (0.82) 

N Squared -0.12
***

 -0.12
***

 -0.12
***

 

 
(0.01) (0.01) (0.01) 

R
2

 0.34 
  

Adj. R
2

 0.33 
  

Num. obs. 15690 15690 15690 

AIC 
 

259916.82 260278.00 

BIC 
 

260207.84 260346.94 

Log Likelihood 
 

-129920.41 -130130.00 

Num. groups 
  

31 
***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05 
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Table 11: ADD Varying Intercept and N Response Coefficient Models 

 
OLS GLS with FE GLS with RE 

(Intercept) 1471.16
***

 1471.16
***

 1599.07
***

 

 
(63.15) (63.15) (142.13) 

Year (1995/6=1) 255.76
***

 255.76
***

  

 
(16.36) (16.36) 

 
mz_varMH18 194.68

***

 194.68
***

 194.70
***

 

 
(20.58) (20.58) (20.58) 

mz_varcomposite -50.70 -50.70 -50.31 

 
(116.54) (116.54) (116.54) 

lite_txtlight -152.16
***

 -152.16
***

 -152.13
***

 

 
(15.83) (15.83) (15.83) 

addidKRADD -181.38
*

 -181.38
*

 -181.38
*

 

 
(87.59) (87.59) (87.59) 

NKRADD 25.83
***

 25.83
***

 25.83
***

 

 
(3.14) (3.14) (3.14) 

NsqKRADD -0.12
***

 -0.12
***

 -0.12
***

 

 
(0.03) (0.03) (0.03) 

addidMZADD -606.99
***

 -606.99
***

 -606.97
***

 

 
(74.47) (74.47) (74.47) 

NMZADD 27.85
***

 27.85
***

 27.85
***

 

 
(2.15) (2.15) (2.15) 

NsqMZADD -0.09
***

 -0.09
***

 -0.09
***

 

 
(0.02) (0.02) (0.02) 

addidKADD -443.78
***

 -443.78
***

 -443.76
***

 

 
(76.79) (76.79) (76.79) 

NKADD 31.19
***

 31.19
***

 31.19
***

 

 
(2.33) (2.33) (2.33) 

NsqKADD -0.13
***

 -0.13
***

 -0.13
***

 

 
(0.02) (0.02) (0.02) 

addidLADD -354.89
***

 -354.89
***

 -354.85
***

 

 
(72.18) (72.18) (72.18) 

NLADD 32.04
***

 32.04
***

 32.04
***

 

 
(1.95) (1.95) (1.95) 

NsqLADD -0.13
***

 -0.13
***

 -0.13
***

 

 
(0.02) (0.02) (0.02) 

addidSLADD -313.87
***

 -313.87
***

 -313.84
***

 

 
(85.93) (85.93) (85.93) 

NSLADD 30.05
***

 30.05
***

 30.05
***

 

 
(3.04) (3.04) (3.04) 

NsqSLADD -0.11
***

 -0.11
***

 -0.11
***

 

 
(0.03) (0.03) (0.03) 

addidMADD -572.58
***

 -572.58
***

 -572.54
***

 

 
(72.93) (72.93) (72.93) 
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NMADD 30.25
***

 30.25
***

 30.25
***

 

 
(2.09) (2.09) (2.09) 

NsqMADD -0.13
***

 -0.13
***

 -0.13
***

 

 
(0.02) (0.02) (0.02) 

addidBLADD -312.56
***

 -312.56
***

 -312.55
***

 

 
(74.01) (74.01) (74.01) 

NBLADD 31.58
***

 31.58
***

 31.58
***

 

 
(2.20) (2.20) (2.20) 

NsqBLADD -0.14
***

 -0.14
***

 -0.14
***

 

 
(0.02) (0.02) (0.02) 

NSVADD 21.19
***

 21.19
***

 21.19
***

 

 
(2.84) (2.84) (2.84) 

NsqSVADD -0.10
***

 -0.10
***

 -0.10
***

 

 
(0.03) (0.03) (0.03) 

R
2

 0.32 
  

Adj. R
2

 0.32 
  

Num. obs. 15690 15690 15690 

AIC 
 

260563.69 260577.62 

BIC 
 

260785.80 260799.73 

Log Likelihood 
 

-130252.84 -130259.81 

Num. groups 
  

2 
***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05 
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Table 12: RDP Varying Coefficient Models 

 

 
OLS GLS with FE GLS with RE 

(Intercept) 945.14
***

 945.14
***

 981.94
***

 

 
(61.57) (61.57) (147.07) 

Year (1995/96=1) 257.90
***

 257.90
***

 258.57
***

 

 
(16.16) (16.16) (16.16) 

Variety-MH18 167.90
*

 167.90
*

 219.26
**

 

 
(68.90) (68.90) (75.90) 

Variety-Composite -15.19 -15.19 10.50 

 
(121.10) (121.10) (122.26) 

Soil Texture(Light=1) -162.34
***

 -162.34
***

 -162.56
***

 

 
(15.96) (15.96) (15.96) 

rdpid11 -12.42 -12.42 -19.72
*

 

 
(9.65) (9.65) (10.01) 

rdpid12 509.56
***

 509.56
***

 244.36 

 
(99.73) (99.73) (146.97) 

rdpid21 19.52
***

 19.52
***

 22.54
***

 

 
(5.62) (5.62) (5.84) 

rdpid22 -23.64 -23.64 5.88 

 
(29.72) (29.72) (33.13) 

rdpid23 -11.42 -11.42 -8.05 

 
(7.18) (7.18) (7.37) 

rdpid24 -9.83 -9.83 -6.97 

 
(6.91) (6.91) (7.05) 

rdpid31 6.29 6.29 -23.17 

 
(17.19) (17.19) (26.82) 

rdpid32 12.84 12.84 -12.03 

 
(13.68) (13.68) (22.13) 

rdpid33 8.12 8.12 -18.73 

 
(11.38) (11.38) (17.97) 

rdpid34 -11.66 -11.66 -20.27
*

 

 
(6.96) (6.96) (8.26) 

rdpid35 16.91 16.91 -0.89 

 
(11.04) (11.04) (16.59) 

rdpid41 28.37
***

 28.37
***

 42.00
***

 

 
(5.46) (5.46) (9.02) 

rdpid42 7.22 7.22 15.29
*

 

 
(4.62) (4.62) (7.35) 

rdpid43 11.71 11.71 23.44
**

 

 
(6.38) (6.38) (8.82) 

rdpid44 4.85 4.85 15.65
*

 

 
(5.39) (5.39) (7.79) 

rdpid45 -7.33 -7.33 0.53 

 
(5.51) (5.51) (7.82) 

rdpid51 11.33
**

 11.33
**

 11.21 
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(4.36) (4.36) (11.52) 

rdpid52 -0.69 -0.69 -0.80 

 
(4.21) (4.21) (10.88) 

rdpid53 14.35
***

 14.35
***

 14.24 

 
(3.87) (3.87) (10.21) 

rdpid61 5.01 5.01 3.40 

 
(3.13) (3.13) (8.28) 

rdpid62 -10.53
**

 -10.53
**

 -10.76 

 
(3.43) (3.43) (8.01) 

rdpid63 4.12 4.12 2.67 

 
(2.77) (2.77) (7.41) 

rdpid64 -8.44
**

 -8.44
**

 -9.80 

 
(2.58) (2.58) (6.99) 

rdpid65 2.48 2.48 1.21 

 
(1.93) (1.93) (6.31) 

rdpid71 4.08
*

 4.08
*

 1.78 

 
(1.73) (1.73) (5.53) 

rdpid72 2.75 2.75 0.62 

 
(2.21) (2.21) (5.31) 

rdpid73 5.87
***

 5.87
***

 3.84 

 
(1.77) (1.77) (4.95) 

rdpid74 5.01
**

 5.01
**

 3.07 

 
(1.88) (1.88) (4.81) 

rdpid75 1.63 1.63 -0.46 

 
(1.99) (1.99) (5.16) 

rdpid81 8.75
***

 8.75
***

 5.81 

 
(1.14) (1.14) (4.01) 

rdpid82 3.06 3.06 0.28 

 
(1.58) (1.58) (3.96) 

N11 35.32
***

 35.32
***

 28.67
***

 

 
(3.92) (3.92) (4.62) 

N12 24.27
***

 24.27
***

 24.27
***

 

 
(4.07) (4.07) (4.07) 

N21 25.28
***

 25.28
***

 26.69
***

 

 
(3.44) (3.44) (3.52) 

N22 29.97
***

 29.97
***

 30.18
***

 

 
(3.74) (3.74) (3.74) 

N23 23.69
***

 23.69
***

 26.54
***

 

 
(3.71) (3.71) (3.97) 

N24 25.41
***

 25.41
***

 26.53
***

 

 
(4.15) (4.15) (4.20) 

N31 36.03
***

 36.03
***

 36.02
***

 

 
(5.09) (5.09) (5.09) 

N32 29.92
***

 29.92
***

 29.83
***

 

 
(4.67) (4.67) (4.67) 

N33 29.79
***

 29.79
***

 29.67
***
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(4.56) (4.56) (4.56) 

N34 38.07
***

 38.07
***

 32.79
***

 

 
(5.39) (5.39) (6.04) 

N35 29.77
***

 29.77
***

 29.70
***

 

 
(5.46) (5.46) (5.46) 

N41 25.55
***

 25.55
***

 26.35
***

 

 
(3.22) (3.22) (3.24) 

N42 32.43
***

 32.43
***

 33.55
***

 

 
(3.66) (3.66) (3.74) 

N43 35.89
***

 35.89
***

 35.91
***

 

 
(5.34) (5.34) (5.34) 

N44 35.47
***

 35.47
***

 35.49
***

 

 
(4.79) (4.79) (4.78) 

N45 34.41
***

 34.41
***

 34.41
***

 

 
(5.48) (5.48) (5.47) 

N51 30.33
***

 30.33
***

 30.34
***

 

 
(5.11) (5.11) (5.11) 

N52 27.22
***

 27.22
***

 27.22
***

 

 
(5.29) (5.29) (5.29) 

N53 31.89
***

 31.89
***

 31.89
***

 

 
(5.14) (5.14) (5.14) 

N61 32.59
***

 32.59
***

 32.59
***

 

 
(4.93) (4.93) (4.93) 

N62 23.43
***

 23.43
***

 23.43
***

 

 
(5.79) (5.79) (5.79) 

N63 28.24
***

 28.24
***

 28.24
***

 

 
(4.90) (4.90) (4.90) 

N64 30.11
***

 30.11
***

 30.11
***

 

 
(4.81) (4.81) (4.81) 

N65 32.59
***

 32.59
***

 32.58
***

 

 
(3.54) (3.54) (3.54) 

N71 33.21
***

 33.21
***

 33.20
***

 

 
(3.81) (3.81) (3.81) 

N72 26.90
***

 26.90
***

 26.90
***

 

 
(5.87) (5.87) (5.86) 

N73 29.13
***

 29.13
***

 29.12
***

 

 
(4.68) (4.68) (4.68) 

N74 32.72
***

 32.72
***

 32.72
***

 

 
(5.37) (5.37) (5.37) 

N75 34.44
***

 34.44
***

 34.43
***

 

 
(5.24) (5.24) (5.23) 

N81 20.86
***

 20.86
***

 20.85
***

 

 
(3.25) (3.25) (3.25) 

N82 23.05
***

 23.05
***

 23.04
***
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(5.46) (5.46) (5.46) 

Nsq11 -0.18
***

 -0.18
***

 -0.13
**

 

 
(0.04) (0.04) (0.05) 

Nsq12 -0.12
**

 -0.12
**

 -0.12
**

 

 
(0.04) (0.04) (0.04) 

Nsq21 -0.06 -0.06 -0.07
*

 

 
(0.04) (0.04) (0.04) 

Nsq22 -0.10
**

 -0.10
**

 -0.10
**

 

 
(0.04) (0.04) (0.04) 

Nsq23 -0.06 -0.06 -0.08
*

 

 
(0.04) (0.04) (0.04) 

Nsq24 -0.10
*

 -0.10
*

 -0.11
*

 

 
(0.04) (0.04) (0.04) 

Nsq31 -0.18
***

 -0.18
***

 -0.18
***

 

 
(0.05) (0.05) (0.05) 

Nsq32 -0.11
*

 -0.11
*

 -0.11
*

 

 
(0.05) (0.05) (0.05) 

Nsq33 -0.10
*

 -0.10
*

 -0.10
*

 

 
(0.04) (0.04) (0.04) 

Nsq34 -0.20
***

 -0.20
***

 -0.16
**

 

 
(0.06) (0.06) (0.06) 

Nsq35 -0.11
*

 -0.11
*

 -0.11
*

 

 
(0.05) (0.05) (0.05) 

Nsq41 -0.09
**

 -0.09
**

 -0.09
**

 

 
(0.03) (0.03) (0.03) 

Nsq42 -0.13
***

 -0.13
***

 -0.14
***

 

 
(0.04) (0.04) (0.04) 

Nsq43 -0.16
**

 -0.16
**

 -0.16
**

 

 
(0.05) (0.05) (0.05) 

Nsq44 -0.15
**

 -0.15
**

 -0.15
**

 

 
(0.05) (0.05) (0.05) 

Nsq45 -0.17
**

 -0.17
**

 -0.17
**

 

 
(0.05) (0.05) (0.05) 

Nsq51 -0.13
**

 -0.13
**

 -0.13
**

 

 
(0.05) (0.05) (0.05) 

Nsq52 -0.08 -0.08 -0.08 

 
(0.05) (0.05) (0.05) 

Nsq53 -0.12
*

 -0.12
*

 -0.12
*

 

 
(0.05) (0.05) (0.05) 

Nsq61 -0.15
**

 -0.15
**

 -0.15
**

 

 
(0.05) (0.05) (0.05) 

Nsq62 -0.09 -0.09 -0.09 

 
(0.06) (0.06) (0.06) 

Nsq63 -0.11
*

 -0.11
*

 -0.11
*

 

 
(0.05) (0.05) (0.05) 
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Nsq64 -0.13
**

 -0.13
**

 -0.13
**

 

 
(0.05) (0.05) (0.05) 

Nsq65 -0.14
***

 -0.14
***

 -0.14
***

 

 
(0.03) (0.03) (0.03) 

Nsq71 -0.14
***

 -0.14
***

 -0.14
***

 

 
(0.04) (0.04) (0.04) 

Nsq72 -0.11 -0.11 -0.11 

 
(0.06) (0.06) (0.06) 

Nsq73 -0.13
**

 -0.13
**

 -0.13
**

 

 
(0.05) (0.05) (0.05) 

Nsq74 -0.17
**

 -0.17
**

 -0.17
**

 

 
(0.05) (0.05) (0.05) 

Nsq75 -0.17
**

 -0.17
**

 -0.17
**

 

 
(0.05) (0.05) (0.05) 

Nsq81 -0.09
**

 -0.09
**

 -0.09
**

 

 
(0.03) (0.03) (0.03) 

Nsq82 -0.13
*

 -0.13
*

 -0.13
*

 

 
(0.05) (0.05) (0.05) 

R
2

 0.34 
  

Adj. R
2

 0.34 
  

Num. obs. 15690 15690 15690 

AIC 
 

260099.32 260093.65 

BIC 
 

260857.12 260859.10 

Log Likelihood 
 

-129950.66 -129946.83 

Num. groups 
  

8 
***

p < 0.001, 
**

p < 0.01, 
*

p < 0.05 
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Figure 21: Trace plots of the intercept, N and Nsq at different starting values. 
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