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Abstract 

Pesticide resistance can be viewed as an open-access resource problem. While traditional 

economic incentives are the standard prescription for this market failure, non-pecuniary 

behavioral approaches have also shown promise in managing these resources. I empirically 

evaluate the performance of an intervention in the latter class of instruments to promote 

compliance with refuge regulations in the context of genetically engineered Bacillus 

thuringiensis (Bt) corn. Refuge regulations are important policies for reducing the risk of Bt 

resistance. To encourage refuge compliance, the agricultural company Monsanto piloted a 

behavioral intervention in 17 North Carolina counties in 2013/2014. Using seed sales data, I 

estimate econometric models combining difference-in-differences with propensity-score-

matching (PSM) to identify the effect of the program on grower behavior and overall refuge 

planting. A simple difference-in-differences (DID) estimator implies the program increased the 

share of refuge (non-Bt) seed sales sold to the average grower by 2.9%, whereas the DID-PSM 

estimator implies an effect of 5.6%. Non-pecuniary behavioral instruments deserve further 

consideration as a means of managing Bt resistance. 

Keywords: resistance management, quasi-experiments, moral suasion, difference-in-differences, 

matching 

JEL codes: Q12, Q16, Q18, Q28  



 

 

Introduction  

One of the most widely adopted biotechnologies in agriculture is the insertion into crops of genes 

expressing a pesticidal toxin naturally produced by the bacterium Bacillus thuringiensis (Bt). 

Some of these toxins are lethal to specific coleopteran and lepidopteran insect pests, which are 

the source of most insect pest damage to staple crops like corn and cotton. So-called Bt varieties 

of these crops have been estimated to significantly increase crop yields in many areas at risk of 

pest damages (Cattaneo et al. 2006; Hutchison et al. 2010), and to reduce the need for other pest 

control inputs into production (Lu et al. 2012). However, since the technology’s inception, there 

has been recognition of the possibility that pests can evolve resistance to Bt toxins, threatening 

their sustainability (Carrière et al. 2010). While Bt resistance has not yet risen to economically 

relevant levels, recent cases have been documented of field-evolved resistance to Bt in important 

agricultural pests (Gassmann et al. 2008; Huang et al. 2014; Reisig and Reay-Jones 2015).  

Entomological research has suggested that a scientifically valid policy approach to 

sustaining Bt effectiveness is to create ‘refuges’ of non-Bt varieties to maintain the genetic 

viability of insect pests still susceptible to Bt toxins, as a way to reap future benefits of this 

technology (Tabashnik 1994; Gould 1998; Gould 2000; Gahan et al. 2001; Tabashnik et al. 

2003). Economic research has subsequently investigated the intertemporal tradeoffs involved in 

determining the optimal refuge size, since planting more refuge likely involves sacrificing some 

degree of production to pest damages today in order to reduce pest damages and achieve more 

production in the future (Laxminarayan and Simpson 2002; Livingston et al. 2004; Grimsrud and 

Huffaker 2006; Qiao et al. 2008; Mitchell and Onstad 2014). 

There are important open-access resource aspects to Bt susceptibility. Within a given 

region, pest susceptibility can be viewed as non-excludable but rival (Miranowski and Carlson 

1986). Without regulation growers are free to plant Bt crops and benefit from pests’ 



 

 

susceptibility to Bt toxins (non-excludability), whereas greater use of Bt crops by one grower 

may decrease pest susceptibility available to his neighbors (rivalry).1  

Based on this scientific evidence and economic rationale, many governments have 

implemented policies mandating minimum refuge sizes, i.e. a certain percentage of a grower’s 

crop area that must be planted with non-Bt seed. The US was the first country to implement these 

requirements in the late 1990s, and other countries like India have followed suit. In the US Bt 

genes are regulated as ‘plant-incorporated protectants’ (PIPs) by the Biopesticides Division in 

the Environmental Protection Agency (EPA), with regulatory authority granted by the Federal 

Insecticide, Fungicide, and Rodenticide Act (FIFRA). 

In general EPA’s standard refuge requirement has been for at least 20% of fields planted 

with crops expressing a single Bt trait to be planted with non-Bt varieties, although this 

requirement is relaxed to a 5% non-Bt refuge under some circumstances (depending on the 

growing region, crop, other pest control measures or if multiple Bt genetic traits are “stacked” 

into a single crop variety). For the US, corn refuge requirements are generally higher in the 

Cotton Belt than in the Corn Belt, due to the greater potential selective pressure created by the 

use of Bt cotton and corn (EPA 2014; Singla et al. 2012). 

Compliance with the EPA’s refuge requirements has been an ongoing challenge. 

Although early work recognized compliance as a key issue in the effectiveness of refuge policies 

(EPA 2000), its measurement has proven challenging (for reasons further clarified in the 

following paragraph). While grower point of sale (GPOS) data would be ideal for measuring 

compliance, such data contain sensitive information, the public disclosure of which can pose 

risks of “competitive harm” to seed sellers (USDOJ 2004). Nevertheless, existing evidence from 

some grower surveys appears to suggest a couple of descriptive patterns in growers’ refuge 



 

 

compliance behavior (Hurley and Mitchell 2014). First, compliance with corn refuge 

requirements appeared to initially be increasing, but has more recently trended downward. 

Second, compliance with Bt corn refuge requirements in the Cotton Belt is lower than 

compliance in the Corn Belt (likely due in part to greater stringency of this refuge requirement in 

the Cotton Belt). 

The EPA’s main instrument for influencing compliance has been its authority in 

approving registrations of PIPs for commercial use (Bourguet et al. 2005). Part of this 

registration process includes insect resistance management (IRM) plans. The EPA can therefore 

deny registrations on the basis of low compliance with refuge regulations (though such authority 

has yet to be exercised). PIP registrants being the producers of GM seed products, this regulatory 

arrangement places the onus of monitoring and ensuring grower compliance with refuge 

requirements on Monsanto and its peers.  

As private entities, these seed companies have a limited set of instruments at their 

disposal for ensuring refuge compliance. These can include limiting which seed products are 

available in any given market, as well as behavioral interventions to influence growers to 

voluntarily comply. In terms of controlling which products go on the market, “refuge in a bag” 

(RIB) products have been advanced as a solution to the compliance issue. RIB seed mixes Bt and 

non-Bt seed at predetermined proportions prior to selling the product to growers in order to meet 

refuge requirements. Refuge compliance in this context can thus in principle be fully controlled 

by making RIB seed the only Bt product available on the market. However, the efficacy of RIB 

relative to traditional, structured refuge remains an open research question, and it is almost 

certain that RIB is less effective than traditional structured refuge, due to RIB’s more diffuse 

selection pressure on pest populations (Mallet and Porter 1992; Onstad et al. 2011) and to its 



 

 

greater potential for cross-pollination between Bt and non-Bt varieties (Yang et al. 2014). This 

increased risk of resistance arising from RIB products relative to traditional refuge is a central 

reason that RIB is approved by the EPA for use as refuge in the Corn Belt but not in the Cotton 

Belt. Thus, RIB reflects the reality of a tradeoff between biological and human behavioral 

constraints (Onstad et al. 2011), and the limitations on its use necessitate alternative instruments.   

This article focuses on a behavioral intervention implemented by the agricultural 

biotechnology company Monsanto to improve refuge compliance among North Carolina corn 

growers. The Southern Land Legacy (SLL) program included moral suasion and social 

comparison elements. I analyze GPOS data for all of North Carolina before and immediately 

after program implementation, including the counties eligible for the SLL program and those that 

were not. Using difference-in-differences methods combined with matching estimators, I find 

that in its pilot year the SLL program had an economically and statistically significant effect in 

promoting the planting of refuges. While there is precedence for recommending this type of 

behavioral intervention (EPA 2000; Hurley and Mitchell 2014; NCCA 2015), I am not aware of 

other systematic evaluations (and certainly not an econometric analysis) of such interventions.2 

My analysis is important to consider against the traditional theory of open-access 

resources. The standard economic prescription for managing these resources is to impose either 

transferable, well-defined and enforceable quotas or per-unit user fees on the resource, in order 

to institutionalize excludability. Existing refuge size requirements fall under the quota approach 

(Vacher et al. 2006; Ambec and Desquilbet 2012). Yet two characteristics appear to be partially 

lacking for these quotas to comprise a well-defined property right: transferability and, as evident 

from the above discussion, enforceability. Transferability remains challenging to implement in 

the context of Bt refuges, because the geographic scope of the resource is difficult to define. If a 



 

 

grower in North Carolina increases her refuge size above required levels, and sells this ‘excess 

refuge’ to a noncompliant grower, the bioeconomic effects of this transaction would differ 

depending on the purchaser’s location relative to the seller, e.g. whether the purchaser is in a 

nearby county or a different region of the country.  

These challenges to institutionalizing well-defined property rights for refuges argue again 

for alternative behavioral interventions (Croson and Treich 2014). One such intervention is to 

leverage existing social norms (or to institutionalize new ones) to promote pro-social behavior, 

an approach often referred to as ‘moral suasion’ (Romans 1966). The effectiveness of such 

approaches in other contexts has shown mixed results (van Kooten and Schmitz 1992; Torgler 

2004; Dal Bó and Dal Bó 2014). Social comparisons, whereby individuals are given information 

about how their behavior with respect to a policy goal (e.g. energy or water use) compares with 

their peers, have been shown to have small but measureable effects on promoting target 

behaviors, often at low cost (Allcott 2011; Ferraro and Price 2011; Brent et al. 2015). The 

mechanisms by which social comparisons operate has rarely been explored in the economic 

literature (which is more concerned with how cost-effective these approaches are), though it has 

been conjectured that such comparisons communicate an implicit norm to individuals and thus 

amount to a form of moral suasion (Ferraro and Price 2011). Cooperative approaches to open-

access resource management have received attention as potentially being a more effective means 

of management than traditional theory would predict (Ostrom 1990; Rustagi et al. 2010). 

Cooperative approaches to refuge compliance could take the form of growers’ associations 

generating their own refuge planting rules, implementing coordination mechanisms, and 

enforcing these rules, e.g. through public shaming or via other ‘soft power’ measures. 



 

 

The next section describes the implementation of the SLL program. The data are then 

described, before presenting results from econometric analysis of the data. A discussion of policy 

implications concludes. 

Implementation of the Southern Land Legacy program 

Monsanto piloted the Southern Land Legacy program in 17 contiguous counties in the coastal 

plain of North Carolina, the main corn-growing region of the state, in the 2014 growing season 

(figure 1). The program combined a philanthropic effort guided by grower input, with an 

advertising campaign, to promote compliance with refuge regulations. The philanthropic effort 

was conducted as follows: Monsanto pre-selected three local charities that would be considered 

for a single grant of $2,000. To select which of the three charities would receive the award, 

Monsanto held a vote among corn growers who (1) farmed in one of the pilot counties in 2013 

and (2) planted the “required amount of Monsanto refuge seed” to accompany planting of their 

Bt corn. The required amount of refuge seed is clearly defined on the product tag of Monsanto’s 

Bt products, and reflects the EPA’s Bt refuge requirements.  

The advertising campaign consisted of billboards and print ads, along with a website 

(Monsanto 2015). These materials promoted farmers who were exceptional in their refuge 

planting; agreeing to such promotion was voluntary and did not bring any additional 

compensation to farmers. In the parlance of behavioral economics and psychology, these 

promotional materials were used as a form of moral suasion with a social comparison element. 

The ads appealed to a sense of community and preserving the effectiveness of Bt seed for future 

generations as a reason to plant refuge, using role model growers in the community to establish a 

social norm of refuge compliance. Some quoted text from three such advertisements (which can 

be found in full at the website) are shown in figure 2.  



 

 

The key message across all three quotations articulates the strong externalities involved 

in refuge planting, as well as the proposed means of addressing them: moral suasion to induce 

voluntary compliance. The externality arises through the asymmetric individual costs of planting 

refuge instead of Bt varieties and the diffuse community-wide benefits of preserving 

effectiveness of the technology for the future. Painted in this light, the rational, self-interested 

grower would not plant refuge (no mention is made of the EPA regulations in these quotations, 

or in any of the reviewed marketing materials). Yet the advertising campaign appealed to 

growers’ concerns for their community. One could argue that such concerns could arise either for 

purely altruistic reasons or perhaps because of ‘enlightened self-interest’ (Besser 2004). 

Data and summary statistics 

To evaluate the effect of the SLL pilot, I use grower point of sale (GPOS) data from Monsanto 

for corn seed sales in North Carolina for 2013 and 2014. These are sales data for corn seed 

products sold by Monsanto in North Carolina. Because the objective of the SLL program was to 

increase refuge compliance, any target impacts of the program should show up in the GPOS data 

through increases in the proportion of seed sales which were associated with non-Bt varieties. 

The data are disaggregated by 13 different seed varieties, 10 of which contain Bt genes. Of the 

10 Bt varieties, four include both a standard and a RIB version. Note that, while RIB may be 

planted in North Carolina, due to the state’s designation as a “cotton growing region,” RIB may 

not be used to satisfy refuge requirements, and is thus considered as Bt seed from a regulatory 

perspective. In the data I categorize “Bt varieties” as consisting of standard Bt and RIB products. 

Due to the proprietary nature of these data, in table 1 I only report statistics as either the in-year 

subsample differences from the full sample mean or the change between 2013 and 2014.  



 

 

The primary outcome variable of interest is the percentage of corn seed sales which 

corresponded to Bt versus non-Bt varieties. Relative to the 2013 sample mean (not reported), the 

percentage of corn seed sales corresponding to Bt varieties in 2013 was 3.88% greater for the 

average grower in SLL counties, and 1.05% smaller in non-SLL counties. Between 2013 and 

2014 the average grower increased her percentage of corn seed purchases for Bt varieties by 

1.45%. However, in SLL counties, this percentage decreased by 0.82% (=3.88% - 3.06%), 

whereas this percentage increased by 2.06% (= 1.1% - (-1.05%)) in the non-SLL counties. To 

foreshadow the econometric analysis that follows, we can view the non-SLL counties as a 

control group and compare the 2013-2014 change in the average grower’s Bt percentage of seed 

sales in SLL counties (the treatment group) versus non-SLL counties (the control group): this 

suggests that the SLL program appears to have yielded a 2.88% (= 0.82% - (-2.06%) ) decrease 

in the Bt percentage of seed sales for the average grower in the SLL eligible counties, compared 

to the expected 2.06% increase that would have occurred in the absence of the SLL program – 

which we observe in the non-SLL counties.  

This logic may be challenged by a number of confounding factors. In particular, one may 

question the validity of using the non-SLL counties as a control group to proxy for the 

counterfactual, if the SLL counties had preexisting characteristics that were significantly 

different from the non-SLL counties. The most notable difference between the SLL and non-SLL 

counties is that counties targeted by the SLL program are concentrated in intensive corn-growing 

areas of North Carolina (figure 1), and account for a larger volume of Monsanto’s sales. Indeed, 

it is likely that Monsanto selected the eligible counties to focus impact on those areas accounting 

for a high volume of their Bt sales, and the data bare out this hypothesis. We see that the SLL-

eligible counties appear to have much larger seed purchases in SLL-eligible counties reported in 



 

 

table 1. On average growers in SLL-eligible counties purchased five times the volume of seed 

relative to the non-SLL counties (3.61/ 0.71=5.05) in 2013, before implementation of the SLL 

program. Moreover, this relative difference is statistically significant. Examining these data 

graphically in figure 3, we first note that seed sales volumes are highly right-skewed. 

Furthermore, a quantile-quantile plot of the sales volume data in figure 4 shows that the 

distribution of baseline farm sales in SLL counties in fact first-order stochastically dominates 

that of the non-SLL counties. One also might be concerned that the SLL program increased sales 

in the eligible counties, but I find no evidence for this. Mean growth in sales was of a similar 

magnitude in SLL and non-SLL counties, and showed no statistically significant differences.  

Econometric analysis 

To assess the impact of the SLL program on the target outcome, we focus on estimating the 

average treatment effect (ATE) of the program in terms of changes in refuge planting between 

2013 and 2014 in SLL-eligible and ineligible counties. The ATE can be examined in terms of 

both the average grower and the average hectare of planted corn; the former focuses on 

measuring the effect on grower behavior whereas the latter focuses on measuring the effect on 

overall refuge size. Both indicators are important for assessing impact: overall refuge size is the 

key indicator considered in the biological modeling used to justify refuge mandates (EPA 2000), 

but changing grower behavior is a necessary precursor for achieving target refuge sizes and 

relates most closely to previous research examining refuge compliance rates (Hurley and 

Mitchell 2014).  

Denote 𝑟𝑖,𝑐,𝑡
𝜏  as the refuge (non-Bt) percentage of seed purchases for grower 𝑖 in county 𝑐 

and year 𝑡, conditional on program treatment: 𝜏 = SLL or 𝜏 = Non-SLL. To evaluate the impact 

of SLL on grower behavior, we define the relevant ATE as:   



 

 

𝛼 ≡ 𝔼(𝑟𝑖,𝑐,𝑡
SLL − 𝑟𝑖,𝑐,𝑡

Non-SLL) (1) 

Similarly, denote �̃�ℎ,𝑐,𝑡
𝜏  as the refuge (non-Bt) percentage of seed sales for hectare ℎ of planted 

corn in county 𝑐 and year 𝑡, conditional on program treatment 𝜏. The ATE of the program on the 

area of refuge within an average hectare is �̃� ≡ 𝔼 (�̃�ℎ,𝑐,𝑡
SLL − �̃�ℎ,𝑐,𝑡

Non-SLL
). The hectare-level outcome 

is obtained by weighting each grower-level refuge size observation by the area planted to corn 

for each grower.   

To estimate the treatment effect of the SLL program, we begin with a simple difference-

in-differences (DID) estimator, and then examine the robustness of this estimator by 

incorporating matching methods with the DID estimator. The DID estimate 𝛼𝐷𝐼𝐷 of the average 

treatment effect (ATE) of the SLL program is: 

�̂�𝐷𝐼𝐷 = (�̅�2014
SLL − �̅�2013

SLL ) − (�̅�2014
No-SLL − �̅�2013

No-SLL) (2) 

where �̅�𝑡
𝑔

 is the mean refuge size, as proxied by the non-Bt fraction of seed sales in group 𝑔, 

according to SLL program eligibility, and in year 𝑡. This estimator for the grower-level ATE in 

equation (2) above controls for time-invariant preexisting differences in levels of refuge planting 

between SLL-eligible and ineligible counties. The basic DID estimator can be obtained from an 

OLS regression of refuge size on dummy variables for year, treatment group and their 

interaction:  

𝑟𝑖,𝑐,𝑡 = �̂�0 + �̂�2014𝑑𝑡
2014 + �̂�𝑆𝐿𝐿𝑑𝑐

SLL + �̂�𝐷𝐼𝐷(𝑑𝑡
2014 × 𝑑𝑐

SLL) + 𝜖�̂�,𝑐,𝑡 (3) 

where 𝑟𝑖,𝑐,𝑡 is refuge size for grower 𝑖, in county 𝑐 and year 𝑡, and 𝑑𝑡
2014 and 𝑑𝑐

SLL are dummy 

variables, respectively, for year 2014 and SLL-eligibility. The corresponding regression 

coefficients �̂�2014 and �̂�𝑆𝐿𝐿 reflect the independent time trend in refuge planting and the 

preexisting difference in refuge planting between the SLL and non-SLL counties. The DID 



 

 

estimator �̂�𝐷𝐼𝐷 can be shown to equal the OLS-estimated coefficient on the interaction term 

(𝑑𝑡
2014 × 𝑑𝑐

SLL). The consistency of this estimate requires in particular that 𝔼(𝜖𝑖,𝑐,𝑡𝑑𝑐
SLL) = 0, 

which means in general that SLL-eligibility should not be correlated with time-varying omitted 

variables (with time-invariant factors already differenced out of the equation by the DID 

structure). The standard errors of the estimated coefficients in equation (3) above are clustered at 

the county-level.  We test for robustness by estimating equation (3) with grower-level fixed 

effects.3 We also estimate another version of (3) by weighting each observation by 2013 sales, to 

proxy for farm size. This provides an estimate of the hectare-level ATE �̃�. 

Table 2 shows the results from these regressions. The unweighted DID estimator 

produces the same ATE estimate as the simple comparison of means in Table 1: the SLL 

program appears to have increased the non-Bt percentage of seed sales by 2.88% for the average 

grower. This estimate is stable, whether or not we include grower fixed effects in the regression, 

and is statistically significant at the 5% level in the baseline specification and at the 10% level 

when county fixed effects are included. 

However, when we weight each grower-level observation by its volume of 2013 seed 

purchases, the estimated ATE decreases to 1.03% and becomes statistically insignificant, with p-

values equaling 0.21 and 0.24 for the baseline and grower fixed effects specifications (columns 3 

and 4). This means that while we are able to measure an effect of the SLL program on changing 

grower behavior, we are unable to precisely measure whether the program has a significant effect 

on actual refuge sizes, in terms of total planted area (proxied by sales volume). This finding 

could be the result of there being too few large-scale growers to detect a statistically significant 

effect of the program on the refuge planting behavior of these individuals. It could also suggest 

that large-scale growers may in fact be less responsive to the SLL program, possibly due to fact 



 

 

that they may give up more in terms of absolute profit compared to smaller-scale growers when 

they voluntarily comply with refuge mandates.  

The issue of heterogeneous farm size also potentially poses challenges for estimating the 

effect of the program for the average grower. Although the DID estimator controls for 

preexisting differences in levels of refuge planting between treatment and control, the two groups 

may have different refuge planting trends over time, independent of the program. This could 

occur, for example, if smaller growers (which are relatively more frequent in SLL ineligible 

counties) were shifting more quickly to non-Bt products (or at least not shifting as fast to Bt 

products) over time. Since SLL-eligibility is clearly correlated with size, this independent shift 

over time would bias the DID estimate downward, in particular due to biased construction of the 

counterfactual.  

One strategy for correcting for this source of bias is to construct a control group which 

more closely resembles the treatment group in terms of preexisting characteristics. This is the 

motivation for matching estimators. A matching estimator is, in general, defined as follows:  

�̂�M ≡
1

𝑁
∑ Δ�̂�𝑖,𝑐

SLL − Δ�̂�𝑖,𝑐
No-SLL

𝑖,𝑐

 (4) 

where Δ�̂�𝑖,𝑐
τ  is the predicted difference in the refuge percentage of seed sales between 2013 and 

2014 for grower 𝑖 in county 𝑐, and for treatment level 𝜏 (SLL or non-SLL). Observed data is 

used for Δ�̂�𝑖,𝑐
𝑑𝑐

SLL

 for the actual treatment level 𝑑𝑐
SLL for growers in county 𝑐, and a counterfactual is 

constructed from ‘similar’ observations to impute the outcome for the unobserved treatment level 

(Abadie et al. 2004; Abadie and Imbens 2006; Abadie and Imbens 2009):    

Δ�̂�𝑖,𝑐
τ ≡ {

Δ𝑟𝑖,𝑐 if 𝑑𝑐
SLL = 𝜏

1

𝑃
∑ Δ𝑟𝑗,𝑐

𝑗∈Ω𝑃(𝑖)

if 𝑑𝑐
SLL ≠ 𝜏

 
(5) 



 

 

where 𝑃 is the minimum number of nearest neighbors and Ω𝑃(𝑖) is the set of 𝑃 nearest neighbors 

of observation 𝑖 but with a different treatment level, as determined by an appropriate distance 

metric. I use propensity score matching (PSM) as the distance metric, matching observations to 

those with a similar likelihood of receiving the treatment (SLL eligibility) based on observable 

factors. Because SLL-eligibility was determined at the county level, we match observations on 

the county-level mean logarithm of 2013 sales.4      

Results of the PSM estimator are reported in the last column of Table II, and some 

diagnostic quantile-quantile plots and statistics are shown in figures 4 and 5 and table 3. In terms 

of diagnostics, we can see that county-level 2013 log-sales are a strong predictor of SLL-

eligibility (table 3). The logit regression using this variable to predict treatment is highly 

significant, and the pseudo-R2 for the regression is 0.31. We also can see that the matching 

procedure is successful in making distributions of county-level 2013 log-sales much more similar 

between the SLL-elibility conditions, as compared to the raw sample (figure 4). 

The ATE constructed using the PSM estimator implies that the SLL program yields a 

5.6% increase in the average grower’s refuge area, relative to what would have occurred in the 

absence of the program. This estimate is notably larger than the raw DID estimate of 2.88%, 

which is consistent with the hypothesis that smaller growers may have been independently 

shifting to non-Bt products (or at least shifting more slowly towards Bt products), regardless of 

the SLL program. Examining the quantile plots in figure 5, we can see that the PSM estimator 

obtains this ATE estimate by shifting probability mass around the center of the distribution of the 

outcome measure, conditional on SLL eligibility.    

The PSM estimator also permits an examination of the predicted individual treatment 

effects. Figure 6 plots a nonparametric density estimate for predicted individual treatment 



 

 

effects. The mean of this density equals the PSM estimate of the ATE (of 5.6%). Yet we also see 

significant heterogeneity of the distribution of these treatment effects, with 50% of the 

probability mass between a treatment effect of -2.5% and 14%. 

Discussion 

This article examines whether a non-pecuniary behavioral intervention had a measureable effect 

on increasing efficiency in the use of an open-access resource. In this case the resource is 

characterized as the proportion of the pest population which remains susceptible to Bt toxins 

which are expressed by some genetically engineered varieties of corn. Previous economic 

analysis of instruments for improving refuge compliance have mostly been theoretical, or based 

on simulation models. Moreover, most of this work has focused on the sort of standard, 

pecuniary instruments that are typically prescribed for open-access resource management. The 

intervention I focus on here – in which farmers were motivated through appeals to sustainability, 

protecting future generations and by offering indirect monetary rewards to local charities – is 

more in keeping with the literature on alternative governance of commons using social norms 

and cooperation (Ostrom 1990).  

My analysis provides robust evidence that a behavioral program to improve refuge Bt 

compliance had a significantly positive effect on increasing refuge planting (as proxied through 

seed purchases) for the average grower. The sign and significance of this effect is consistent 

across a number of econometric specifications. However, when I weight these regressions by 

grower size (proxied by seed sales volume), the estimated effect of the SLL program on the area 

of land planted to refuge versus Bt corn is smaller and statistically imprecise. When I implement 

a matching estimator that controls for significant differences in farm sizes between treatment and 

control groups, I find that the estimated effect of the SLL program on average grower behavior 



 

 

increases. This is consistent with (though does not confirm) the hypothesis that smaller-scale 

growers would have increased their share of Bt products less than larger-scale growers between 

2013 and 2014 in the absence of the SLL program. 

The main implication of these results is that non-pecuniary interventions deserve 

additional attention as a potential means of improving Bt refuge compliance. The effect of the 

program examined here is significant both economically and statistically significant. As a back-

of-the-envelope calculation, previous research suggests that the effect of planting Bt corn on a 

given hectare in the US could be expected to increase yield by around 20% relative to planting 

non-Bt corn (Hutchison et al. 2010; Fernandez-Cornejo and Wechsler 2012). And according to 

Fernandez-Cornejo and Wechsler (2012), previous research has also shown that Bt adoption 

significantly increases variable profits, and that the majority of these profit increases are 

attributable – and approximately proportional – to yield increases. Combining these back-of-the-

envelope calculations with our findings would suggest that the SLL program is causing the 

average grower to forego between 0.6% (using the DID estimate) and 1.1% (using the PSM 

estimate) of their profits due to increased refuge planting.  

In the absence of explicit enforcement of refuge regulations, non-pecuniary behavioral 

interventions like this represent important tools for sustaining Bt refugia. Continued evaluation 

of the SLL program going forward is important for assessing whether program impact can be 

sustained and expanded, as well as whether a one-off program can have a persistent impact on 

grower behavior even after the program has ended. Further investigation into these tools should 

examine how they can complement technical approaches to refuge management, such as RIB, 

which are not suitable in all contexts (for example, they are currently prohibited from use as 

refuge in Cotton Belt states in the US).   
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Tables 

Table 1. Summary Statistics for Bt and Non-Bt Corn Seed Sales in SLL and Non-SLL Counties 

 

Full sample SLL counties 

Non-SLL 

counties 

Total growers 429 91 338 

Number of counties 96 17 79 

Relative Bt share of corn seed salesa    

2013 0 +3.88%*** -1.05% 

 -- (0.835%) (0.927%) 

2014 +1.45% +3.06% +1.01% 

 (0.826%) (1.20%) (1.00%) 

Relative 2013 seed salesb 1 3.61 0.714*** 

 -- (0.732) (0.104) 

Seed sales growth, 2013-2014 2.67% 3.93% 2.14% 

 (2.56%) (5.08%) (2.98%) 

Note: Standard errors of mean estimates in parentheses, clustered by grower county. a Mean 

percentage of seed sales which were for Bt products. Mean statistics calculated relative to 2013 full 

sample (by subtracting 2013 full sample mean, not reported). b Geometric mean of seed sales, 

divided by geometric mean for full sample. *, ** and *** indicate a statistically different estimate 

for SLL-eligible and -ineligible county subsamples for that year, at the 1%, 5% and 10% levels 

respectively.    

 



 

 

Table 2. Econometric Estimates of SLL Program Impact Between 2013 and 2014 

 Dependent variable: Non-Bt fraction of seed sales 

  DID (OLS) PSM 

  (1) (2) (3) (4) 

 

            

2014 year dummy -0.0206* -0.0206* -0.00660 -0.00660 

 

 

(0.0114) (0.0113) (0.00492) (0.00491) 

 SLL county -0.0493*** -- -0.00683 -- 

 

 

(0.0124) 

 

(0.0113)  

 2014 year dummy 

× SLL county 

0.0288** 0.0288** 0.0103 0.0103 0.0560** 

(0.0138) (0.0138) (0.00827) (0.00827) (0.0266) 

Grower fixed effects No Yes No Yes No 

Weight by 2013 sales No No Yes Yes No 

Growers 429 429 429 429 429 

Counties 96 96 96 96 96 

R-squared 0.013 0.009 0.002 0.006   

Note: Standard errors in parentheses. *,** and *** denotes statistical significance at the 10%, 5% 

and 1% levels respectively. OLS standard errors clustered at the county level. Standard errors for 

the matching estimator computed using robust method proposed by Abadie et al. (2004, 2006). 

The PSM estimator was implemented using the teffects package in Stata®, with a minimum of 

one match per observation (with multiple matches used in the case of ties). 

 

  



 

 

Table 3. First Stage Propensity Score Estimation 

Model: logit SLL-eligibility 

    

County-level mean log(2013 sales) 1.559*** 

 

(0.477) 

Constant -8.682*** 

 

(2.343) 

Observations 429 

Counties 96 

Degrees of freedom 1 

Wald 𝜒2-test statistic 10.69*** 

Pseudo-R2 0.307 

Note: Robust standard errors in parentheses, clustered 

at the county level. *,** and *** denotes statistical 

significance at the 10%, 5% and 1% levels 

respectively. 

 

  



 

 

Figures 

 

Figure 2. North Carolina refuge seed purchasing and Southern Land Legacy program in 2014 

pilot 

  



 

 

Advertisement 1 

“I’ve always been told that the right thing and the hard thing are the same thing. And when times are tough, 

those decisions get tougher to make. But with refuge planting, we can’t afford to take chances. As farmers, 

we have a duty to protect the land and the technology, not just for ourselves, but for our community.” 

Advertisement 2 

“As a second-generation farmer, most of what I know I learned from my father. He taught me the basics like 

seed planting and soil health, but he also taught me that our farm is an important resource to the 

community. Our neighbors are counting on us for food and jobs, so to ensure my farm will always be there, 

I can’t just focus on the here and now. I have to be thinking ahead, I have to plant a refuge.” 

Advertisement 3 

“It’s easy to think that buying refuge seed is just another of the many choices we make each fall as farmers. 

But it’s a decision that’s bigger than farming. When I buy seed, I have to think about the wellbeing of my 

community, the people counting on me every day for jobs, food, and support. If I base seed decisions on 

my priorities alone, what does that say about my commitment to those who matter most?” 

Source: Monsanto, http://southernlandlegacy.com/ 

Figure 1. Example text from Southern Land Legacy advertising campaign 

  



 

 

 

Figure 3. Histograms of raw and log-transformed 2013 seed sales volume 

Note: These data are shifted by a randomly drawn constant to protect the proprietary aspects of 

the dataset. 
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Figure 4. Quantile-quantile plot of county-level mean log(2013 sales), SLL-eligible v. ineligible 

growers   
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Figure 5. Quantile-quantile plot of change in refuge share of seed sales between 2013 and 2014, 

SLL-eligible v. ineligible growers   
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Figure 5. Nonparametric density plot of predicted individual treatment effects of the SLL 

program  

Note: Counterfactual outcome predicted using PSM. Solid vertical line is mean of distribution 

(0.0560) and dotted lines are 1st and 3rd quartiles (-0.0249 and 0.143). 

  

0
1

2
3

4

D
e
n

s
it
y

-1 -.5 0 .5 1
Change in refuge share of seed sales, 2013-2014 (predicted treatment effects)

kernel = epanechnikov, bandwidth = 0.0333



 

 

Footnotes 

                                                 
1 A complication in this context is that there are likely countervailing public goods 

aspects to Bt adoption, whereby one grower’s deployment of the technology has spillover, pest-

reduction benefits to the grower’s neighbors. This biological effect has been documented in cases 

of European corn borer reductions resulting from areawide adoption of Bt corn (Hutchison et al. 

2010). The economic implications of this effect comprise a topic that the author of this article is 

exploring in related research.  

2 Generally speaking, ‘behavioral’ approaches to increasing refuge compliance would 

also include the standard approach of fining noncompliance as a way to dis-incentivize this 

behavior. However, the research focus here is on behavioral alternatives to conventional 

pecuniary approaches to enforcement.   

3 These fixed effects are collinear with the main effect �̂�𝑆𝐿𝐿 of the treatment dummy 𝑑𝑐
SLL, 

which is thus dropped in these regressions. 

4 As a robustness check I also use a nearest neighbor matching estimator, with the 

distance between nearest neighbors calculated using the Euclidean norm of the logarithm of 2013 

county-level sales. Results are qualitatively the same and similar in magnitude.  


