
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 
 
 
 
 

Using Land as a Control Variable in 
Density-dependent Bioeconomic Models 

 

 

 

 

 
 

ROBERT R ALEXANDER 
 AND 

 DAVID W SHIELDS 
 
 
 
 
 
 
 
 
 
 
 
 
 

Discussion Paper in Natural Resource 
and Environmental Economics No. 22 

 
Centre for Applied Economics and Policy Studies 

Department of Applied and International Economics 
Massey University, Palmerston North 

New Zealand 
 
 

February 2002 
 
 



 

 

TABLE OF CONTENTS 

 

 

Table of Contents 

Abstract 

 

1. Introduction.................................................................................................... 1 

2. Harvest Models of Extinction........................................................................ 3 

3. Modelling Non-Harvested Species ................................................................ 8 

4. Implications and Conclusions...................................................................... 13 

 

References ............................................................................................................. 16 

 



 

 

 

 

Abstract 

The bioeconomic analysis of endangered species without consumptive values can 

be problematic when analysed with density-dependent models that assume a 

fixed environment size.  Most bioeconomic models use harvest as a control 

variable, yet when modelling non-harvestable species, frequently the only 

variable under control of conservationists is the quantity of habitat to be made 

available.  The authors explore the implications of this in a model developed to 

analyse the potential population recovery of New Zealand’s yellow-eyed penguin.  

The penguin faces severe competition with man for the terrestrial resources 

required for breeding and has declined in population to perilously low levels. The 

model was developed to estimate the land use required for recovery and 

preservation of the species and to compare the results to current tourism-driven 

conservation efforts.  It is demonstrated that land may serve as a useful control 

variable in bioeconomic models and that such a model may be useful for 

determining whether sufficient incentives exist to preserve a species.  However, 

the model may generate less useful results for providing a specific estimate of the 

optimal allocation of land to such a species. 
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1. INTRODUCTION 
The modelling of endangered species has developed principally out of the 

literature of fisheries economics.  For example, Clark (1973) bases his model of 

species extinction on Gordon’s (1954) seminal fisheries model in order to examine 

the conditions under which the elimination of a species may appear to be the 

most attractive policy to a resource owner.  This work forms the foundation of 

much of the species extinction modelling that has followed.  

More recently, Swanson (1994) examines ways of making this model more readily 

applicable to terrestrial species by generalising the analysis to consider 

terrestrial resource allocations. He provides a theoretical framework for the 

economics of extinction that considers the elimination of species as a result of 

human choice into which resources they hold. Swanson argues that mankind has 

a ‘portfolio’ of productive assets and that substitutions are made between those 

assets (less productive assets being replaced by more productive assets) through 

a process of investment and disinvestment. 

The marginal productivity of a biological asset generally declines as population 

levels approach carrying capacity, so there is typically some identifiable optimal 

level of species stock. Whenever returns to the asset are less than the market 

rate of return, disinvestment will occur. In the case of endangered species, this 

disinvestment often takes the form of the reallocation of the primary resources 

required for species survival. 

Swanson’s model implies that the stock of a particular resource will move to the 

level that equates its rate of return to the rates of return of other competing 

assets in our portfolio. Extinction is seen as a complete disinvestment of a 

wildlife resource, which occurs because it is perceived as not being worthy of 

investment (see also Swanson and Barbier, 1992). 

These and similar models have generated important insights into the behaviour 

exhibited by resource managers, property owners and harvesters of open-access 

resources, but they are limited in the characteristics of species to which they 

apply.  For example, both the Clark and Swanson models consider only the 

consumptive value of the species in question.  Models have been developed that 

add tourism value and even existence value, but they are still driven by harvest, 

both as a principle means of value generation and as the variable through which 
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a population is controlled by resource managers (see, for example, Bulte and van 

Kooten, 1999; Alexander, 2000). 

While there are a great many species for which these approaches do apply, there 

are many others for which they do not.  The question arises as to the applicability 

of such bioeconomic models to species for which there is no harvest value.  In 

such a case, we must consider 1) the nature and magnitude of values generated 

by the species, and 2) the nature of the control humans exercise over that species.  

The purpose of this article is to examine the affect on the standard bioeconomic 

model of changing the model assumptions such that value arises only from non-

consumptive uses and that, while growth may be density-dependent, land is the 

variable we control and so is not fixed.   

New Zealand’s yellow-eyed penguin (Megadyptes antipodes) is used as a case 

study to examine these issues.  The yellow-eyed penguin is not harvested, but 

does generate some significant tourism value.  The decline of the species arises 

principally from loss of terrestrial habitat, for which they compete with 

domesticated agricultural species.  The yellow-eyed penguin nests under brush 

on land within a kilometre of the ocean.  When that land is cleared for pasture, 

the penguin has nowhere to breed and raise its young. Thus, the control humans 

exhibit over the penguin is not in directly adding or removing stock, but in the 

provision of land needed for nesting.1 

Section 2 provides a brief review of some classic and recent density-dependent 

bioeconomic models.  The development of the non-harvest species model is shown 

in Section 3.  Finally, some general implications and conclusions are discussed in 

Section 4. 

                                                 
1 Predation from exotic species is also an issue in the decline of yellow-eyed penguin 
numbers, but will not be addressed in this article.  As penguin predators tend to favour 
the pasture-bush boundary over pure native bush, land conversion introduces both effects 
simultaneously. 
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2. HARVEST MODELS OF EXTINCTION 

A Sole-Owner Fishery Model 

The Clark model explains the possible extinction of species as resulting from 

three factors: (1) open access to the resource, which results in overexploitation of 

the resource and the driving of economic rents to zero; (2) the relationship 

between price and marginal cost of harvesting the resource; and (3) the growth 

rate of the resource is low relative to the discount rate (Clark, 1973; see also 

Clark, 1976; Clark and Munro, 1978; Clark et al., 1979).  

If either condition one or conditions two and three are met, then resource 

extinction may result.  Condition 1 illustrates the well-known tragedy of the 

commons result in which the discount rate facing each harvester is infinite.  Any 

stock not harvested by one individual is harvested by another, so no incentive 

exists for husbandry of the resource.  Regarding conditions two and three, Clark 

adds, “if price always exceeds unit cost, and if the discount rate…is sufficiently 

large, then maximisation of present value results in extermination of the 

resource.”  

The Clark model provides a societal objective of maximising the appropriated 

return from its natural assets as follows.  

( )( ) ( ) ( )( ) ( )
0

max t

h
e p h t h t c x t h t dtδ∞ −  − ∫  (1) 

s.t.  ( )( ) ( )thtxFx −=! , 

where x(t) is the population of the endangered species in time t, h(t) is the 

harvest of the species in time t, p(h(t)) is the inverse demand curve defined as a 

function of harvest, c(x(t)) is the unit cost of harvest as a function of the stock 

level, F(x(t)) is the growth function of the resource as a function of stock, and δ is 

the marginal returns to capital in the society.  For notational convenience, the 

time notation will be omitted from this point on, but it is understood to be 

implicit in all control and state variables. 

To maximise its investment in this resource as well as in the other resources 

available, society balances the level of each resource against other productive 

opportunities in its ‘asset portfolio’.  When modelled in an optimal control 

framework, a set of Pontryagin necessary conditions is derived for maximisation 
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of the objective function.  The condition associated with optimal harvest (h*) is 

shown in equation (2) and that associated with optimal Stock levels (x*) is shown 

in equation (3). 

cp
d

−







+= 11

ε
λ , (2) 

( ) ( )
λ
λ

λ
δ

!
+

′
−′= hxcxF , (3) 

where λ is the shadow value of the resource, and εd is the elasticity of demand for 

the resource. 

Equation (3) represents a modified form of the golden rule condition common in 

renewable resource models.  In its unmodified form, the golden rule condition 

would indicate that the stock level of the resource be maintained such that the 

marginal growth rate of the renewable resource stock, F′(x), is equal to the 

returns to the resource owners opportunity cost of capital, δ. 

This relationship suggests that if F′(x)< δ for all population levels, x, then 

extinction will result as the model’s optimum strategy for the resource owner.  

Only if F′(x)= δ at some positive population level do incentives exist to maintain a 

positive population at equilibrium. Modifications to the golden rule equation, 

such as those in equation (3), may hinder or help the slow growth species as it 

attempts to ‘pay its way’ as a competitive resource.  In this case, modifications 

include the effects of stock-dependent harvest costs, 
( )c x h
λ

′
− , and of the 

proportional rate of change to the value of the stock, 
λ
λ
!

. 

A Terrestrial Model 

In his 1994 paper, Swanson proposes amendments to Clark’s fishery-based model 

by including the allocation of terrestrial resources required for a species’ survival.  

Swanson points out that, while humans do not compete for many of the ocean 

resources used by marine species, they do compete for the same land-based 

resources used by terrestrial endangered species.  Thus he argues that terrestrial 

species must not only generate growth in value to compete with other capital 
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opportunities, they must also generate growth in value to compete with the 

opportunity costs of the resources they need for survival. 

To address this, Swanson adds another control variable to the problem, which 

represents the land resources allocated to a species as shown in equation (4) 

below: 

( ) ( )
0

max t
R

h
e p h h c x h R dtδ δρ

∞ − − −  ∫  (4) 

s.t. ( ) hRxFx −= ;! , 

where R is a unit of terrestrial resources upon which the species depends for 

survival, and ρR is the price of a base unit of that land resource.  This method 

discards the assumption, implicit in fisheries-based models, that a species’ 

required resources are free goods that do not require investment.  This generates 

one of Swanson’s “alternative routes to extinction” through the addition of 

another first-order condition. 

R

R

Fλδ
ρ

=  (5) 

Similar in concept to the golden rule equilibrium discussed above, this condition 

requires that land-based resources be allocated to a species only in proportion to 

its ability to generate a competitive return.  Note that this condition is in 

addition to those shown in equations (2) and (3) above.  When taken together, 

these conditions offer some further insight into the issues surrounding species 

extinction.  In particular, it is shown that, even when Clark’s conditions are not 

met—that is, when growth rates are greater than the discount rate or when unit 

price is less than unit cost— a species may still move toward extinction if it does 

not provide a competitive return for the natural resources it requires for 

survival.2 

                                                 
2 Swanson also introduced a similar condition, not considered here, requiring returns to 
management services. 
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Adding Non-consumptive Values 

An important limitation of both the Clark and Swanson models is that each of 

them considers only the consumptive value of the species in question;3 that is, 

under both frameworks the species must be harvested for any benefits to be 

realised.  Yet many endangered species, such as the yellow-eyed penguin, have 

no harvest value. The models we have just seen would imply that such a species 

has no value as a resource since it is not harvested for commercial purposes.  

Alexander (2000) explores the potential for representing non-consumptive values 

of wildlife resources, using a framework arising from the Clark and Swanson 

models. The model hypothesises an objective function of a society maximising net 

social welfare by including terms to express the non-consumptive existence and 

tourism values of the African elephant (Loxodonta africanus). Acknowledging 

these non-consumptive values provides added incentives for mankind to include 

such species in our asset portfolio. The problem, though, is one of appropriation, 

as not all of these values are actually appropriated in practice. 

In a simplified analytical form of the model, the societal objective with regard to 

elephants is shown in equation (6), 

( )
0

max ( ) ( ) ( )t
M I S U Rh

e P P P C x h P U x N x P Rx dtδ∞ − + + − + + −  ∫  (6) 

s.t.  hxFx −= )(!  

where x  is the elephant population, h  is harvest, PM is the value of the non-ivory 

products of harvest, PI is the value of ivory per animal, PS is the per animal value 

of safari hunting, C(x) is the unit cost of harvesting, PU is the unit price of one 

tourist day, U(x) is tourist days as a function of population, N(x) is the non-

market existence value of elephants as a function of population, PR is the unit 

value of land resources used by elephants, R x⋅  is quantity of land resources used 

by elephants as a constant proportion of population, and F(x) is the growth rate 

of the elephant population.   

Note that, unlike the terrestrial model and the model developed in this paper, 

land resources allocated to elephants are not expressed as a control variable. 

                                                 
3 At one point, Swanson does describe the benefits in a more general sense as the “flow of 
social benefits,” but still expresses them as a function of harvest. 
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Rather, it is suggested that, if society is subjected to the appropriate incentives 

(including the appropriation of the aforementioned tourism and existence 

values), then the market will, of its own accord, transfer such land resources 

from alternative uses. 

Using the Pontryagin conditions for maximisation of this problem, a new version 

of the golden rule equation is derived as shown in equation (7). 

)(
)()()()()(

xCPPP
xNxUPRPxFxCxF

SIM

UR

−++
′+′+−′−+′=δ  (7) 

The LHS and the first term on the RHS carry the same golden rule interpretation 

as in the sole-owner fishery model. All other terms on the RHS modify that 

relationship. The modifications take into account the stock-dependent terms of 

the original objective function, all expressed in proportion to the unit net revenue 

of harvesting the resource. 

The first modification term, ( ) ( )C x F x′ , represents stock dependent costs and 

acts to increase equilibrium populations.4  The second term, RP R− , acts to lower 

the effective marginal productivity of the stock by requiring the stock to meet the 

proportional returns to land available from the next best opportunity.  The third 

term is the marginal revenue from tourism.  This is one way in which the total 

value people place on elephants is expressed in the market. These revenues act to 

support the existence of the elephant as it competes against other opportunities 

in society. The fourth term is the marginal existence value, aside from any use 

value (either harvest or tourism), that people place on knowing elephant species 

continues.  As used in this model, it actually represents the marginal existence 

value that is appropriated by the resource owner, but of course few of those 

actually are appropriated. 

Inclusion of these non-consumptive values of a wildlife resource provides a fuller 

picture of the social benefits of maintaining that resource. It illustrates the 

tourism values, which require no harvest of the species, and the existence values, 

which are not accounted for in organised markets. These two types of values 

become particularly important when considering a species with no commercial 

consumptive value.  

                                                 
4 ( ) 0C x′ < , rendering the term positive. 
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3. MODELLING NON-HARVESTED SPECIES 
The modelling of a species such as the yellow-eyed penguin is a logical next step 

in the process that has just been illustrated. Endangered species modelling began 

with Clark’s fisheries model, which was then modified by Swanson to incorporate 

the importance of terrestrial resource allocations. Alexander extends this 

framework to include non-consumptive values of wildlife resources and now we 

consider a species with no consumptive potential at all.  Of course, these three 

models do not, in any sense, provide a comprehensive review of the bioeconomic 

literature on extinction.  Rather, they define something of the conceptual 

evolution that lead to the questions addressed in this paper. 

The principle cause of the reduction in yellow-eyed penguin populations is the 

conversion of nesting habitat into farmland. This has resulted in increased 

predation of the penguin and disturbances to nesting, breeding and rearing 

habits. 

Naturally, the conversion of such land is not intended to harm the penguins; 

their fate is incidental. The land in question has simply been put to its perceived 

most productive use, as the economic incentives faced by landowners dictate their 

choices. 

The obvious questions, then, are what needs to happen if the yellow-eyed penguin 

is to avoid extinction, and can a bioeconomic model predict whether human 

behaviour is likely to act for or against eventual extinction without external 

intervention?  

We attempt to answer these questions with a new bioeconomic model in which 

the objective function represents the net returns to society, the value to be 

maximised, and the constraint represents the change over time of penguin 

populations, as a function of the current population and the land resources 

available. Many of the terms of a standard bioeconomic model no longer apply, so 

this model is significantly different from those reviewed above.  The goal of a 

society with regard to the values derived from the yellow-eyed penguin is 

expressed by the following objective function and constraint, 

[ ]
0

( )max t
T L O

L
e P T x L C L C L dtδ∞ − ⋅ − ⋅ − ⋅∫  (8) 

s.t. ),( LxFx =! , 
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where x is the population of yellow-eyed penguins, PT is the price of one tourist 

visit to see wild penguins, T(x) is the total number of tourist visits as a function 

of population, CL is the cost per unit of land resources required by the penguin, L 

is an index of the quantity of land resources used by the penguin, and CO is the 

costs of operation of the tourism enterprise. 

The general principle behind the new model is similar to that given by Swanson 

(1994) but deviates in two important ways. The first is a lack of any harvest 

value. Since the penguin is not being hunted for food, feathers or hide, there are 

no consumptive values to incorporate into our model. A lack of tangible harvest 

return removes that incentive and, in the absence of some other value, the 

resource owner will reallocate his resources to disinvest in the non-productive 

asset. The benefits to be accrued from the yellow-eyed penguin are restricted to 

non-consumptive tourism and non-market existence values. Although some 

public efforts to preserve the species exist, this paper will focus on non-

consumptive tourism values. 

The lack of harvest has the further implication that the control variable must 

change. Traditional bioeconomic models use harvest as a control variable positing 

that a society will set harvest at that level which maximizes net social well-being. 

In our model, because our effective influence on the penguins’ preservation status 

is in the allocation of resources, the control variable is land allocation, L. The 

extent to which people assign their resources to different investment 

opportunities will influence the availability of the penguin’s required habitat 

ultimately determining the survival of the species. 

Having recognized the social objective function and growth constraints, the 

current value Hamiltonian is: 

)],([)( LxFLRH ⋅+= λ  (9) 

Where [ ]( ) ( )T L OR L P T x C C L= − −  represents the net benefits from tourism and 

F(x,L) represents the state equation, which in this case is just the penguin 

growth function. 

Taking the partial derivatives of the Hamiltonian with respect to the control 

variable, the state variable and the shadow price yields the following Pontryagin 

necessary conditions for a maximum: 
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0)],([)( =+=
∂
∂ lxFLR

L
H

LL λ  (10) 

δλλλ −=−=
∂
∂− !),( LxF

x
H

x  (11) 

0),( ===
∂
∂ xLxFH !

λ
 (12) 

Combining and manipulating the first two necessary conditions yields the 

following result expressed as a modified golden rule equilibrium condition: 

LL

LLLLLL
x

FR
FRFRLLxF ][),( +−+=

!
δ . (13) 

Since RLL   equals zero, this simplifies to: 

L

LL
x

F
FLLxF
!

+= δ),( . (14) 

We assume the growth function, F(x) is represented by a modified Verholst 

logistic function in which natural steady states exist at population levels of zero 

and the carrying capacity, k. The original (unmodified) logistic function is 

represented by the formula: 







 −⋅⋅=

k
xxrxF 1)(  (15) 

where, r is the intrinsic growth rate of the population, x is the population, and k 

is the carrying capacity. This formulation characterises the concept of density-

dependence, in which population grows rapidly at first and then, upon reaching a 

maximum growth rate, begins to decline such that 

( ) 0F x′ > , ( ) 0F x′′ <  for all 
2
kx < , and 

( ) 0F x′ < , ( ) 0F x′′ >  for all 
2
kx > . 

The cause of this behaviour is the self-limiting nature of populations, as the 

density of a population increases and competition for available resources limits 
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net growth.  Implicit in this formulation is the assumption of a fixed environment 

size. 

Since loss of land is the principal cause of decline in yellow-eyed penguin 

numbers, any change in the amount of land available to the penguin effectively 

alters the carrying capacity of the population on the land. Similarly, increasing 

the size of the available habitat increases the total population that the habitat is 

capable of supporting. 

This implies a modification to the growth function as follows, 









⋅
−⋅⋅=

Lk
xxrxF 1)(  (16) 

where L represents an index of the suitable habitat available to the yellow-eyed 

penguin, the control variable from above.  

Substituting equation (16) and its derivatives into equation (14) yields a specific 

form of the modified golden rule, 

2 21 x Lr
kL L

δ  = − +  

!
. (17) 

This expression is consistent with the results suggested by the previous models, 

indicating that the penguin must generate sufficient growth, not only to meet the 

opportunity cost of capital, but also to offset the opportunity cost of the land 

resources it consumes.  The specific implications for management depends upon 

the population, the intrinsic growth rate and the social discount rate. 

Since δ, r and L are all positive, the sign of the first term on the right-hand side 

is dependent on the population level as shown in equation (18).  If the population 

is small (less than one-half of the carrying capacity), the term is positive. If the 

population is large (greater than one-half of the carrying capacity), the term is 

negative. 
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21 0,   if   
2

21 0,   if   
2

21 0,   if   
2

x kLx
kL
x kLx

kL
x kLx

kL

 − > <  
 − = =  
 − < >  

 (18) 

The implication is for the sign of the second term on the right-hand side as this 

represents how we use our control over land to balance the equality as shown in 

equation (19).   

2If a large population, then  1 0,   and   0

0  if  2If a small population, then  1 0,   and 
0  if  

x L
kL

L rx
kL L r

δ
δ

 − < >  
< > − >  > < 

!

!
!

 (19) 

If the population is large (the first term is negative), the optimal control will be to 

increase land availability through time.  Even, if the population is small, the 

optimal control may be to increase land if the rate of growth of the population is 

less than that of other opportunities in society.  Doing so effectively shifts the 

population leftward, relative to the carrying capacity, as in a shift from X2 to X1 

in Figure 1.  This increases the marginal growth rate until the entire right-hand 

side is equal to the discount rate. 

 

 

 

 

 

 

 

 

 

Figure 0.  Effect of population shift on marginal rate of growth. 
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Finally, if the population is small and the intrinsic rate of growth exceeds the 

discount rate, the optimal control will be to decrease the land allocated to the 

species.  Such a decrease has the same effect as shifting the population 

rightward, relative to the carrying capacity, as in a shift from X1 to X2 in Figure 

1.  This reduces the marginal growth rate, again bringing the right-hand side 

into equality with the discount rate. 

4. IMPLICATIONS AND CONCLUSIONS 

Implications for the Penguins 

Howard McGrouther, director of the yellow-eyed penguin reserve in Dunedin 

reports that the current annual rate of growth for their population has remained 

at a constant twelve percent for the past several years5. The annual opportunity 

cost of capital facing landowners in the Otago peninsula is around 6.25 percent.6 

Clearly, the growth rate of the resource is well in excess of the rate required 

under the unmodified golden rule.  McGrouther further reports that the carrying 

capacity of the reserve is around 760 birds, with a current population of 

approximately 260 birds.  Thus, we have the case described above, in which the 

population is small and the intrinsic growth rate exceeds the discount rate. 

Accordingly, on the optimal path, the rate of change of land allocation with 

respect to time will be negative, given our current initial conditions. This implies 

that the current population density is too low on the land presently available. To 

put it another way, the current yellow-eyed penguin population on this tract of 

land could be supported on a much smaller area. 

The implication of this result for penguin management and preservation is a 

positive one. The current allocation of land to the yellow-eyed penguin is capable 

of supporting a substantially larger population than it is at present.  Although 

the model indicates that the same result could be achieved with less, it is 

                                                 
5 Personal Communication 11-11-98. 
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unrealistic to treat land allocation as an infinitely divisible resource that can be 

gradually increased to keep pace with the optimal population density. 

Implications for the Model 

The question remains as to the applicability of the bioeconomic model to this type 

of problem.  We have really explored two issues: whether the model is useful for 

species for which there is no harvest value, and whether land is an acceptable 

control variable. 

To the first, the model demonstrates the ability to deal with non-harvest values 

as the sole source of value in the model.  Previous models have included non-

consumptive values in addition to harvest, but this model provides a reasonable 

explanation of optimal economic behaviour based on non-consumptive values 

alone.  However, it is also the case that this model dramatically simplified the 

nature of revenues arising from tourism values.  For mathematical tractability, 

revenues were modelled as constant and not dependent on population.  While 

this is probably not correct, it is also the case that revenues are not likely to be 

based on an infinitely increasing function of population.  In all likelihood, 

tourism revenues for a particular location will increase for low populations, but 

after some point, will level off.  A tourist may choose not to pay for a visit if the 

probability of a sighting is small, but once that probability reaches a level of 

near-certainty, additional population is not likely to generate additional visits.  

The model would have to be significantly more complex to take this behaviour 

into account, yet that may be necessary for the model to predict behaviour in a 

useful way. 

As to using land as a control variable, Swanson (1994) has already demonstrated 

the conceptual value of considering land as an additional control variable.  This 

model demonstrates that land may also be a reasonable choice as the sole control 

variable in a problem.  If there is a weakness in the concept it is in the 

unrealistic result that an optimal decision will be to restrict land initially and to 

introduce land at a rate that holds the population at an optimal density.  In 

hindsight, it is obvious why the model does this, and it is an economically sound 

result.  However, it is not a particularly realistic scenario for the real world and 

                                                                                                                                            
6 Term Investment Rate for term in excess of five years as quoted by Bank of New 
Zealand, Palmerston North Branch, as of 18 January 1999. 
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so one must question its use in empirical applications.  It is likely that such a 

model is better used for making a binary determination of whether or not the 

incentives facing land owners is likely to cause a total disinvestment in a 

particular species and its habitat, than for attempting to model specific 

optimising behaviour. 
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