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Francesco Trebbi and Eric Weese∗

23 May 2016

Abstract

Insurgency and guerrilla warfare impose enormous socio-economic costs and

often persist for decades. The opacity of such forms of conflict is often an

obstacle to effective international humanitarian intervention and development

programs. To shed light on the internal organization of otherwise unknown

insurgent groups, this paper proposes two methodologies for the detection of

unobserved coalitions of militant factions in conflict areas, and studies their

main determinants. Our approach is parsimonious and based on daily geocoded

incident-level data on insurgent attacks alone. We provide applications to the

Afghan conflict during the 2004-2009 period and to Pakistan during the 2008-

2011 period, identifying systematically different coalition structures. Further

applications are discussed.
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1 Introduction

Among many political sources of welfare loss, few compare in magnitude to mili-

tary conflict and, in the post World War II period in particular, to the losses ascribed

to civil war and violent insurgency [O’Neill, 1990]. Insurgency, defined as armed re-

bellion against a central authority1, is also one of the most opaque forms of conflict.

Intertwining connections with the population blur the lines between combatants and

civilians [Kilcullen, 2009]. The relative strength and even the identity of potential

negotiating counterparties are often unclear, and in the words of Fearon [2008] “there

are no clear front lines.” Such forms of conflict have disproportionately affected poor

countries and are gaining central status in the literature on the political economy of

development [Blattman and Miguel, 2010; Berman and Matanock 2015]. Our paper

offers a contribution to the economic analysis of these irregular wars that is both

methodological and empirical.

Theoretically, we propose a set of approaches aimed at estimating the latent in-

ternal organization of multiple insurgent groups. Motivating our interest in this

particular problem is uncontrived. Take the case of Syria after 2011. Lack of knowl-

edge about the organization of the anti-Assad insurgency and the structure of cross-

alliances among militant groups emerged as a crucial obstacle to targeted Western

military action and a deterrent to humanitarian relief intervention in the Syrian civil

war [Jenkins, 2014]. The political risks of supporting anti-regime rebels (possibly

aligned with radical Islamist movements) were deemed too high. In this backdrop, to

February 2016, the Syrian conflict alone displaced 10.7 million civilians and caused

the death of over 250, 000 individuals according to the United Nations Office for the

Coordination of Humanitarian Affairs [United Nations, 2016].

Empirically, we focus on the costly insurgencies of Afghanistan and Pakistan2.

On the U.S. side alone, Afghan operations cost the lives of more than 1, 800 troops

between 2001 and 2011, and led to more than $444 billion in military expenses.3

1According to O’Neill [1990] “Insurgency may be defined as a struggle between a nonruling group
and the ruling authorities in which the nonruling group consciously uses political resources (e.g.,
organizational expertise, propaganda, and demonstrations) and violence to destroy, reformulate, or
sustain the basis of one or more aspects of politics.”

2Unfortunately, we are not aware of suitable data for Syria. In Section 5 we further discuss the
case cases of Iraq, Syria, and Libya, all instances where our methodologies could be potentially of
use.

3Soon into the operation, the U.S. military acknowledged through a drastic adjustment in tac-
tics that the Afghan conflict differed substantially from previous large-scale military operations.
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Statistics for Afghan civilians appear less certain, but the adverse effects are painfully

obvious even to the casual observer. In Pakistan, a perduring effort in placating

nationalist, militant, and sectarian-related insurgencies has been accompanied by a

heavy toll of 18, 583 people killed and 19, 356 injured between 2012 and 2015 alone

[Pak Institute for Peace Studies, 2016, p.8]. This effort has diverted valuable resources

from aid and development assistance programs and public goods provision in the

country.

As an more concrete example, consider the case of Afghanistan specifically. The

insurgency during 2004-2009 has been approximately described as originating from an

alliance between the Afghan Taliban insurgents and al-Qaeda foreign fighters against

the Afghan government and the supporting international coalition forces. While this

was surely a facet of this early phase, front lines were uncertain and the unity of the

insurgents doubtful. Importantly, policymakers disagree about whether the Taliban

were a unified fighting organization, or rather an umbrella coalition of heterogeneous

forces. Some were skeptical of the degree of control that Taliban leader Mullah Mo-

hammed Omar exerted over the powerful Haqqani faction and the Dadullah network.4

Similarly, the Hizb-i Islami faction was considered by many a separate entity from

the Taliban proper.5

Other observers promoted an opposite view. In an insightful qualitative essay

Dorronsoro [2009] states: “The Taliban are often described as an umbrella movement

comprising loosely connected groups that are essentially local and unorganized. On the

contrary, this report’s analysis of the structure and strategy of the insurgency reveals a

resilient adversary, engaged in strategic planning and coordinated action.”6 Evidence

Appendix A includes a reference time line for conflict events in Afghanistan.
4For example, the UN report [2013] stated that “Despite what passes for a zonal command

structure across Afghanistan, the Taliban have shown themselves unwilling or unable to monopolize
anti-State violence. The persistent presence and autonomy of the Haqqani Network and the man-
ner in which other, non-Taliban, groupings like the Lashkar-e-Tayyiba are operating in Afghanistan
raises questions about the true extent of the influence exerted by the Taliban leadership.” Brahimi
[2010] reports a statement by Ashraf Ghani, current Afghan president, in a lecture for the Miliband
Programme at LSE indicating “The Taliban are not a unified force - they are not the SPLA in Sudan
or the Maoists in Nepal” while Giustozzi [2009] states that “The Taliban themselves are not fully
united and the insurgency is not limited to the Taliban.”

5Fotini and Semple [2009] state explicitly that “the Taliban is not a unified or monolithic move-
ment” and Thruelsen [2010] that “the movement should not be seen as a unified hierarchical actor
that can be dealt with as part of a generic approach covering the whole of Afghanistan.”See also
Giustozzi [2007].

6In contrast, the Pakistani Taliban are described in the same essay as an umbrella organization
that is clearly non-unitary.
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in support of this position includes the existence of the Layha (a centralized code of

conduct for Mujahidin), as well as the strong centralizing tendencies of the Obedience

to the Amir (a manual endorsed by Mullah Omar).7

This disagreement among experts is unsettling. Understanding the extent of ter-

ritorial control and population support of insurgent groups is essential for military

operations. Furthermore, knowledge of the internal organization and cohesion of

rebel groups could have been used to prevent selective violence by insurgents, and

ultimately help with the relief and reconstruction of areas affected by conflict.8

This paper shows how the covariance structure of data on violent events can be

used to estimate the number of different active insurgent groups and their territories

of influence, features that are typically unobservable to the econometrician. In this

particular application we make use of the specific covariance structure emerging from

the fact that insurgent groups with the ability to launch simultaneous and geograph-

ically separated attacks generally appear to do so. This relies on the conclusions of

the existing literature regarding the incentives for organized violent groups to launch

coordinated attack in multiple locations. For instance, Deloughery [2013] provides a

recent review of this literature and presents systematic evidence of the advantages

of simultaneous attacks for terrorist organizations in terms of media coverage and

appeal in the recruitment of new fighters –incentives that operate within insurgencies

as well.9

7These are available in English translation as Munir [2011] and Ludhianvi [2015], respectively.
8One example of the importance of understanding insurgent group structures for post-conflict

negotiations comes from Colombia. The recent appearance of the Bandas Criminales Emergentes
(BACRIM) in lieu of the AUC paramilitary combatants has been a central issue in the work of
Colombia’s Reconciliation Commission in deploying resources and rebuilding state institutions and
control at the local level.

9From a western perspective, the 9/11 attacks in the United States are the most obvious example
of the salience of such simultaneous violence, but the phenomenon is widespread. For example, in
southern Thailand insurgent movements have adopted similar tactics: “On April 28, 2004 groups of
militants gathered at mosques in Yala, Pattani, and Songkhla provinces before conducting simul-
taneous attacks on security checkpoints, police stations and army bases” [Fernandes, 2008]. The
Indian Mujahideen, responsible for the 2008 Mumbai attacks, typically carry out simultaneous at-
tacks [Subrahmanian et al., 2013]. Kurdish nationalists and the Tamil Tigers are known to have
adopted simultaneous attacks as a strategy. In Africa, Boko Haram in northern Nigeria has carried
out coordinated attacks on multiple targets such as churches, and Anderson [1974] describes coordi-
nated attacks in Portuguese colonies. Simultaneous attacks and suicides have been a trademark of
international jihadist organizations and of al-Qaeda in particular, making our approach well-suited
to the Afghan insurgency case. Because the empirical covariance matrix of attacks is observed, these
assumptions implying positive covariances driven by co-occurring incidents are readily verifiable and
they are in fact supported by the data. See discussion in Section 2.
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We take these incentives as given, and assume that an organization with the

capability of launching such attacks will choose to do so. The covariance of the

attacks that are observed in excess to simple random correlation can thus be employed

to analyze the underlying structure of the insurgent groups organization. Attacks

across different locations on the same day are assumed either as the result of random

chance or to represent an insurgent group with a presence in those locations. A

transparent structural model of attacks is used to distinguish between random chance

and organized group behavior. After estimating the number of different guerrilla

groups and their territorial extent, we assess the main empirical determinants of

insurgent presence and produce an analysis of shifts in insurgent presence over time.

The paper addresses three main questions. First, when faced with multiple violent

incidents in multiple regions, how can one decide whether the simultaneous incidents

observed are isolated idiosyncratic events, as opposed to organized attacks by coali-

tions of assailants? Second, how can one identify from incident data alone how many

distinct insurgent groups (if any) are attacking? Third, what are the socioeconomic

determinants driving the diffusion and segmentation of the rebels within a specific

region and across regions?

The estimation method models a country experiencing an insurgency as a set

of points at which violent incidents can occur in each period. Each point in this

set represents the centroid of an administrative district and each period is one day.

Attacks on the same day in two different districts will occur with greater-than-random

frequency if the same insurgent group is operating in both areas. Using a variety

of assumptions regarding what the “reference” cross-district covariance in attacks

would be in the case where there were no organized groups, we calculate which sets

of districts are more correlated than would be expected by chance alone. In general,

these districts will be ones that have repeatedly experienced simultaneous attacks. We

then use this information to estimate the cluster of districts in which each guerrilla

group operates.

We present estimators that allow for a single district to be contested by multiple

guerrilla groups or by a single group, or by none. The estimators provide the number

of guerrilla groups operating, the geographic area of each of these, and the intensity

of each group’s activity in each district. Let us emphasize that the methods we

present can accommodate slow-moving trends in violence over time and are robust

to aggregate shocks (e.g. weather, seasonality, or U.S. troop movements) that might

4



affect insurgent activity in many areas simultaneously.

In order to provide our estimates, the data generating process used to model the

occurrence of violent incidents is somewhat stylized. The partial loss of generality

has to be traded off with the parsimony necessary due to the lack of any detailed data

on the internal organization and planning strategies of insurgent forces.

The main empirical results of the paper are as follows. We conclude that for the

early period 2004-2009 insurgent activity in Afghanistan is best represented by a single

organized group, rather than several independent groups, and that the extent of this

group is largely determined by ethnic boundaries. This result is probed by partialling

out slow-moving trends and spurious correlation induced by large-scale U.S. military

activity, to constraining the analysis to districts with a number of incidents above

specific thresholds, and to limiting the analysis to incidents explicitly claimed by the

Taliban.

We also conduct an in-depth analysis of the Pakistani insurgency (which includes

the Pakistani Taliban, known as Tehrik-i-Taliban Pakistan or TTP), using multiple

data sets for the period 2008-2011. Interestingly, the TTP are completely separate

from their Afghan counterparts and unanimously considered an umbrella coalition

of diverse violent actors.10 We show that in the case of Pakistan, our methodology

detects multiple insurgent groups (four, in fact) and is completely consistent with the

extant qualitative literature on insurgency in Pakistan.

We also consider changes in the extent of the Afghan Taliban over two time

periods: 2004-2007 compared to 2008-2009. We find that insurgents spread largely

to districts adjacent to those where they were already present: this is sometimes

described as an “oil spot” strategy.11 We also find that there has been penetration

by the insurgents into areas traditionally occupied by non-Pashtun ethnic groups.

We finish by discussing several case studies outside of Afghanistan and Pakistan

where application of the methodologies we present could be helpful in assessing the

economics of post-conflict reconstruction and power sharing with former insurgent

groups from Latin America, Asia, and Africa.

An increasing amount of attention has been devoted within the fields of develop-

ment economics and political economy to the study of armed conflict within countries,

10Dorronsoro [2009] discusses how“The Pakistani Taliban have different structures, different lead-
ers, and a different social base [relative to the Afghan Taliban -AN]. They are, in fact, an umbrella
movement comprising loosely connected groups.”

11See Krepinevich [2005] for the relevance of this approach in Iraq by U.S.-led coalition forces.
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in particular civil wars and insurgency. Economists have been interested in the anal-

ysis of violence and conflict at least as far back as Schelling [1960] and Tullock [1974],

with Hirshleifer [1991, 1995a, 1995b, 2001] and Grossman [1991, 2002] offering more

recent theoretical contributions. Outside of Economics the interest has been even

greater: Political scientists have dedicated to the study of conflict a substantial part

of their work in the field of International Relations.

Political Science and Economics have provided some of the most recent and novel

insights in the study of insurgency.12 As underlined by Blattman and Miguel [2010],

a remarkable characteristic of this recent wave of research has been a strong empirical

bend and an increasing attention to micro-level (typically incident-level) information.

The use of geocoded micro data in this area is a departure from more established

“macro” empirical approaches, which were based on country level information or

aggregate conflict information.13

This paper is one in the new “micro” style, with a specific emphasis on the anal-

ysis of insurgency and small wars. Economic and statistical evidence on the role of

anti-government guerrilla activities is still sparse, even though such activities cause

substantial damage worldwide and appear from a quantitative perspective to be the

predominant form conflict in civil wars since 1945 [Fearon, 2008; Ghobarah et al.,

2003]. Insurgents’ strategies are generally not well understood, and neither are the

subtleties of their interactions with the noncombatant population [Gutierrez-Sanin,

2008; Kilcullen, 2009]. A particular incentive for further study is that insurgent activ-

ity is also often linked to terrorist activities, and thus there is a connection with the

growing literature on the economics of terrorism [Bueno de Mesquita and Dickson,

2007; Benmelech, Berrebi, Klor, 2012].

The remainder of this paper is organized as follows. Section 2 develops our

methodology for the estimation of coalition structures among insurgent groups. We

describe our data in Section 3, particularly the incident-level data for Afghanistan

and Pakistan, which have been generously made available by the Empirical Studies

Of Conflict (ESOC) project. The analysis of the determinants of insurgent group

presence is developed in Section 4. Section 5 presents several case studies focused

on the economic importance of understanding insurgent organization in conflict and

12These include Berman [2009], Berman et al. [2011], Condra et al. [2010], Blair et al. [2012],
Condra and Shapiro [2012], Callen and Weidmann [2013], and Bueno de Mesquita [2013].

13Notable instances of the “macro” approach include Fearon and Laitin [2003], Boix [2008], Collier
and Hoeffler [2004], and Collier and Rohner [2008], among many others.
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post-conflict environments in developing countries. Section 6 concludes.

2 Model

We are interested in estimating parameters describing the presence and identity of

organized insurgent groups in each of many districts in a country, and also the total

number of such insurgent groups active in the country. We do not propose a complete

theory of insurgent activity. Instead, we develop a parsimonious econometric model

based on assumptions regarding insurgent behavior. This approach is motivated

by both lack of data on opaque insurgency organization and by the computational

difficulties involved in estimating models of the type considered; these difficulties

appear to preclude consideration of all but the simplest structural models.

We first present a model of insurgent behavior that links insurgent presence to en-

tries in the cross-district covariance matrix of insurgent attacks. Next, we discuss how

to decompose this covariance matrix into a form useful for estimation. We then de-

scribe two estimation approaches based on this model: the first assumes that exactly

one insurgent group is present in each district, while the second relaxes this assump-

tion. We conclude by explaining how we can avoid potential bias from long-term

trends in attacks across districts. Avoiding bias from weather, seasonal fluctuations,

and other such trends is important when applying our approach to actual data, but

we discuss these details last in order to simplify the exposition of the model.

2.1 Insurgent Attacks

Let districts be indexed by i, and let there be a total of N districts in which attacks

occur. Violent occurrences in i can be of two types: unorganized or organized by an

insurgent group. We make a distinction between attacks initiated by unorganized

local militants and those initiated by members of an organized group because we also

allow for the possibility that there are no organized insurgent groups present in a

district even though attacks are observed there.

Let ℓi be the number of unorganized local militants in district i. Let organized

insurgent groups be indexed by j, and let J be the total number of such organized

groups active anywhere in the country. Let αij be the number of members in district

i belonging to organized group j. Time is discrete and indexed by t. In our analysis
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below, the time periods used will be days. This relatively high-frequency attack data

is useful because it reduces the number of attacks that are simultaneous simply by

random chance.

In each time period, the probability that an unorganized local militant launches an

attack is η, which does not change across time (this assumption is relaxed in Section

2.5). The decision by unorganized militants to attack is independent of the decision

of anyone else (unorganized militant or group member). The expected number of

attacks by local militants in district i at time t is thus ηℓi, and the variance within

district i is η(1− η)ℓi. The covariance in these attacks between two districts i and i′

is zero: the attack decisions are made independently, and the probability of an attack

is constant.

In contrast to unorganized militants, members of an organized group are more

likely to attack on some particular days than on others. Let ϵjt be the probability

that a member of group j will attack at time t. This probability is the same for

all members of group j, and whether any given member attacks is independent of

other attack decisions after conditioning on the attack probability ϵjt. Across time,

the covariance of attacks between two members of the same group is thus Var(ϵj).

We assume that this variance is constant across groups, and will refer to it as σ2.

Assume that for any other group j′, ϵjt is uncorrelated with ϵj′t. Thus, the covariance

of attacks between two members of different groups is zero. This orthogonality is an

important identifying assumption of the model and follows the standard approach in

the factor analysis literature.

Consider the members of group j. If there are αij members in district i and αi′j

members in district i′, then the covariance in attacks over time between these two

districts, due to the presence of members of group j, is αijαi′jσ
2. Summing over

members of all groups, the covariance in attacks between districts i and i′ will be∑
j αijαi′jσ

2.

The model just presented is clearly a stylized model of the attack behavior of

insurgent groups, and the covariance structure imposed is not without loss of gen-

erality. A particularly strong assumption made in the model is that the members

of an insurgent group do not move between districts: a given group j has a certain

membership αij in district i, and those members will either be encouraged to attack

in a given period (a high ϵjt), or not (low ϵjt).

A very different model would be one in which members of an insurgent group
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are mobile, and in any given period have the choice of attacking in one of many

districts. This latter model implies that organized groups should lead to negative

covariances between districts, as insurgent group members who attack in district i

could not also be attacking in district i′ in the same period. In contrast, the model

presented above suggests that this covariance should be positive if the same insurgent

group j has members in both i and i′, as attacks in both i and i′ will be higher in

periods when ϵjt is high and lower in periods when ϵjt is low. In the data used, the

observed covariances are systematically positive, validating our main assumption.14

The qualitative research of Deloughery [2013] and others, as discussed in Section 1,

also suggests that a model without substantial substitution in attacks across districts

appears most appropriate.

2.2 Covariance Decomposition

Let Γ be the covariance matrix for attacks discussed in Section 2.1, where the

entry in row i and column i′ gives the covariance in attacks across time for these two

districts. Analysis will be based on this matrix, and others created from it.15

The covariance matrix Γ can be decomposed as

(1) Γ = ΓD + ΓL,

where ΓD is a diagonal matrix and ΓL is a low rank matrix of the form

(2) ΓL = σ2



∑
j α1jα1j

∑
j α1jα2j∑

j α2jα1j

∑
j α2jα2j

...
∑

j αijαij∑
j αijα1j ...

∑
j αijαi′j

...


This decomposition is considered because the diagonal entries of the covariance

matrix are a sum of variance from unorganized militants and variance from organized

14Permutation tests of the sort discussed later indicate that the mean covariance is positive at any
reasonable confidence level. Results available upon request.

15This specification is similar to the “random flock” of Bottegal and Picci [2015], except that an
attack either happens or does not in each case, and this is observed, rather than the underlying
probability being observed.
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groups, and only the latter is of interest.16 As a normalization, we set σ2 = 1.

Let γii′ =
∑

j αijαi′j denote the off-diagonal entry on row i and column i′ of ΓL.

Let γ̄ii′ be the corresponding entry of the covariance matrix in the observed sample.

Unfortunately, no empirical counterpart to ΓL is observed, and thus one will have to

be created by modifying the diagonal of the observed covariance matrix Γ̄.

To create a Γ̂L from Γ̄, a diagonal matrix Γ̂D will be subtracted from the latter

to produce the former. An intuitive method for doing this is “trace minimization”,

discussed at least as early as Ledermann [1940]. First, note that Γ̄ is a (sample)

covariance matrix, and is thus positive semi-definite. Γ̂L should also correspond to

a covariance matrix, and thus should also be positive semi-definite. Consider the

optimization problem

min
Γ̂D

Tr(Γ̂L)(3)

s.t. Γ̂L = Γ̄− Γ̂D, Γ̂D diagonal,

Γ̂D ≻ 0, Γ̂L ≻ 0

Here Tr() denotes the sum of diagonal entries of a matrix, and ≻ 0 indicates positive

semi-definiteness. The intuition for trace minimization is that the “extra” variance

present in the diagonal entries of Γ has the form of a full rank matrix, and thus in

order to recover a low rank matrix such as ΓL, as much of this as possible needs to

be removed.17

If N = 200, the the semi-definite program corresponding to (3) involves 200 ×
199 = 39, 800 constraints: each off-diagonal entry γ̄ii′ in the positive semi-definite

matrix Γ̄ must be equal to the corresponding entry in Γ̂L. Problems of this size,

however, are feasible using modern semidefinite programming algorithms. We thus

compute Γ̂L using (3), and will use it as the basis for producing an estimate of

16The diagonal entries of Γ do not in general have a useful form. For example, even in the very
simple case where there is only one group and ϵ1 is uniformly distributed on [0, b], the ith diagonal

entry would be a non-trivial nonlinear expression b2

12 (
6
b + (αi1 − 4))αi1 + ℓiη(1− η). A simpler form

for the diagonal entries could be obtained by using a mixture Poisson approximation, such as the
Poisson-Gamma used in Ashford and Hunt [1973]. A variety of these distributions are discussed in
Karlis and Xekalaki [2005]. None of the options available, however, appear to simplify the diagonal
entries enough to be directly useful from an empirical perspective.

17Saunderson et al. [2012] show that the intuition of Ledermann and others was correct in general.
Specifically, the positive semi-definite matrix ΓL can be recovered given Γ so long as it is sufficiently
“incoherent”, and this property is satisfied by most low rank matrices. Details are provided in
Appendix B.
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insurgent group presence in the next two subsections.

2.3 Non-overlapping Insurgent Groups

We desire both an estimate Ĵ , the total number of organized insurgent groups, as

well as an estimate α̂ij for each district i and group j, giving the number of insurgent

members of the group operating in that district. The set of estimates {α̂ij} will have a
total of N× Ĵ elements. It turns out to be easiest to first produce the {α̂ij} estimates

for each value of J ∈ {1, ..., Jmax}, and then choose a Ĵ based on examining this set

of estimates.18 We will thus begin by assuming that J is known, and consider how to

compute estimates {α̂ij} given J . After this, we will then consider how to choose Ĵ .

An approach based on standard clustering techniques will be presented in this

subsection, as well as one based on eigenvalues. Matrix factorization will be con-

sidered in Section 2.4. The approach based on clustering and that based on matrix

factorization are largely complementary in that they rely on different assumptions.

This provides a form of cross-validation for our results, which is important given the

novelty of these methodologies within the field of political economy.

Estimation via standard clustering techniques requires an additional assumption

different from those that will be needed for the techniques of Section 2.4: specifically,

it is necessary to assume that the various insurgent groups present do not have over-

lapping territories. That is, there one organized group j present in any given district

i.19 Based on this assumption, reordering the districts i allows ΓL to be written as a

block-diagonal matrix:

(4) ΓL =


Γ1
L 0

0 Γj
L

...

0 ... ΓJ
L


where there are a total of J organized groups, and each block Γj

L has the form given

in Equation 2. To produce estimates {α̂ij} we will first determine which organized

18The exact choice of Jmax is not important.
19This is a direct consequence of the standard assumption that factors should be orthogonal,

combined with the fact that insurgent prevalence α must be non-negative.
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group is present in each district, and then afterwards we will determine the strength

of this group in the district.

To determine which organized group is present in each district, we will follow a

modified k-means type approach20. Begin by constructing a scaled version of ΓL:

Γcor
L = D(

∑
j

α·jα·j)
−1/2ΓLD(

∑
j

α·jα·j)
−1/2,

where D() indicates a diagonal matrix with the specified vector on the diagonal. This

process is occasionally referred to as “sphering” and it often improves the quality of

the clustering. By assumption, for each district i, αij = 0 for all but one group j,

and thus Γcor
L is constructed by dividing row i and column i of ΓL by the value of αij

for the single group j that is present in i.

The ”cor” superscript is used because Γcor
L is positive semi-definite with all diagonal

entries equal to one, and thus has the form of a correlation matrix. However, observe

that each off-diagonal entry γii′ has now been divided by αijαi′j if the same insurgent

group is present in districts i and i′. Thus, in exactly the same way as (4), after

suitable rearrangement Γcor
L is a block diagonal matrix with entries consisting only of

zeros and ones:

(5) Γcor
L =


1N1 0

0 1Nj

...

0 ... 1NJ


where 1Nj

is an Nj by Nj matrix consisting entirely of ones, and corresponding to the

Nj districts that have group j present in them.21

Running a k-means type clustering algorithm on Γcor
L would be trivial, but only

the finite sample version is available. Let Γ̂cor
L be the correlation matrix associated

with the finite sample covariance matrix Γ̂L.
22 This Γ̂cor

L will have off-diagonal entries

20In many clustering approaches transformations or scaling of the original data is common. An
example is spectral clustering, a methodology we also employed in the working paper version of
the paper. We discuss this approach, and reasons why our current approach may be preferable, in
Appendix C. Luxburg [2007] provides a general discussion of the technique.

21Note that this step relies on the assumption that there is an organized insurgent group present
in every district: if there were a district with no organized presence, creating the correlation matrix
would involve division by zero.

22The correlation matrix Γ̂cor
L is readily obtained by imposing diagonal elements equal to 1 and
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that are neither zero nor one. For many k-means algorithms, a distance matrix rather

than a correlation matrix is needed. Such a distance matrix can easily be constructed

using cosine distances: 1− γcor
ii′ is the cosine distance between i and i′, where γcor

ii′ is

the off-diagonal entry of Γcor
L corresponding to districts i and i′.23 The cosine distance

between two districts with the same group present will be zero asymptotically, while it

will be one when the districts have different groups present. Given J , any reasonable

clustering algorithm should thus be able to recover which insurgent group is present

in which district, given enough data.24

Once districts have been clustered into groups, estimates for {αij} can be obtained.

Begin by supposing that each organized group that is present has members in a large

number of districts, and that no single district has a particularly large αij. Let

Ij be the set of districts that have members of organized group j. Then, since an

assumption of the model was that the organized groups do not overlap, an estimate of

αij for i ∈ Ij can be produced via the following approximation, using Γ̄j, the relevant

block of the original Γ̄.25

Specifically, note that a sum across the off-diagonal entries of a row of Γ̄ corre-

sponding to district i is
∑

i′ ̸=i αijαi′j. If there are a large number of districts with

members of j, then it is reasonable to use the approximation∑
i′ ̸=i

αijαi′j ≃
∑
i′

αijαi′j(6)

= αij

∑
i′

αi′j

= αijaj

appropriately rescaling rows and columns of the covariance matrix Γ̂L by the square root of the
corresponding diagonal entry of Γ̂L.

23The construction of a distance matrix is trivial because any correlation matrix is also an inter-
point angle matrix, and these angles can be used directly to construct a cosine distance matrix.

24A weighted clustering approach appears to be called for, because a district with very low αij

for the group j that is present will have very noisy off-diagonal entries. We do not explore optimal
weights, instead using ad-hoc weights corresponding to the square root of the diagonal entries of Γ̂L.
Krishna and Narasimha [1999] provide a weighted k-means algorithm, based on genetic optimization:
we use the Hornik, Feinerer, Kober, and Buchta [2012] implementation of this algorithm. Using
unweighted clustering instead does not change any of the results discussed below substantially.

25A potential alternative approach to the one presented here would be to use the diagonal entries
of Γ̂L to produce estimates of {αij}. However, this matrix is itself the output of a semi-definite
program based on Γ̄. The approach presented below has the advantage of using the off-diagonal
entries of Γ̄ directly.
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where aj =
∑

i′ αi′j is the same for any choice of district i within Ij. The row sums

of the off-diagonal entries of each block of Γ̄j thus give the relative prevalence of

organized group members in each district in Ij.
26

We now consider how to produce an estimate Ĵ of the number of insurgent groups

present. Our approach is based on a modification of the “gap statistic” of Tibshirani,

Walther, and Hastie [2001].27 The intuition behind this technique is that adding

an additional cluster increases the number of degrees of freedom in the model, and

thus an appropriate estimate Ĵ must somehow counterbalance this in order to avoid

overfitting the data. This is done by comparing the performance of the model with

the actual data to a case with randomly generated data that is known not to have any

group structure. In general, computational difficulties loom large in the clustering

literature and asymptotic behaviour is given only limited consideration. Below, we

present a simple computationally feasible estimator for Ĵ . In Appendix D we discuss

modifications that would be necessary for the consistency of this estimator.

In general, the gap statistic approach makes use of the value

(7) Gap(k) = E∗[log(Wk)]− log(Wk).

Here Wk is some measure of variation left unexplained by the k clusters, and E∗ is

the expectation taken with respect to a “reference distribution” chosen to correspond

to no cluster structure. In Equation 7, Gap(k) quantifies an intuitive definition of the

quality of a k group clustering of the observed data: the clustering is “good” only to

the extent that it is better than what would occur with randomly generated data that

had no group structure by construction. Following Tibshirani, Walther, and Hastie

[2001], the estimated number of clusters Ĵ is then selected to be the smallest k such

26While it would be possible to use non-linear programming or other techniques to develop an
estimator with more desirable properties, the approximate estimator has at least two advantages.
First, the estimator has an intuitive interpretation: Γ̄ is a covariance matrix, and the sum across the
off-diagonal entries of a row of Γ̄ thus gives an indication (in a heuristic sense) of how closely linked
attacks in a given district are with attacks in other districts. Second, if in the data a given district i
experiences only a small number of attacks, then the off-diagonal entries γ̄ii′ will be relatively small
for that district, and thus i will not introduce substantial noise into estimates α̂i′j for other districts
i′. Developing an unbiased estimator that also possesses such properties appears to be a non-trivial
undertaking.

27An alternative approach would be to compare Γ̂cor
L to the correlation matrix that would be

predicted from the k means results, and choose the number of groups that minimized the distance
between these two matrices. We do not pursue this approach because it is not clear what sort of
distance function might be appropriate.
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that

(8) Gap(k) ≥ Gap(k + 1)− sk+1,

where sk+1 is an estimated standard error of log(Wk) in the case where there is no

cluster structure. Gap(k) describes how much better the estimated cluster structure

of k groups looks, compared to how it would be expected to look if there were in

reality no cluster structure. If Gap(k) ≥ Gap(k + 1), then this means that adding

the k + 1th cluster did not improve the clustering any more than would be expected

with random unclustered data.

In the standard Tibshirani, Walther, and Hastie [2001] setup, if clustering were

performed using Γcor, Wk would be the residual sum of squares or “within sum of

squares”: the variation in Γcor that is not explained by the group structure. How-

ever, this standard approach runs into problems with the calculation of E∗[log(Wk)]

because a reference distribution for Γ̂cor
L needs to be calculated.28 This calculation ap-

pears to be extremely complicated, because the answer depends on the finite sample

behavior of Γ̂cor
L , which is not well understood. We avoid this problem by modifying

the standard Tibshirani, Walther, and Hastie [2001] approach, and use a Wk defined

with respect to a set of auxiliary covariates Z, rather than Γcor.29

To see why this simplifies the problem, note that in the model the only source

of correlation in insurgent attacks across districts is through ϵ. In particular, our

model assumes that if the same insurgent group is present in both districts i and

i′, the correlation in attacks between districts will not depend on the relationship

between any other covariates of i and i′: for example, it does not matter whether i is

geographically close to i′, or geographically distant. We will now add one additional

assumption. Suppose that the districts where a given insurgent group is present

are less dispersed in terms of these auxiliary covariates Z than a set of randomly

chosen districts. For simplicity, we will focus specifically on geography, that is Zi =

(lati, longi), but our approach is potentially more general.

Let WJ describe the geographic dispersion of the insurgent group territories when

28Specifically, we would need to know how much adding a J + 1th group should improve model
fit, if there are only actually J groups in the data.

29We employed the standard Tibshirani, Walther, and Hastie approach described here in a previous
version of this paper. The results for Afghanistan were identical as those presented below. However,
the results for Pakistan were not as easy to interpret. All results are available on request.
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there are J groups, according to the following formula:

(9) WJ =
J∑

j=1

1

2Nj

∑
i,i′∈Ij

d2i,i′

where di,i′ is the geographic (Haversine) distance between districts i and i′. As before,

Ij is the set of districts where insurgent group J is present, and Nj is the cardinality of

this set. WJ follows the “within sum of squares” formula from the analysis of variance

literature. The intuition here is that, at numbers of groups beyond the true number

of groups J , the additional groups will be based on finite sample noise, which is by

assumption uncorrelated with geography. Thus, the additional groups should not

be correlated with geography, and thus values of WJ should not decrease any faster

than would be expected in the case where groups were randomly assigned.30 The

“random assignment” case, needed for determining E∗[log(Wk)], can be generated

via Monte Carlo permutations of the group structure: randomly reassign geographic

coordinates to each of the districts, thereby forcing group membership to be unrelated

to geographic location.

One does not have to exclusively rely on the gap statistic to estimate the number

of groups J . In fact, this parameter is also recoverable using an entirely different

approach, one based on the spectral properties of ΓL. Notice that each Γj
L in (4)

has rank 1, implying the rank of ΓL is J .31 The rank of ΓL can be then consistently

estimated by applying the intuition of Ahn and Horenstein [2013], using the eigenval-

ues of ΓL. Ahn and Horenstein’s “eigenratio” approach proceeds as follows. Suppose

that we were interested in estimating the rank of ΓL. Let λ̂k be the k−th largest

eigenvalue of Γ̂L. Asymptotically, the first J of these eigenvalues will be positive

and bounded away from zero, while the remaining N − J will go to zero. Ahn and

Horenstein consider the “eigenratio”

(10) ERk = λ̂k/λ̂k+1.

Asymptotically, ERk will converge to some positive value ck for k < J . However, it

30There may still be a decrease, but it should not be rapid. Eventually W must fall, because
WN = 0, with each group containing only one district.

31This is because the vectors α·j and α·j′ describing insurgent group presence are orthogonal for
j ̸= j′.
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will diverge to infinity for k = J , as the denominator becomes increasingly close to

zero while the numerator remains bounded away from zero. A simple estimate for Ĵ

can then be obtained by choosing the Ĵ that gives the highest value for ERĴ .
32

To summarize, in this subsection the specific estimator used is the following. We

begin with Γ̂L, which approximates a low rank block-diagonal matrix where each

block corresponds to the districts where a given organized group is present. Γ̂L is

then normalized to obtain the correlation matrix Γ̂cor
L , which provides cosine distances

that are used for k-means clustering, which determines which group is present in each

district. The number of groups to use in this clustering is determined by the gain in

fit (defined as log within sum of squares based on a set of covariates Z) associated

with various choices for the number of groups, or alternatively by eigenratio methods.

2.4 Potentially Overlapping Insurgent Groups

We now relax the assumption that insurgent groups do not overlap. As in the

approach discussed above, we will begin by assuming that J is known, and estimate

{αij}. We then produce an estimate Ĵ based on a comparison of these estimates for

different values of J . The estimates for {αij} will be based on non-negative matrix

factorization, and the Ĵ estimate will be based on a modification of the eigenratio

approach discussed above.

We first construct an estimator for the {αij}, given an assumed number of groups

J . Consider choosing α̂ij for each district i and group j to satisfy, to the extent

possible, the set of restrictions

γ̂ii′ =
∑
j

α̂ijα̂i′j.

where γ̂ii′ is the relevant entry in Γ̂L, estimated in (3), above. If there are N districts,

there are N(N + 1)/2 restrictions: one for each off-diagonal element in one half of

the symmetric covariance matrix, plus the diagonal elements. If there are J groups,

there are N × J parameters to be estimated: one α̂ij for each district i and group j.

A necessary condition for identification is thus that (N + 1)/2 ≥ J .

In the data used the number of districts is large relative to plausible numbers of

32Ahn and Horenstein [2013] require that there be some exogenous maximum number of possible
factors, Jmax. We follow this, and use Jmax = 80 for this paper. Simulations provided in Appendix
E show why this Jmax is necessary.
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groups, and thus this inequality holds strictly and a penalty function is required. An

obvious estimator for {αij} would then be the squared Frobenius norm

(11) argmin
α̂ij≥0

∑
i

∑
i′

(
γ̂ii′ −

∑
j

α̂ijα̂i′j

)2

.

Unfortunately, solving this optimization problem directly by searching the space of

{αij} is challenging because the problem as stated is non-convex in {αij}. A variety of

algorithms have been proposed for solving this problem. We will use the “Procrustes

rotation” algorithm of Huang, Sidiropoulos, and Swami [2014]. This algorithm does

not attempt to minimize (11), but instead solves a related optimization problem

based on a spectral decomposition of Γ̂L. Huang and Sidiropoulos [2014] show that

this algorithm is effective at solving (11), despite the fact that this objective is not

used as part of the algorithm.33

We now consider how to produce an estimate Ĵ . In Section 2.3, the rank of ΓL

was J , because the vectors α·j and α·j′ describing insurgent group presence would be

orthogonal for j ̸= j′. This is no longer true if groups have the potential to overlap.

Instead of the rank of ΓL, we thus base our estimate Ĵ on the completely positive rank

of ΓL: that is, the rank of A, where ΓL = AAT, and all entries of A are non-negative.

Without further assumptions this decomposition is not identified: for example,

(12) ΓL =

[
1 1

1 1

]

could be decomposed either into

(13) A =

[
1

1

]

or

(14) A =

[
1√
2

1√
2

1√
2

1√
2

]
.

33A previous version of this paper optimized (11) directly, using the algorithm of Birgin, Martinez,
and Raydan [2000]. The (qualitatively identical) results from this direct approach are available upon
request. Huang, Sidiropoulos, and Swami [2014] is orders of magnitude faster, converging in seconds
or minutes rather than hours or days.
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Huang and Sidiropoulos [2014] summarize assumptions under which the non-negative

factorization of ΓL becomes unique for practical purposes:34 each factor must have

at least J − 1 non-zero entries, and the non-zero entries of one factor must not be a

subset of the non-zero entries of any other factor. In the example above, the second

assumption is violated by (14). We will assume that the Huang and Sidiropoulos

[2014] assumptions are satisfied. Thus, faced with the covariance matrix in (12), we

would conclude that Ĵ = 1 based on the factorization in (13).

If ΓL were known, the number of organized groups could thus be calculated im-

mediately by producing a non-negative factorization of ΓL. However, only the finite

sample Γ̂L is actually available, and in general this matrix will not have a non-negative

factorization due to finite sample variation.

To address this problem, we will use a modification of the “eigenratio” approach.

In fact, the intuition behind the Ahn and Horenstein [2013] approach appears very

general. Consider a rank k approximation to anN×N matrix. The first k eigenvectors

can be used to create such an approximation. How much better is a rank k + 1

approximation? If the k+1th eigenvalue is very small relative to the kth eigenvalue,

then considering a rank k + 1 matrix instead of a rank k matrix does not improve

the approximation very much, and ERk will thus be very high. We can apply this

general intuition to the case of the group structure of Γ̂L. Let Ak be an approximate

non-negative factorization of Γ̂L with k factors. How much better would Ak+1 be

as an approximation to Γ̂L? Asymptotically, if ΓL was produced by k groups, the

improvement will be zero.

A ratio equivalent to Ahn and Horenstein’s “eigenratio” can then be expressed as

(15) NNRk =
||Γ̂L − AkA

T
k ||2F − ||Γ̂L − Ak−1A

T
k−1||2F

||Γ̂L − Ak+1AT
k+1||2F − ||Γ̂L − AkAT

k ||2F

where ||||F is the Frobenius norm. The intuition for NNRk is exactly that of the

eigenratio approach: if ΓL has a completely positive rank of k, then the k+1th factor

should not help explain ΓL, and thus NNRk should diverge to infinity. In contrast,

values of NNRk for k < J will converge to finite values.35

The ER estimator has a finite sample tendency to estimate Ĵ = 1, because the

34Conditions theoretically guaranteeing the uniqueness of the factorization are more complicated:
see the references in Huang and Sidiropoulos [2014].

35Ding, He, and Simon [2005] describe from a more general perspective the similarities between
NNMF and spectral clustering.
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eigenvalues of random matrices are generally distributed so that the first few eigen-

values are spaced further apart than most of the remaining eigenvalues.36 This effect

has been noted previously by Ferson and Kim [2012], and Guo-Fitoussi and Darne

[2014] perform an extensive simulation-based analysis.37

The attack datasets that we consider in this paper, however, are noisier than the

data generally used by researchers studying factor models in macro or finance. We are

thus particulary interested in the finite sample properties of the estimator when the

signal-to-noise ratio is very low. In Appendix E, we provide figures illustrating the

behaviour of the eigenratio estimator as the signal vanishes. The simulations that we

perform are effectively identical to those conducted in Guo-Fitoussi and Darne [2014],

as well as the original monte carlo exercises of Ahn and Horenstein [2013]. To the best

of our knowledge, however, the figures that we produce have not previously appeared

in the literature: this includes Appendix Figure E.3d, showing the distribution of the

eigenratio estimator under the null hypothesis that there is no group structure.

The finite sample behaviour of the eigenratio estimator is shared by estimators

using NNR. It will thus be important to check whether the values of NNR obtained

might have arisen by random chance from data with no actual group structure. Con-

sider the value of maxk<Jmax NNRk. We wish to compare this test statistic to its

distribution under the assumption that there is no actual group structure, obtaining

appropriate p-values.38

To do so, consider a “reference distribution” where there are no organized groups.

Randomly generate attack data based on this distribution, calculate an equivalent to

Γ̂L based on this randomly generated data, calculate a value for NNRk based on this

matrix, and then repeat this process 100 times. We consider three different reference

distributions: specifics are provided in Appendix F.

36Classic references here include the Wigner [1955] semi-circular distribution and the Marchenko-
Pastur [1967] distribution.

37As Mirza and Storjohann [2014] point out, the effect is visible in the original Ahn and Horenstein
[2013] simulations.

38Other hypothesis tests are difficult to perform: the distribution of eigenvalues resulting from
random variation in finite samples is not obvious. We thus do not report confidence intervals for Ĵ .
For similar reasons, we also do not report confidence intervals for {α̂ij} below.
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2.5 Robustness: potentially changing district environments

Both the non-overlapping and overlapping approaches just described assume that

the covariance in attacks by group members across districts remains the same even

across long periods of time. In the observed data, however, it could be the case that

in earlier years certain districts are the focus of many attacks, while in later years

activity shifts to other districts. These sorts of long term changes can be accounted

for by considering only the covariance in attacks across districts within shorter time

windows.

Let Γ̄m be calculated the same as Γ̄ from Equation 2, but using only daily attack

data from month m. As the number of days of data used to calculate Γ̄m does not

increase asymptotically for any given month m, estimation based on a single Γ̄m

would be inconsistent. Aggregating across months, however, results in a consistent

estimator that is robust to changes in attack probabilities between districts at monthly

frequency.

Specifically, assume that the probability of an attack in district i in month m, ei-

ther from unorganized militants or an organized group, now changes with a parameter

ζim. That is, the probability of an attack from a unorganized militant is now ζimη,

and the probability of an attack from member of organized group j is now ζimϵjt.

Let D(·) indicate a diagonal matrix with the given entries on the diagonal. If ζ were

known, the standardized matrix Γ̃m = D( 1
ζm
)ΓmD( 1

ζm
) could be summed to create

Γ̃ = D(
∑

m ζm)Γ̃mD(
∑

m ζm). Γ̃ could then be used to estimate {αij}. In reality, ζ

is unobserved; however, dividing by the observed number of attacks creates a feasible

estimator, with α identified up to scale. This approach can be employed with both

estimation based on clustering and that based on non-negative matrix factorization.

Further details are provided in Appendix G.

3 Data

Both Afghanistan and Pakistan were covered by the Worldwide Incidents Tracking

System, a discontinued U.S. government database [Wigle 2010].39 Data is available

for location, date, and type of violent incidents from the beginning of 2003 to the end

39The data remains accessible online courtesy of the Empirical Studies Of Conflict (ESOC) project
at Princeton University.
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Figure 1: Afghanistan data

(a) Total attacks per capita (b) Ethnic Groups

of 2009.40

The violent incidents cataloged in the WITS data are episodes of violence initi-

ated by insurgents, or acts of random violence. The data does not include violence

directly connected to military counterinsurgency operations, such as for instance a

U.S. military attack on a Taliban safe house or the bombing of a fortified compound.

The location reported for an attack in WITS is given as latitude and longitude

coordinates. This would seem to suggest that attacks could be analyzed as some

sort of spatial point process. Closer inspection, however, reveals that the latitude

and longitude coordinates reported are not those of the actual location of the attack,

but rather the coordinates of a prominent nearby geographic feature. Sometimes this

is a city or village, but for the vast majority of incidents the location given is that

of the centroid of the district in which the incident occurred. In Afghanistan, the

“district” is the lowest-level political unit and the unit of geographic location in our

model. We also note that a few districts have been split in recent years: this paper

uses 2005 administrative boundaries, which specify 398 districts. The WITS data

effectively provides panel data at the district-day level, with N = 398 and T = 2082.

District-level geographic locations are also used for the Pakistan WITS data.

40The following two examples illustrate the typical form of incident descriptions:
“On 27 March 2005, in Laghman, Afghanistan, assailants fired rockets at the Governor House,

killing four Afghan soldiers and causing minor damage. The Taliban claimed responsibility for
the attack.” And “On 19 February 2006, in Nangarhar, Afghanistan, a suicide bomber detonated
an improvised explosive device (IED) prematurely near a road used by government and military
personnel, causing no injuries or damage. No group claimed responsibility.”
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Figure 2: Pakistan data

(a) Total attacks per capita (b) Ethnic Groups

According to the data, there are some days where as many as 64 different districts

in Afghanistan are affected by simultaneous insurgent attacks. However, there are

also 123 districts with no reported incidents over the entire 2004-2009 time period. It

is apparent to even the most casual observer that attacks are concentrated in certain

areas of the country.

For Pakistan, the BFRS dataset [Mesquita et al. 2015] is also available. This

is similar to WITS, in that it provides daily data on violent incidents, including

geographic information. BFRS data is available until 2011, and over the WITS time

frame of 2004-2009, BFRS contains approximately twice as many incidents as WITS.

Because of the greater number of attacks recorded, we prefer the BFRS data to

the WITS data, We make use only of BFRS data from mid-2008 onwards, because

qualitative evidence suggests that the structure of insurgent groups during this 3.5

year period was relatively stable.

Additional geographic information available for Afghanistan includes the location

of roads, rivers, and settlements.41 We aggregate this data to the district level in

order to use it jointly with the district-level attack data. For geographic data on

ethnicities, we use the Soviet Atlas Narodov Mira data.42

In Figure 1 we show the pattern of attacks by district in Afghanistan and the

distribution of ethnicities. The concentration of attacks in the ethnic Pashtun areas

41This data was also obtained from ESOC.
42The version used is the “Geo-referencing of ethnic groups” (GREG) data set of Weidmann et

al. [2010].
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Figure 3: Afghanistan groups via spherical k-means

(a) 2 Groups (b) 3 Groups

is evident. In Figure 2 we report the same information for Pakistan. This data forms

the basis for most of the analysis that will be performed in the following section.

We will also perform some additional follow-up analysis regarding Afghanistan.

To provide context for this, and help the reader in interpreting maps, we provide

additional maps and tables in Appendix A.

Appendix Figure A.1 shows the main Afghan highways. Even without formal

analysis, it is clear that the data confirm two well known qualitative features regarding

insurgent attacks in Afghanistan: they are more likely to occur in Pashtun areas, and

there is a particular concentration on the ring road highway running south from the

capital, Kabul.

Appendix Table A.1 provides a summary of the US Afghan counterinsurgency

timeline produced by the Council of Foreign Relations. Evidence of the deterioration

of the security environment in Afghanistan is reported in Appendix Figure A.2, which

shows the distribution of incidents by district for the 2004-2007 and 2008-2009 periods,

in per capita terms.

4 Results

We will first analyze the attack data from Afghanistan, and then consider the

case of Pakistan. In both cases, we begin with the spherical k-means clustering and

“gap statistic” approach outlined Section 2.3, and then proceed to the non-negative
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Figure 4: Eigenratios, Afghanistan
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matrix factorization approach of Section 2.4. For all these analyses, we will use attack

covariance matrices calculated using only within-month variation, as described in

Section 2.5, unless specifically noted otherwise. This is because it is important to

avoid contamination by long-term trends in the conflict, as well as seasonal variation.

We end this section by further examining the Afghanistan attack data, looking for

changes between the earlier part of the 2004-2009 period and the latter.

4.1 Afghanistan

We begin by analyzing the attack data from Afghanistan. Figure 3 shows clus-

tering based on spherical k-means, as outlined in Section 2.3.43 Qualitatively, the

clusters shown in the figure here appear indistinguishable from random noise. We

test this using the gap statistic presented in Equation 7. Column I of Table 1 shows

the results of this analysis for Afghanistan. We will use this column to provide some

further detailed exposition of this approach.

Under the hypothesis of one organized groups of insurgents, the model is with-

out degrees of freedom (all districts must be associated with that group) and hence

the geographic variation left unexplained in both the actual data and the permuted

43These figures are calculated based on a “within month” covariance matrix, as described in
Section 2.5. Results do not change with other approaches.
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Table 1: Gap Statistic

Afghanistan Pakistan
I II

1 group Randomly shuffled data (mean) 16.765 16.929
Actual data - 16.765 16.929
Gap A 0.000 0.000

2 groups Randomly shuffled data (mean) 16.760 16.921
Actual data - 16.765 16.897
Gap B -0.005 0.024
Gap statistic (B minus A) -0.005 0.024
Randomly shuffled data (std. dev.) 0.006 0.011

3 groups Randomly shuffled data (mean) 16.755 16.912
Actual data - 16.757 16.736
Gap C -0.002 0.176
Gap statistic (C minus B) 0.003 0.152
Randomly shuffled data (std. dev.) 0.008 0.015

4 groups Randomly shuffled data (mean) 16.749 16.903
Actual data - 16.755 16.622
Gap D -0.005 0.281
Gap statistic (D minus C) -0.004 0.105
Randomly shuffled data (std. dev.) 0.011 0.019

5 groups Randomly shuffled data (mean) 16.745 16.894
Actual data - 16.738 16.758
Gap E 0.007 0.136
Gap statistic (E minus D) 0.012 -0.145
Randomly shuffled data (std. dev.) 0.011 0.021

Each column computes the gap statistic as described in Section 2.3, based on a within-
month covariance matrix as described in Section 2.5. Columns differ in the underlying
attack data used:
Column I uses the full Afghanistan WITS dataset.
Column II uses the Pakistan BFRS dataset for May 2008 - October 2011.
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(reference distribution) data is the same (all of it), leaving Gap(0) = 0 in the third

row (marked “A”). Allowing for two groups of insurgents in the data leads to free

parameters (which districts are associated with each group). However, it turns out

that there is actually slightly less geographic variation left unexplained in the ran-

domly permuted data compared to the actual data (16.760 vs. 16.765). This produces

Gap(2) = −0.005 (marked “B”). The gap statistic (B-A) is thus −0.005, which, since

it is negative, is definitely lower than 0.006, the estimated standard deviation for

unexplained geographic variation in the case where districts are randomly assigned

to insurgent groups. Thus, Ĵ = 1 satisfies Inequality 8, and we conclude that there

is only one insurgent group present in Afghanistan. The eigenratio approach of Ahn

and Horenstein [2013] produces an identical result, as illustrated in Figure 4.

The group membership shown in Figure 3 involves a discrete partition of districts

into insurgent groups. Some districts, however, might have many insurgents, while

other districts might have few. Furthermore, there might be districts where more

than one insurgent group is active. The model presented in Section 2.4 allows for

these possibilities. An additional advantage of this model is that it provides a test

against that null hypothesis that J = 0, and all attacks are the result of disorganized

local actors. In contrast, the model used in Section 2.3 assumes that there is exactly

one organized group present in each district, and thus this model cannot be used to

test the hypothesis that there are actually no groups.

We thus move on to the alternate model of Section 2.4. A non-negative factor-

ization of the attack covariance matrix, following Equation 11, turns out to give very

similar results to those just discussed above. In contrast to the previous approach,

multiple insurgent groups may now be active in any single district, and thus it is no

longer possible to easily display the estimated insurgent group structure on a single

map. Instead, we produce one map for each group. Figure 5 provides a visualization

of this factorization in the case where J = 2. Again, there is no discernible pattern

to the estimated insurgent groups.

We are particularly interested, however, in whether we can reject the null hypoth-

esis that J = 0, and there are no organized insurgent groups present at all. We begin

by calculating the ratio described in Equation 15, and choose Ĵ so as to maximize

this ratio. We then consider the distribution that this ratio would have if there were

actually no organized groups. To do this, we use the permutation approach described

in Section 2.4 and Appendix F.
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Figure 5: Afghanistan, 2 groups via NNMF

(a) Group 1 (b) Group 2

Table 2: Estimated number of groups via NNR, Afghanistan

Not by Month By Month
I II III IV V

Afghanistan (WITS, Jan 2004 - Sept 2009, weighted) 4 4 1 1 1
(p value, vs. no group structure) 0.57 0.41 0.01 0.01 0.03

Afghanistan (WITS, Jan 2004 - Sept 2009, unweighted) 1 1 1 1 1
0.02 0.02 0.02 0.03 0.06

Each row presents two estimates of Ĵ , the number of groups present. Columns I and
II show the first estimate, described in Section 2.4. Columns III through V show
the second estimate, based on the within-month covariance matrix as described in
Section 2.5.
In each column, the p values presented are a test of the null hypothesis that there is
no group structure. Other tests (e.g. J = 1 vs. J = 2) appear difficult to construct.
Columns I and III compute p values by comparing to a reference distribution where
the time of the attacks within each district has been permuted. See Appendix F for
a description of this and other reference distributions.
Column IV is the same as Column III, but the time of attacks is permuted only within
each month.
Columns II and V consider only permutations that keep constant the total number
of attacks in each district and on each day.
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Table 2 shows the results of this analysis for the Afghanistan data. There are four

estimates of J provided. Beginning with the first two columns of the first row, Ĵ = 4

in the case where districts are weighted proportional to the number of attacks in the

district. Continuing to the next three columns of the first row, Ĵ = 1 if, in addition

to this weighting, the covariance matrix is calculated considering only within-month

variation in attacks using the approach described in Section 2.5. The second row

provides estimates without weighting districts, and results in Ĵ = 1 regardless of

whether the approach in Section 2.5 is used or not.

Below each Ĵ estimate a p value is shown, corresponding to a test of the null

hypothesis that in fact there is no group structure, with J = 0. We see that in

general the null is rejected at the 95% level. The exception is the case where our

estimate was Ĵ = 4: with this specification, the model appears to have low power.

This analysis supports the results obtained in Table 1, in that there appears to be one

organized group of insurgents, rather than more than one. Furthermore, the observed

NNR1 values, calculated according to Equation 15, appear to be more extreme than

would be the case if there were no organized groups at all. Table 2 shows that the

observed data appears to be inconsistent with J = 0, a conclusion that we were not

above to draw from the gap statistic results shown in Table 1.

4.2 Pakistan

We now consider the Pakistan attack data. We are particularly interested in the

period from mid-2008 until the fall of 2011, as this was a period when the structure

of terrorist groups was relatively stable. We begin by clustering Pakistani districts

into groups for each J ∈ {1, 2, 3, 4, 5}. Our assumption is that a clustering that is

due to random noise will not have any particular structure in terms of covariates Z,

whereas a cluster that represents an actual insurgent group will feature districts that

are more similar in terms of covariates.

Clusterings based on the Pakistan attack data are shown in Figure 6. Unlike the

results for Afghanistan shown in Figure 3, our clusterings for Pakistan, computed on

the basis of the attack covariance matrix, result in groups that appear to be clustered

geographically. For a more formal analysis, we consider the gap statistic results in

Table 1.

Column II of Table 1 reports results for Pakistan for the period of interest. Unlike
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Figure 6: Pakistan groups via spherical k-means

(a) 2 Groups (b) 3 Groups

(c) 4 Groups (d) 5 Groups

the case with Afghanistan in Column I, a comparison of J = 1 with J = 2 shows that a

clustering with two groups based on the attack covariance matrix is substantially more

clustered geographically (with a log within sum of squares of 16.897) than would be

expected by random chance (an average log within sum of squares of 16.921). This

difference (0.024) is large relative to the standard deviation of clustering based on

random noise (0.011), and thus Inequality 8 is not satisfied for J = 1.

We thus continue down the rows of Table 1, and proceed to consider the possibility

of three organized groups of insurgents. Here again, a clustering based on the actual

attack covariance matrix is more geographically clustered than one would expect by

random chance. This produces Gap(3) = 0.176 (marked “C”). The gap statistic (C-

B) is thus 0.152, which is again higher than 0.015, the estimated standard deviation

for log(W3). The same situation arises with four groups (where 0.105 > 0.019). In
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Figure 7: Pakistan, 4 groups via NNMF (left column) and ethnicities (right column)

(a) Group 1 (b) Balochis

(c) Group 2 (d) Sindhis

(e) Group 3 (f) Afghans

(g) Group 4 (h) Panjabis, Jhats, Awans
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Table 3: Ethnic composition of groups shown in Figure 6c

Group 1 Group 2 Group 3 Group 4
Baloch 0.62 0.25 0.00 0.12

(0.09) (0.09) (0.10) (0.10)
Sindhs 0.04 0.87 0.04 0.04

(0.07) (0.07) (0.08) (0.09)
Afghans 0.12 0.08 0.58 0.23

(0.07) (0.07) (0.08) (0.08)
Panjabis, Jhats, Awans 0.16 0.12 0.23 0.49

(0.05) (0.05) (0.06) (0.06)
Other 0.00 0.29 0.57 0.14

(0.13) (0.13) (0.15) (0.16)
N 115 115 115 115

Each column corresponds to a single regression without intercept.
The dependent variable is a dummy variable indicating whether a given district was
clustered into the specified group number in the clustering shown in Figure 6c. Dis-
tricts shown as white in the figure (“no data”) are dropped: the remaining 115
districts are used in the regression.
The independent variables are a set of dummy variables, indicating whether the spec-
ified ethnicity was listed as the first ethnicity at the centroid of a given district.
Each row should sum to 1 because each coefficient in the table is a conditional mean
giving the fraction of districts of the specified ethnicity that were clustered into the
specified group, and the clustering in Figure 6c assigns each district to one group.
Rows may not sum exactly to 1 because of rounding.
Standard errors in parentheses.

contrast, adding a fifth group results in a clustering that is not as geographically

clustered as when there were only four groups. We thus conclude that J = 4 in the

case of Pakistan, at least in the 2008-2011 period. The unified insurgent structure

(J = 1) that we recover for the Afghan case thus appears not to be present in Pakistan.

This accords with the qualitative analysis in Dorronsoro [2009].

We now analyze the Pakistan data using the non-negative matrix factorization

approach of Section 2.4. As with the Afghan data, we obtain a result generally in

line with that obtained using the gap statistic approach just discussed. The left-hand

column of Figure 7 shows a non-negative matrix factorization of the attack covariance

matrix for Pakistan, using four factors. The result here is very close to that shown

in Figure 6c. Furthermore, both of these figures show what appears to be a close
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relationship between the estimated group structure and the arrangement of ethnic

groups in Pakistan. The relevant breakdown of these ethnic groups is shown in the

right-hand column of Figure 7.

A qualitative comparison of the left and right columns of Figure 7 shows that

there is one insurgent group present in Balochistan, another in the area populated by

Sindhs, a third in the area populated by “Afghans” (i.e. Pashtuns), and a fourth in

the Punjabi areas of Pakistan. The northernmost areas of Pakistan, with numerous

smaller ethnicities, appear to be associated most closely with the “Afghans”.44 The

major ethnic divisions of Pakistan can thus be reproduced successfully using only the

covariance matrix of data on insurgent attacks.

Tables 3 and 4 show the relationship between estimated insurgent groups and

ethnic groups in a quantitative fashion. These tables are constructed to show the

distribution of ethnicities across the estimated groups: each row corresponds to an

ethnicity, and each row sums to 100% (plus or minus rounding error). The rows have

been ordered so that the diagonal entries correspond to the qualitative relationship

between groups and ethnicities just discussed; this is the same ordering of rows that

is used in Figure 7.

We now consider an “eigenratio” type analysis of the Pakistan attack data. In

the case of the Afghanistan data, analysis based on the gap statistic approach with

Table 1 resulted in an estimate of Ĵ = 1, but it was then necessary to use the results

shown in Table 2 to show that the null hypothesis of J = 0 could be rejected. In

contrast, with the Pakistan data, Table 1 gives Ĵ = 4. This result would be extreme

under a null hypothesis of J = 0, and thus it is not as important to seek alternate

confirmation that there is indeed a group structure in the data.45 This turns out

to be fortunate, as the “eigenratio” type analysis shown in Table 5 is inconclusive

in the case of the Pakistan data.46 Very few entries are statistically significant at

44Adding a fifth group does not result in these “other” ethnicities being clustered into their own
separate group: see Figure 6d. This may be because these areas consist of many small ethnic groups,
and there is not a sufficient number of attacks for these smaller groups to be estimated correctly.

45In order for Table 1 to lead to an estimate of Ĵ = 4 it must be that for each of two groups,
three groups, and four groups, the improvement in geographic clustering is at least one standard
deviation better than would be expected if there were no group structure. A result of Ĵ = 4 is thus
already very extreme under the null that J = 0.

46We join a number of other researchers in discarding a low Ĵ estimate based on eigenratios in
favour of other evidence: both Henzel and Rengel [2014] and Alquist and Coibion [2014] discard
Ĵ = 1 in favour of two factors, and Bleany et al. [2012] discards Ĵ = 1 or Ĵ = 3 in favour of four or
more factors, while Rezitis [2015] discards Ĵ = 2 in favour of five factors.
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Table 4: Ethnic composition of groups shown in Figure 7

Group 1 Group 2 Group 3 Group 4
Baloch 0.58 0.07 0.12 0.23

(0.05) (0.04) (0.06) (0.06)
Sindhs 0.14 0.35 0.19 0.32

(0.04) (0.03) (0.05) (0.05)
Afghans 0.15 0.07 0.48 0.30

(0.04) (0.03) (0.04) (0.05)
Panjabis, Jhats, Awans 0.22 0.11 0.23 0.44

(0.03) (0.03) (0.03) (0.04)
Other 0.05 0.11 0.61 0.24

(0.07) (0.06) (0.08) (0.09)
N 115 115 115 115

Each column corresponds to a single regression without intercept, concerning group
j ∈ {1, 2, 3, 4}.
The dependent variable is α̂ij/

∑
j′∈{1,2,3,4} α̂ij′ . This is the fraction of organized

insurgents present in a district that are from group j. This data is displayed in
the left column of Figure 7, and it is available for the same 115 districts that were
analyzed in Table 3.
The independent variables are a set of dummy variables, indicating whether the spec-
ified ethnicity was listed as the first ethnicity at the centroid of a given district.
Each row should sum to 1 (up to rounding) by the same argument as in Table 3:
each coefficient in the table is a conditional mean for the ethnicity in question, every
district is coded as one ethnicity, and the group shares must sum to one.
Standard errors in parentheses.

Table 5: Estimated number of groups via NNR, Pakistan

Not by Month By Month
I II III IV V

Pakistan (BFRS, May 2008 - Oct 2011, weighted) 1 1 1 1 1
0.63 0.63 0.16 0.28 0.55

Pakistan (BFRS, May 2008 - Oct 2011, unweighted) 2 2 16 16 16
0.73 0.68 0.00 0.01 0.03

Notes: same as Table 2, except with Pakistan data.
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the 95% level, and those that are appear to be computational artifacts of some sort,

giving very high estimates for Ĵ . We confirm this by rerunning the analysis using the

original eigenratio from Equation 10.47

4.3 Further Analysis: Afghanistan

Based on Tables 1 and 2, we have estimated Ĵ = 1 for Afghanistan. It is thus not

relevant to compute factorizations such as those shown in Figure 7 for Pakistan, be-

cause we believe that there is only group. Instead, we will first consider our estimates

for how this organized insurgent group is distributed across Afghanistan. We will then

extend our analysis by considering potential changes to the prevalence of the members

of this organized insurgent group across time. We will use a number of covariates as

part of this analysis: Table 6 includes summary statistics for total incidents, ethnic

fragmentation, roads, rivers, and settlements by district for Afghanistan.

The approximation in Equation 6 can be used to reveal the latent geographic

distribution of the Taliban and, with this, we can investigate the geographic spread

of the insurgency. Table 7 shows regression results based on this approximation

including a set of ethnic and geographic controls, as well as province fixed effects.

The dependent variable used in these regressions is displayed in Appendix Figure

A.3.48

The coefficient estimates reported in Table 7 should be read as correlates of Taliban

presence in each district. Most of these results are not surprising. Ethnicities other

than Pashtun (the omitted ethnicity) are substantially less likely to be associated

with organized group activity.49 These include the Hazara, a Shia group hostile to

the (Sunni) Taliban, as well as the Tajik and Uzbek communities. These latter groups

47This is theoretically less appealing, because it is associated with eigenvectors that could imply a
negative presence of insurgent groups in certain districts. However, it is numerically less challenging
to compute. Most of these results are statistically insignificant, and are available upon request.

48Appendix Figure A.4 shows the estimated prevalence of the single group of organized insurgents
under the non-negative matrix factorization approach. A disadvantage of the estimation strategies
used in this paper is that they only provide information about the relative prevalence of each
organized group across districts. The units reported in Appendix Figure A.3 thus do not have an
interpretation in levels: 0 corresponds to no attacks being attributable to organized group members,
but the numeric scale of the legend is arbitrary, and it is not possible to interpret the results
in terms of “fraction of attacks due to organized groups” without additional assumptions. The
numbers reported in the legend are the number of attacks per million people the organized group
would have been responsible for if σ2 = 1, but this choice is arbitrary.

49Ethnic variables are based on share of settlements in districts covered by GREG ethnic bound-
aries.

35



Table 6: Summary Statistics

Statistic N Mean St. Dev. Min Max

PASHTUN 396 0.516 0.439 0.000 1.000
UZBEK 396 0.123 0.285 0.000 1.000
BALOCH 396 0.015 0.099 0.000 1.000
HAZARA 396 0.097 0.257 0.000 1.000
TAJIK 396 0.219 0.357 0.000 1.000
PAMIR.TAJIK 396 0.013 0.094 0.000 1.000
ORMURI 396 0.005 0.050 0.000 0.731
NURISTANI 396 0.012 0.084 0.000 0.846
POPULATION 398 58.673 150.129 1.841 2, 882.164
AREA 398 1.948 2.624 0.032 25.128
LIGHT 398 0.051 0.192 0.000 2.000
LATITUDE 398 34.580 1.724 29.889 38.225
LONGITUDE 398 67.796 2.607 61.156 73.349
ROADS 398 1.063 1.212 0 6
RIVERS 398 0.798 1.687 0.000 13.598

The first eight variables indicate the shares of ethnicities in each district. PASHTUN also includes
Pashai, Tirahi, Afghan Arabs, and Persians. UZBEK also includes Turkmens and Kirghis.
BALOCH also includes Brahui. HAZARA includes Mongols, in addition to Hazaraberberi and
Hazaradehizainat. TAJIK also includes Jamshidis, Taimanis, Firozkohis, Teymurs. ORMURI
includes Parachi. There are two districts for which ethnic information is not available.

POPULATION is in thousands of people. AREA is in thousands of square km. LIGHT is a index
of nightime light emissions. LATITUDE and LONGITUDE are in degrees. ROADS is the number
of major roads in the district. RIVERS is the total length of rivers in the district.
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have historically found themselves in conflict with the Taliban, and were participants

in the Northern Alliance.

With respect to other characteristics of districts, there is more group activity in

districts with more roads, particularly the ring road artery connecting Kabul with

other provincial capitals. As in Figure 1a, which shows raw total attacks, Appendix

Figure A.3a shows graphically that organized attacks are concentrated in Pashtun-

majority areas, and also near the main highway passing through Kabul and other

cities.50 A feature that is apparent in Appendix Figure A.3a, however, that does

not show up clearly in the raw attack data of Figure 1a is that there appears to be

a substantial organized insurgency operating near the highway north of Kabul, as

well as the highway running south from it. This area is not as heavily populated by

Pashtuns, and perhaps because of this, the number of total attacks is not as high.

The attack covariance matrix, however, reveals that the attacks that did occur appear

to exhibit substantial coordination.

4.3.1 Changes in group structure across time

The econometric model outlined so far assumes that the extent and prevalence of

the organized insurgent group remains constant across time. This section considers

how we can relax this strong assumption and, in the process, reveal novel information

on the organization and strategy of the insurgents.

A formal model that allows for this structure to change over time appears chal-

lenging to develop. An informal analysis of potential changes can be conducted,

however, by appropriately splitting the data. Specifically, we create an “early” data

set, including only attacks in 2004-2007, and a “late” data set, including only attacks

in 2008-2009.51 The total daily number of attacks is substantially higher in the later

period compared to the earlier one.52 Estimates of the prevalence of organized insur-

50Estimates based on non-negative matrix factorization, shown in Appendix Figure A.4a, appear
to make it slightly clearer that the majority of organized insurgent activity is on the ring highway
passing through Kabul, and that this activity extends to the north as well as the south of Kabul,
possibly with the goal of isolating it. Estimates of the prevalence of the organized group can be
produced using the method in Section 2.5. As the estimates in this case are effectively based only on
variation within months, estimates appear slightly noisier. These estimates are shown in Appendix
Figure A.4b. The tendency towards organized insurgent activity along the main highway can still
be seen, although it is no longer as clear.

51The informal nature of this analysis is due to the fact that the cut point of January 1, 2008, was
chosen based on qualitative information: the econometric model is not one of structural breaks.

52The distribution of these attacks is shown in Appendix Figure A.2. The unified Taliban orga-
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Table 7: Dep. variable is sum of off-diagonal entries of cov. matrix for district i

I II III IV V VI VII VIII
(Intercept) 2.57∗ 1.86∗ 0.18 −2.28∗ 3.83∗ 3.93∗ 1.87∗ −0.36

(0.19) (0.75) (0.62) (0.96) (0.12) (0.54) (0.38) (0.83)
UZBEK −0.56 −0.20 −1.06∗ −0.08 −1.17∗ −0.98 −1.57∗ −0.98

(0.38) (0.73) (0.39) (0.71) (0.36) (0.55) (0.41) (0.69)
BALOCH −1.78 −2.65 −1.93 −1.55 −2.24∗ −2.80∗ −2.19∗ −1.57

(1.49) (1.42) (1.47) (1.34) (0.93) (1.03) (1.07) (1.09)
HAZARA −1.46∗ −2.27∗ −2.14∗ −2.44∗ −0.75 −0.71 −1.17 −0.74

(0.38) (0.54) (0.40) (0.73) (0.61) (0.61) (0.66) (0.65)
TAJIK −0.89∗ −0.19 −1.33∗ −0.35 −0.44 −0.26 −0.81∗ −0.26

(0.38) (0.78) (0.37) (0.62) (0.29) (0.81) (0.28) (0.47)
PAMIR.TAJIK 0.97∗ 3.77∗ 1.95∗ 4.49∗ −0.35∗ 3.66∗ 0.20 4.28∗

(0.22) (0.81) (0.44) (0.74) (0.13) (0.88) (0.32) (0.61)
ORMURI 1.64 −0.28 1.05 −1.64∗ 0.61 −0.18 0.24 −1.55∗

(0.87) (0.44) (0.62) (0.69) (0.75) (0.28) (0.54) (0.70)
NURISTANI −1.45 0.51 −0.94 0.91 −3.02∗ −0.76∗ −1.85 −0.43

(1.21) (0.32) (1.37) (2.05) (1.31) (0.19) (1.13) (1.06)
logPOP 0.52∗ 0.73∗ 0.43∗ 0.59∗

(0.17) (0.19) (0.09) (0.13)
logAREA 0.38∗ 0.18 0.28∗ 0.19

(0.13) (0.16) (0.08) (0.12)
logROADS 0.55∗ 0.59∗ 0.43∗ 0.60∗

(0.23) (0.26) (0.17) (0.17)
logRIVERS −0.22∗ −0.13 −0.03 −0.01

(0.09) (0.13) (0.07) (0.09)
PROV Y Y Y Y

N 262 262 262 262 262 262 262 262
R2 0.06 0.24 0.18 0.35
adj. R2 0.04 0.10 0.15 0.22
Resid. sd 1.93 1.86 1.82 1.74
Columns I - IV use OLS with dependent variable log transformed

Columns V - VIII use GLM/Poisson allowing for overdispersion

Robust standard errors in parentheses
∗ indicates significance at p < 0.05
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gents from the earlier data can be compared to estimates from the later data, yielding

a description of how the structure and location of insurgent groups has changed over

time.

Appendix Figure A.3b shows an estimate of the number of attacks due to organized

insurgent groups in the earlier period, while Appendix Figure A.3c shows this for the

later period. Comparing the two figures shows how much gain in territorial control and

coordination have been characteristic of the Taliban offensive since 2008.53 Appendix

Figure A.3b shows a lower frequency of attacks overall, and most districts that do

see a high frequency of attacks are near the main highway to the south and west of

Kabul. Appendix Figure A.3c shows a higher frequency of attacks, and also shows

districts in the north with high frequencies of attacks. One example of this is the

highway north of Kabul, where now a number of districts with high frequencies of

attacks appears.

A statistical analysis of changes in the distribution of attacks does reveal some

patterns that are statistically significant and of relevance for current efforts in the

management of the conflict. Appendix Table A.3 investigates the correlates of insur-

gent group control in each district in the early and late periods by stacking the set

of districts and employing interactions with POST dummy for the 2008-09 period.

Control by the insurgents is measured through the sum of off-diagonal entries of the

covariance matrix of attacks for district i according to the approximation in Equation

6.

As in Table 7, the results in Appendix Table A.3 show a clear relationship between

ethnicity and simultaneous attacks. Appendix Table A.3 reports coefficients for seven

ethnic group dummy variables (indicating the largest ethnic group in the district),

with Pashtun as the omitted dummy variable.54 The coefficient in the POST inter-

nization is detectable in both the early and the complete samples, with one group of insurgents.
The coordinated and unified behavior of the Taliban is not a feature developing over time, rather
it is present from the onset. This shows that our results are not due purely to the August 2009
presidential election, when there were many attacks on and around election day. While there is
substantial evidence that many of these attacks were in fact coordinated by the Taliban, it would
be worrisome if the results presented thus far changed drastically when the attacks around the 2009
elections were excluded. These results are available on request.

53The colors of the figures are aligned so that the same color indicates the same number of attacks
per capita per year, although the “early” and “late” data have a different number of months.

54For interpreting the table, recall that the Afghan Taliban are traditionally ethnically Pashtun
and follow Sunni Islam. Their historical opposition to Uzbeks, Hazara, and Tajiks – the main ethnic
minorities in Afghanistan – is well documented. It is therefore not surprising that our measure
of Taliban activity in Afghan districts is negatively correlated with dummy variables indicating
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action with the ethnicity variables is generally positive and of magnitude between

25 and 70 percent of the main effect: districts with non-Pashtun ethnicities exhibit

relatively greater activity in the later period, indicating a substantial penetration of

the Taliban into areas previously outside their reach.55

4.3.2 An Oil-Spot Strategy

Krepinevich [2005] discusses a state of the art counterinsurgency doctrine where

control is expanded gradually across space. This is sometimes referred to an “oil

spot” strategy, as the area controlled expands contiguously like an oil stain.56 Our

methodology allows us to ask a reverse question, regarding the strategy of insurgents:

over time, how do attacks expand across space? Do the Taliban appear in completely

new and disconnected areas, or do they launch attacks in districts that are adjacent

to those that they were operating in previously? We conclude that the Taliban follow

an “oil spot” insurgency strategy based on gradual expansion.

We begin by calculating, for each district, the estimated number of attacks by

organized groups in adjacent districts, following Equation 6. The results of this

calculation are shown in Appendix Figure A.5: the districts where this variable is

zero are shown in blue.57 All but one of these blue districts are also not estimated to

have any organized attacks in the later period, as can be seen by comparing Appendix

Figure A.3c with Appendix Figure A.5. In particular, there were no attacks in the

central part of Afghanistan in the early period, or much of the northeast, and these

areas similarly do not have any attacks in the later period. On the other hand,

districts immediately adjacent to estimated early Taliban strongholds appear prone

to insurgent expansion.

non-Pashtun ethnicity.
55Consider for instance the case of the Uzbeks in Column II: the main effect is a statistically

significant −2.11, indicating a much lower penetration of the Taliban in Uzbek areas in 2004-2007.
In the 2008-09 period Uzbek districts are still less likely to experience Taliban activity, but now
the coefficient falls by more than half, to −0.76 (= −2.11 + 1.35). The distinction between Uzbek
and Pashtun districts is thus decreased in the later period. In Column IV, where we exploit within-
province variation, the distinction between Uzbek and Pashtun districts disappears completely or
even reverses (0.3 = −1.05+1.35). Although less statistically precise, Tajik and Hazara areas appear
to display a similar pattern.

56This strategy appears to date back to the 19th century, as part of French colonial doctrine.
Potiron de Boisfleury [2010] provides a detailed historical account.

57As in previous figures showing estimates of organized group activity, the units for “number of
attacks” shown in the legend here are arbitrary, and thus only relative comparisons can be made.
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Appendix Table A.6 shows that this qualitative pattern is statistically significant.

The basic specification used here is

ATTACKS LATEi = β0 + β1ATTACKS EARLYi

+β21(ATTACKS EARLY ADJACENTi = 0) + ϵi

where ATTACKS LATE is the number of attacks estimated to be due to organized

insurgents in the later period, and ATTACKS EARLY this number for the earlier

period. ATTACKS EARLY ADJACENT is the average number of attacks in geo-

graphically adjacent districts. This last variable is used only as indicator variable:

are there an estimated positive number of attacks attributed to organized groups in

adjacent districts?58 Columns I-III of Appendix Table A.6 show that districts where

there was no insurgent group activity in the early period are less likely to experience

insurgent group activity in the later period, and that this result is robust to a variety

of controls, including province fixed effects.59

5 Insurgency Organization & Economic Recovery

This section briefly discusses case studies chosen to highlight the economic impor-

tance of understanding insurgent organization in conflict and post-conflict environ-

ments. We focus on three different episodes: Iraq, Syria, and Libya.

58The dummy recoding is used because there is a long-standing problem in the analysis of spatial
data regarding how to use this type of “adjacent observations” data, and there does not appear to
be a satisfactory solution in this case.

59Based on the definition of organized group attacks in Section 2, there should never be a negative
number of attacks attributed to organized group members. Columns IV-VI of Appendix Table A.6
thus present the same analysis using a Poisson GLM model, in order to take this non-negativity
into account. The estimated number of attacks attributed to organized group members are non-
integer, but this does not cause a problem for generalized linear models of the sort used. An
additional advantage of the Poisson model is that districts with few attacks are (correctly) treated
as having higher variance relative to mean (weighted least squares could also be used here, but the
Poisson model is natural as the underlying attack data is positive integers). The results in Columns
IV-VI confirm that there is very little organized insurgent activity in the late period in districts
that did not border a district with such activity in the early period. The large coefficient on the
ATTACKS EARLY ADJACENT indicator variable is due to the fact that the data exhibits “almost”
complete separation: if there were zero districts rather than one that saw organized insurgent activity
in the late period without any adjacent activity in the early period, the estimated coefficient here
would be negative infinity, and it would not be possible to calculate standard errors by standard
methods.
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Insurgent groups owe their success to their deep ties with noncombatant popula-

tions. By impeding reconstruction efforts, they can fuel popular dissatisfaction with

central authorities, thereby maintaining a steady flow of recruits and ensuring logis-

tic assistance for their agents. Insurgencies thus have a particular incentive to delay

aggregate economic recovery.

In Iraq, insurgents disrupted the electricity grid and seized control of oil resources.

Henderson [2005] describes the loop that linked insecurity and economic stagnation:

Inability to provide security had a profound impact on Iraq’s economic

recovery. In turn, inability to provide recovery had a profound impact on

Iraq’s security. Reconstruction delays fed into Iraqi feelings of resentment

and despair, which fueled insurgency and crime, thereby worsening the

security climate.

The connection of the study of insurgency with economic development comes from

this tight link between insurgent strategies and the failure of reconstruction efforts.

Understanding the exact nature of the Iraqi insurgency early on in the conflict could

have proven crucial in breaking the vicious cycle that Henderson [2005] observes.60

Uncertainty about the organization of the insurgency in post-2003 Iraq took sev-

eral forms. First, there was disagreement regarding the extent to which attacks

represented an insurgency at all.61 There was also confusion regarding its magnitude:

as late as the fall of 2004, the U.S. military still attributed 80 percent of attacks to

random and not to political violence. Finally, there was heated debate about the or-

ganization of the insurgency, once it was clear that one existed.62 Further complexity

in the Iraqi case stemmed from signs of evolution over time, as the New York Times

60Henderson is critical of the strategy actually used: “as violence worsened, the response of coali-
tion officials in charge of reconstruction was not to find a way to fight it more effectively. Instead,
their response was to withdraw into the heavily protected world of the Green Zone.”

61Eisenstadt and White [2005] write that “In the summer of 2003, Secretary of Defense Don-
ald Rumsfeld and General John Abizaid (head of U.S. Central Command) publicly disagreed about
whether the violence in the Sunni Triangle was the final act of former regime “dead-enders” or an
incipient insurgency against the emerging political order”. There was a similar disagreement in 2005
between Vice President Richard Cheney and General Abizaid.

62The New York Times quotes senior U.S. intelligence sources stating that “It’s not just one group
of insurgents rallying under one cause. It’s multiple groups with different causes loosely tied together
by the threads of anti-U.S. sentiment, some sort of Iraqi nationalism, Muslim-Arab unity or greed”.
The lack of familiarity with this type of enemy appeared evident:“What makes it more difficult is
that you’re dealing with an insurgency without a single face”.
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reported: “the insurgency was now organized regionally, and that evidence pointed to

some planning across regional boundaries”.63

The difficulty, and the importance, of understanding the structure of insurgencies

is not limited to Iraq. Consider recent Western efforts in Syria: “Sixteen months into

the uprising in Syria, the United States is struggling to develop a clear understanding

of opposition forces inside the country, according to U.S. officials who said that in-

telligence gaps have impeded efforts to support the ouster of Syrian President Bashar

al-Assad.”64

Beginning with a series of pro-democracy protests in 2011, the situation in Syria

quickly escalated into a full-blown civil war that has cost 250, 000 lives and displaced

almost 11 million Syrian citizens to the beginning of 2016. In the backdrop of a

ethnically and religiously divided population, this conflict quickly displayed a high

degree of complexity in the heterogeneity of parties involved [Smith, 2012], including

the Syrian state army loyal to Bashar al-Assad, Sunni Syrian rebels, the Islamic

State, Jabhat al-Nusra, Kurdish forces, and Hezbollah. Lack of understanding of

the structure of the insurgency in Syria has been one of the strongest deterrents to

military and humanitarian involvement of Western powers in this conflict [Jenkins,

2014] and slowed down relief efforts.

Western countries were willing to lend support and provide prompt international

aid to moderate Sunni organizations, but the difficulty laid in identifying these rebels

and their true organizational linkages. The impossibility of separating the secular

moderates from the religious extremists among the Sunni opponents of the Alawite-

led government resulted in international paralysis. This led to further economic and

social deterioration, radicalization, and escalation of the conflict. Syria is now a

nearly failed state, fought over by Assad loyalists, the Islamic State, and the al-

Qaeda affiliated Nusra front. Numerous attempts at a political solution by the Arab

League and the United Nations have failed.

Another relevant case is Libya post-Colonel Gaddafi. This event would require

in itself a fully accurate discussion, but as above for Iraq and Syria, we try to pro-

vide a basic picture from the perspective of the analysis of multi-group conflicts.

After 2011 and the violent overthrowing of the Gaddafi regime, Libya gradually de-

63http://www.nytimes.com/2004/10/22/international/middleeast/22insurgents.html?pagewanted=2& r=0
64http://www.washingtonpost.com/world/national-security/in-syria-conflict-us-struggles-to-fill-

intelligence-gaps/2012/07/23/gJQAW8DG5W story.html
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scended into full-blown factional violence with Islamic State factions jockeying for

control of oil rich areas together with two main armed groups: the Tobruk govern-

ment (elected democratically but in a deeply unstable political environment) and

the Muslim Brotherhood-supported General National Congress. To further compli-

cate the picture, other ethnic-based groups, like the Touareg, have also laid claim to

certain parts of the former Libyan state. Repeated failures to achieve stable Unity

governments and substantial ambiguity in the set of alliances struck among the vari-

ous groups have severely hindered the pacification response led by the United Nations

in the region. While the United Nations and the European Union have been holding

off decisive intervention, the east/west divide in the country has been increasingly

exacerbating.

6 Conclusions

This paper focuses on the empirical analysis of insurgency, with applications to

Afghanistan and Pakistan. Often the only type of data available concerning the level

and geographical diffusion of insurgent activity comes from incident-level data on

insurgent attacks. However limited such information might be, recent advances in

the analysis of the economics of conflict and reconstruction in war zones have been

possible thanks to this data.65

This paper shows how incident-level data contains information that can be em-

ployed to estimate the structure and geographic span of influence of insurgent groups.

We present a set of methods to detect unobserved insurgent coalition structures, based

on co-occurrences of violent incidents across districts over time. If incidents in two

districts occur simultaneously more than would be expected by random chance, then

this suggests that these districts share an organized insurgent movement, one capa-

ble of cross-district coordination. We then carry out an analysis of the spread and

frequency of attacks.

Progress in understanding insurgency is key in furthering our knowledge of the

determinants and consequences of political violence in developing countries. Although

much of the analysis in this paper is necessarily context-dependent, it is informative

nonetheless for regional stabilization and local development goals [Drozdova, 2012].

From a methodological perspective, our contributions have a more general appeal.

65Berman, Shapiro, and Felter [2011] is one recent example.
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Appendix Figure A.1: Afghan Ring Road

(via Wall Street Journal)
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Appendix Figure A.2: Afghanistan attacks by time period

(a) Attacks per capita 2004-2007

(b) Attacks per capita 2008-2009
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Appendix Figure A.3: Organized group members (Equation 6 approximation)

(a) full dataset (2004-2009)

(b) 2004-2007 period only (c) 2008-2009 period only
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Appendix Figure A.4: Organized group members: NNMF

(a) “Not by month”

(b) “By month” covariance matrix (Section 2.5)
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Appendix Figure A.5: (Estimated) attacks by organized group members (2004-2007,
average over adjacent districts)
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Appendix Table A.1: Afghanistan timeline 2001-2011

18-Sep-01 President George W. Bush signs into law a joint resolution authorizing the use of force against those
responsible for attacking the United States on 9/11.

7-Oct-01 The U.S. military, with British support, begins a bombing campaign against Taliban
Nov-01 The Taliban regime unravels rapidly after its loss at Mazar-e-Sharif on November 9th
Dec-01 Osama bin Laden escapes from Tora Bora

5-Dec-01 Hamid Karzai is installed as interim administration head after the Bonn Agreement
9-Dec-01 The Taliban surrender Kandahar, their regime collapses.

17-Apr-02 U.S. Congress appropriates over $38 billion in humanitarian and reconstruction assistance to
Afghanistan from 2001 to 2009.

1-May-03 U.S. Secretary of Defense Donald Rumsfeld declares an end to ”major combat.”
8-Aug-03 NATO assumes control of international security forces (ISAF) in Afghanistan

Jan-04 Afghan Constitution is approved.
9-Oct-04 Hamid Karzai is popularly elected as president.
29-Oct-04 Osama bin Laden releases a videotaped message three weeks after the country’s presidential election.
18-Sep-05 Legislative elections in Afghanistan for the Wolesi Jirga (Council of People) and the Meshrano Jirga

(Council of Elders)
Jul-06 Violence increases across the country, including suicide attacks.
Nov-06 U.S. Secretary of Defense Robert Gates criticizes NATO countries in late 2007 for not sending more

soldiers.
22-Aug-08 Afghan civilian casualties mount. Gen. Stanley A. McChrystal orders an overhaul of U.S. air strike

procedures.
17-Feb-09 New U.S. president Barack Obama announces plans to send seventeen thousand more troops to

Afghanistan. Reinforcements focus on countering a ”resurgent” Taliban and stemming the flow of
foreign fighters over the Afghan-Pakistan border in the south.

27-Mar-09 New American strategy focused on disrupting Taliban safe havens in Pakistan
11-May-09 Secretary of Defense Robert Gates replaces the top U.S. commander in Afghanistan, Gen. David

D. McKiernan, with counterinsurgency and special operations guru Gen. Stanley A. McChrystal.
Jul-09 U.S. Marines launch a major offensive in southern Afghanistan (Helmand Province), representing

a major test for the U.S. military’s new counterinsurgency strategy.
Nov-09 Hamid Karzai is popularly re-elected as president.

1-Dec-09 President Obama announces a major escalation of the U.S. mission, an Afghan surge.
23-Jun-10 Gen. Stanley McChrystal is relieved of his post as commander of U.S. forces in Afghanistan
1-May-11 Osama bin Laden killed in Pakistan

Jun-11 President Obama outlines a plan to withdraw troops according to NATO plans of complete with-
drawn by 2014

7-Oct-11 10 years of counterinsurgency war. 1,800 U.S. troop casualties and $444 billion in spending
Source: Council on Foreign Relations
http://www.cfr.org/afghanistan/us-war-afghanistan/p20018

58



Appendix Table A.2: Dependent variable is total attacks for district i

I II III IV V VI VII VIII
(Intercept) 2.58∗ 1.96∗ 0.23 −1.97∗ 3.37∗ 3.98∗ 1.02∗ −0.97

(0.11) (0.82) (0.32) (0.71) (0.14) (0.61) (0.34) (0.77)
UZBEK −1.65∗ −1.36∗ −2.04∗ −1.30∗ −2.17∗ −1.74∗ −2.70∗ −2.15∗

(0.24) (0.47) (0.22) (0.44) (0.29) (0.51) (0.33) (0.50)
BALOCH −2.02∗ −3.03∗ −1.59∗ −1.50∗ −2.38∗ −3.29∗ −1.93∗ −1.71∗

(0.54) (0.43) (0.49) (0.48) (0.44) (0.38) (0.42) (0.41)
HAZARA −1.71∗ −1.72∗ −2.21∗ −1.73∗ −1.72∗ −1.31∗ −2.12∗ −1.18∗

(0.26) (0.38) (0.28) (0.33) (0.43) (0.53) (0.43) (0.51)
TAJIK −1.12∗ −0.52 −1.58∗ −0.66 −0.82∗ −0.05 −1.22∗ −0.41

(0.24) (0.55) (0.21) (0.38) (0.40) (0.91) (0.38) (0.49)
PAMIR.TAJIK 0.16 2.01∗ 0.72∗ 2.36∗ −0.64∗ 2.45∗ 0.02 2.80∗

(0.13) (0.57) (0.28) (0.45) (0.14) (0.93) (0.33) (0.60)
ORMURI 0.85 0.61 0.10 −0.82 −0.00 0.36 −0.59∗ −1.04∗

(0.51) (0.54) (0.24) (0.50) (0.28) (0.37) (0.20) (0.36)
NURISTANI −1.27∗ −1.85∗ −0.34 −1.29 −2.45∗ −2.82∗ −0.92 −2.89

(0.50) (0.38) (0.60) (1.08) (0.56) (0.40) (0.52) (1.57)
logPOP 0.60∗ 0.69∗ 0.49∗ 0.63∗

(0.08) (0.10) (0.08) (0.11)
logAREA 0.19∗ −0.04 0.24∗ 0.10

(0.07) (0.09) (0.07) (0.08)
logROADS 0.37∗ 0.57∗ 0.59∗ 0.77∗

(0.16) (0.15) (0.15) (0.14)
logRIVERS −0.03 0.03 −0.03 −0.01

(0.06) (0.07) (0.08) (0.07)
PROV Y Y Y Y
N 262 262 262 262 262 262 262 262
Columns I - IV use OLS with dependent variable log transformed

Columns V - VIII use GLM/Poisson allowing for overdispersion

Robust standard errors in parentheses
∗ indicates significance at p < 0.05
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Appendix Table A.3: Dep. var. is sum of off-diag. entries of cov. mat. for district i

I II III IV V VI VII VIII
(Intercept) −1.08∗ −0.96∗ −1.23∗ −3.23∗ 0.63 0.75∗ 0.61 −1.69

(0.40) (0.40) (0.50) (0.71) (0.36) (0.35) (0.38) (0.87)
POST 0.31∗ 0.09 0.62 0.62 0.58∗ 0.40∗ 0.67 0.76

(0.15) (0.20) (0.79) (0.73) (0.15) (0.17) (0.62) (0.63)
UZBEK −1.44∗ −2.11∗ −2.11∗ −1.05∗ −1.54∗ −3.28∗ −3.34∗ −2.44∗

(0.27) (0.31) (0.30) (0.50) (0.40) (0.65) (0.67) (0.76)
BALOCH −1.02 −1.54∗ −1.05 −0.93 −1.90∗ −2.45∗ −2.23∗ −1.56∗

(0.89) (0.63) (0.60) (0.71) (0.84) (0.68) (0.68) (0.77)
HAZARA −1.82∗ −1.98∗ −1.92∗ −1.73∗ −1.05 −2.20∗ −2.18∗ −1.85∗

(0.32) (0.36) (0.38) (0.49) (0.60) (0.44) (0.45) (0.50)
TAJIK −1.39∗ −1.62∗ −1.68∗ −0.66 −0.84∗ −1.00∗ −1.03∗ −0.57

(0.23) (0.30) (0.29) (0.47) (0.25) (0.38) (0.38) (0.48)
PAMIR.TAJIK 1.92∗ 2.03∗ 1.88∗ 3.60∗ 0.34 0.64∗ 0.60 4.43∗

(0.35) (0.31) (0.38) (0.63) (0.40) (0.29) (0.35) (0.93)
ORMURI −0.12 0.82∗ 0.60 −1.66∗ 0.17 −0.26 −0.36 −2.37∗

(1.24) (0.32) (0.36) (0.75) (0.57) (0.20) (0.19) (0.82)
NURISTANI −0.53 0.11 0.47 1.49 −2.35 −1.11 −0.77 0.51

(0.76) (1.00) (0.95) (1.22) (1.23) (0.97) (0.91) (0.82)
logPOP 0.60∗ 0.60∗ 0.70∗ 0.85∗ 0.44∗ 0.44∗ 0.45∗ 0.64∗

(0.11) (0.11) (0.13) (0.14) (0.09) (0.08) (0.09) (0.14)
logAREA 0.25∗ 0.25∗ 0.14 0.03 0.26∗ 0.26∗ 0.24∗ 0.16

(0.08) (0.08) (0.09) (0.12) (0.07) (0.07) (0.08) (0.12)
logROADS 0.44∗ 0.44∗ 0.46∗ 0.55∗ 0.39∗ 0.39∗ 0.58∗ 0.71∗

(0.16) (0.16) (0.20) (0.21) (0.15) (0.16) (0.20) (0.23)
logRIVERS −0.08 −0.08 0.01 0.10 −0.03 −0.03 0.00 0.02

(0.07) (0.07) (0.08) (0.09) (0.07) (0.06) (0.08) (0.10)
POST:UZBEK 1.35∗ 1.35∗ 1.35∗ 2.22∗ 2.29∗ 2.09∗

(0.51) (0.52) (0.52) (0.77) (0.80) (0.65)
POST:BALOCH 1.04 0.06 0.06 0.80 0.43 0.34

(1.48) (1.48) (1.45) (1.23) (1.27) (1.30)
POST:HAZARA 0.32 0.19 0.19 1.53 1.50 1.55∗

(0.60) (0.65) (0.53) (0.80) (0.85) (0.70)
POST:TAJIK 0.46 0.57 0.57 0.26 0.31 0.36

(0.45) (0.46) (0.41) (0.51) (0.50) (0.46)
POST:PAMIR.TAJIK −0.21 0.09 0.09 −0.59∗ −0.53 −0.55

(0.23) (0.60) (0.50) (0.18) (0.54) (0.52)
POST:ORMURI −1.88 −1.43 −1.43 0.64 0.81 0.99

(1.97) (1.95) (1.52) (0.86) (0.91) (0.77)
POST:NURISTANI −1.28 −2.01 −2.01 −3.11 −3.74 −2.86

(1.60) (1.65) (1.48) (2.68) (2.81) (1.99)
POST:logPOP −0.20 −0.20 −0.02 −0.05

(0.21) (0.20) (0.15) (0.15)
POST:logAREA 0.23 0.23 0.03 0.04

(0.15) (0.14) (0.13) (0.14)
POST:logROADS −0.03 −0.03 −0.29 −0.26

(0.33) (0.29) (0.30) (0.29)
POST:logRIVERS −0.18 −0.18 −0.04 −0.04

(0.13) (0.12) (0.12) (0.12)
N 524 524 524 524 524 524 524 524
Columns I - IV use OLS with dependent variable log transformed. Column IV has province fixed effects.

Columns V - VIII use GLM/Poisson allowing for overdispersion. Column VIII has province fixed effects.
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Appendix Table A.4: Dependent variable is off diagonal covariance matrix entry i i′

I II III IV

POST 0.234∗ 0.905∗ 0.909∗ 0.491
(0.032) (0.173) (0.173) (0.467)

UZBEK −2.431∗ −2.433∗ −1.472∗ −1.703∗

(0.229) (0.229) (0.334) (0.352)
BALOCH −0.936 −0.713 −0.421 −0.756

(0.773) (0.775) (0.701) (0.718)
HAZARA −2.490∗ −2.476∗ −2.310∗ −1.741∗

(0.269) (0.269) (0.325) (0.331)
TAJIK −1.454∗ −1.525∗ −0.538∗ −0.604∗

(0.166) (0.167) (0.238) (0.244)
PAMIR.TAJIK 1.254 1.237 3.627∗ 2.548∗

(0.832) (0.834) (0.909) (0.932)
ORMURI −0.182 −0.278 −1.866∗ −1.058

(0.739) (0.739) (0.746) (0.754)
NURISTANI −0.104 0.114 −0.404 −1.065

(0.719) (0.719) (0.970) (0.992)
logPOP 0.479∗ 0.530∗ 0.638∗ 0.633∗

(0.081) (0.082) (0.080) (0.082)
logAREA 0.194∗ 0.167∗ −0.004 0.019

(0.052) (0.053) (0.064) (0.066)
logROADS 0.368∗ 0.428∗ 0.540∗ 0.518∗

(0.111) (0.113) (0.106) (0.107)
logRIVERS −0.079 −0.047 0.018 0.072

(0.049) (0.051) (0.056) (0.057)
POST:UZBEK 1.364∗ 1.364∗ 1.365∗ 1.637∗

(0.122) (0.123) (0.123) (0.190)
POST:BALOCH −0.180 −0.529 −0.530 0.027

(0.475) (0.479) (0.479) (0.501)
POST:HAZARA 1.020∗ 0.992∗ 0.994∗ 0.252

(0.117) (0.117) (0.118) (0.167)
POST:TAJIK 0.382∗ 0.483∗ 0.485∗ 0.561∗

(0.057) (0.060) (0.060) (0.098)
POST:PAMIR.TAJIK −0.487 −0.471 −0.470 1.606∗

(0.256) (0.265) (0.265) (0.761)
POST:ORMURI 0.500∗ 0.650∗ 0.651∗ −0.533∗

(0.197) (0.199) (0.199) (0.250)
POST:NURISTANI 0.076 −0.265 −0.266 0.858∗

(0.302) (0.305) (0.305) (0.433)
POST:logPOP −0.081∗ −0.082∗ −0.071∗

(0.022) (0.022) (0.032)
POST:logAREA 0.042∗ 0.042∗ 0.001

(0.018) (0.018) (0.027)
POST:logROADS −0.095∗ −0.095∗ −0.053

(0.037) (0.037) (0.042)
POST:logRIVERS −0.047∗ −0.047∗ −0.120∗

(0.018) (0.018) (0.025)
Constant −6.889∗ −7.303∗ −11.288∗ −11.044∗

(0.590) (0.601) (1.055) (1.085)
N 68,382 68,382 68,382 68,382
GLMM/Poisson allowing for overdispersion, with random effects at district level

Overdispersion modelled via random effects at observation level. Column IV has province fixed effects.
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Appendix Table A.5: Dependent variable is total attacks in district i

I II III IV V VI VII VIII
(Intercept) 0.67∗ 0.26 −0.09 −1.82∗ 1.02∗ 0.45 0.31 −1.77∗

(0.28) (0.22) (0.28) (0.44) (0.34) (0.28) (0.37) (0.66)
UZBEK −1.74∗ −1.85∗ −1.85∗ −1.24∗ −2.70∗ −3.27∗ −3.23∗ −2.64∗

(0.18) (0.16) (0.17) (0.29) (0.33) (0.43) (0.44) (0.45)
BALOCH −1.25∗ −1.07 −0.88 −0.83 −1.93∗ −1.50∗ −1.36 −1.08

(0.34) (0.60) (0.57) (0.59) (0.42) (0.72) (0.73) (0.72)
HAZARA −1.84∗ −1.58∗ −1.58∗ −1.13∗ −2.12∗ −2.15∗ −2.11∗ −1.18∗

(0.23) (0.23) (0.23) (0.23) (0.43) (0.39) (0.40) (0.37)
TAJIK −1.34∗ −1.42∗ −1.45∗ −0.70∗ −1.22∗ −1.40∗ −1.40∗ −0.61

(0.18) (0.19) (0.19) (0.26) (0.38) (0.44) (0.45) (0.39)
PAMIR.TAJIK 0.54∗ 0.69∗ 0.75∗ 1.84∗ 0.02 0.17 0.21 3.04∗

(0.24) (0.18) (0.25) (0.39) (0.33) (0.27) (0.37) (0.60)
ORMURI 0.05 −0.19 −0.29 −1.04∗ −0.59∗ −1.00∗ −1.01∗ −1.47∗

(0.22) (0.20) (0.23) (0.35) (0.20) (0.20) (0.23) (0.30)
NURISTANI −0.31 −0.62 −0.45 −1.38∗ −0.92 −1.27 −1.14 −3.16∗

(0.46) (0.50) (0.52) (0.66) (0.52) (0.67) (0.68) (1.21)
logPOP 0.52∗ 0.47∗ 0.59∗ 0.67∗ 0.49∗ 0.49∗ 0.53∗ 0.68∗

(0.07) (0.06) (0.07) (0.07) (0.08) (0.06) (0.09) (0.11)
logAREA 0.16∗ 0.15∗ 0.12∗ −0.04 0.24∗ 0.24∗ 0.22∗ 0.08

(0.06) (0.04) (0.06) (0.07) (0.07) (0.05) (0.08) (0.09)
logROADS 0.36∗ 0.36∗ 0.27∗ 0.42∗ 0.59∗ 0.59∗ 0.58∗ 0.76∗

(0.13) (0.09) (0.13) (0.11) (0.15) (0.12) (0.17) (0.15)
logRIVERS −0.02 −0.02 0.01 0.07 −0.03 −0.03 −0.02 −0.00

(0.05) (0.04) (0.06) (0.06) (0.08) (0.06) (0.09) (0.06)
POST −0.12 0.60 0.60 −0.25 0.08 0.21

(0.13) (0.41) (0.40) (0.16) (0.49) (0.41)
POST:UZBEK 0.57∗ 0.56∗ 0.56∗ 1.05∗ 0.99 0.90∗

(0.22) (0.24) (0.23) (0.52) (0.53) (0.34)
POST:BALOCH −0.35 −0.74 −0.74 −1.39 −1.69 −1.87

(0.83) (0.80) (0.82) (1.39) (1.39) (1.50)
POST:HAZARA −0.12 −0.13 −0.13 0.08 −0.01 0.01

(0.29) (0.31) (0.23) (0.64) (0.64) (0.58)
POST:TAJIK 0.40 0.46 0.46∗ 0.39 0.37 0.40

(0.26) (0.26) (0.22) (0.56) (0.56) (0.32)
POST:PAMIR.TAJIK −0.47∗ −0.59 −0.59∗ −0.41∗ −0.51 −0.57

(0.13) (0.34) (0.29) (0.16) (0.49) (0.34)
POST:ORMURI 0.53∗ 0.74∗ 0.74∗ 0.79∗ 0.83∗ 0.84∗

(0.24) (0.32) (0.23) (0.25) (0.30) (0.19)
POST:NURISTANI 0.69 0.35 0.35 0.72 0.42 0.51

(0.58) (0.62) (0.59) (0.77) (0.85) (1.09)
POST:logPOP −0.24∗ −0.24∗ −0.09 −0.11

(0.11) (0.11) (0.12) (0.10)
POST:logAREA 0.05 0.05 0.05 0.05

(0.08) (0.07) (0.10) (0.09)
POST:logROADS 0.17 0.17 0.01 0.01

(0.18) (0.15) (0.23) (0.19)
POST:logRIVERS −0.06 −0.06 −0.02 −0.01

(0.07) (0.06) (0.12) (0.07)
N 262 524 524 524 262 524 524 524
Columns I - IV use OLS with dependent variable log transformed. Column IV has province fixed effects.

Columns V - VIII use GLM/Poisson allowing for overdispersion. Column VIII has province fixed effects.

Robust standard errors in parentheses
∗ indicates significance at p < 0.05
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Appendix Table A.6: Estimated Organized Attacks, 2008-2009

I II III IV V VI
(Intercept) −1.31∗ −1.23 −11.78 0.48∗ −4.11 −8.59

(0.09) (2.71) (12.30) (0.14) (4.98) (21.03)
I(ATTACKS EARLY ADJACENT == 0) −0.95∗ −0.69∗ −0.49∗ −4.71∗ −4.39∗ −3.67∗

(0.10) (0.12) (0.18) (1.02) (1.04) (1.11)
ATTACKS EARLY 0.78∗ 0.68∗ 0.69∗ 0.34∗ 0.28∗ 0.34∗

(0.11) (0.11) (0.11) (0.07) (0.08) (0.13)
logPOP 0.27∗ 0.24 0.54∗ 0.61∗

(0.10) (0.13) (0.17) (0.23)
logAREA 0.08 0.06 0.22 0.10

(0.07) (0.10) (0.14) (0.17)
LIGHTS −0.71∗ −0.63∗ −1.94 −1.04

(0.27) (0.29) (1.18) (1.30)
LATITUDE −0.17∗ 0.01 −0.18 −0.27

(0.05) (0.17) (0.09) (0.41)
LONGITUDE 0.05 0.10 0.08 0.14

(0.03) (0.17) (0.05) (0.29)
Provice FE N N Y N N Y
N 398 398 398 398 398 398
R2 0.36 0.39 0.46
adj. R2 0.35 0.38 0.40
Resid. sd 1.41 1.38 1.36

Columns I-III use OLS with log(ATTACKS+0.1) as dependent variable

Columns IV-VI use Poisson regression with ATTACKS as dependent variable

ATTACKS EARLY is (estimated) number of organized attacks in 2004 - 2007.

ATTACKS EARLY ADJACENT is (est.) # of organized attacks per capita in adj. districts in 2004-2007.

Robust standard errors in parentheses
∗ indicates significance at p < 0.05
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Appendix Table A.7: Estimated Organized Attacks, ’08-’09 (no attacks in ’04-’07)

I II III IV V VI
(Intercept) −1.93∗ 2.60 20.39 −0.93∗ 14.67 106.11∗

(0.07) (2.38) (12.69) (0.43) (7.82) (42.20)
I(ATTACKS EARLY ADJACENT == 0) −0.34∗ −0.15 −0.13 −3.29∗ −2.61∗ −1.78

(0.08) (0.08) (0.12) (1.10) (1.15) (1.26)
logPOP 0.10 0.02 0.62 0.02

(0.08) (0.09) (0.38) (0.52)
logAREA 0.01 0.02 −0.32 0.44

(0.05) (0.06) (0.40) (0.58)
LIGHTS −0.29∗ −0.12 −7.43 −1.52

(0.13) (0.15) (7.62) (3.00)
LATITUDE −0.10∗ −0.10 −0.46∗ −1.50

(0.04) (0.09) (0.19) (0.82)
LONGITUDE −0.03 −0.28 −0.10 −0.81

(0.03) (0.17) (0.11) (0.51)
Provice FE N N Y N N Y
N 235 235 235 235 235 235
R2 0.03 0.09 0.50
adj. R2 0.02 0.06 0.40
Resid. sd 0.87 0.85 0.69

Sample is districts with zero (estimated) number of organized attacks in 2004-2007.

Columns I-III use OLS with log(ATTACKS+0.1) as dependent variable

Columns IV-VI use Poisson regression with ATTACKS as dependent variable

ATTACKS EARLY is (estimated) number of organized attacks in 2004 - 2007.

ATTACKS EARLY ADJACENT is (est.) # of organized attacks per capita in adj. districts in 2004-2007.

Robust standard errors in parentheses
∗ indicates significance at p < 0.05
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B Recoverability of Low-Rank Matrix

We are interested in the conditions under which the Γ̂L resulting from (3) will be

a consistent estimator for ΓL. It is clear that there are some matrices ΓL for which

the proposed method will be inconsistent:

Example 1. Suppose that there are three districts, and two groups. Group member-

ships are α·1 = (1, 0, δ) and α·2 = (0, 1, δ), and thus

ΓL =


1 0 δ

0 1 δ

δ δ 2δ2


for some small value δ. Suppose that there are disorganized insurgents such that

ΓD = I3. The minimum trace heuristic of (3), will then give an estimate

Γ̂L =


δ 0 δ

0 δ δ

δ δ 2δ


which has lower trace than the true ΓL so long as δ is small.

It is thus important to provide conditions for the matrix ΓL such that the proposed

method gives a consistent estimator. Saunderson et al. [2012] give such a character-

ization. First, Saunderson et al. [2012] define a subspace U as realizable if, for any

ΓL having column space U , and any ΓD, the minimum trace factorization algorithm

of (3) applied to Γ = ΓD + ΓL returns Γ̂L = ΓL. Next, they define the “coherence”

µ(U) of a subspace U of Rn as

(16) µ(U) = max
i∈{1,2,...n}

||PUei||

where ei are the standard basis vectors, and PU is the orthogonal projection matrix

onto U . They then provide the following sufficient condition:

Theorem 2 (Saunderson et al. 2012). If U is a subspace of Rn and µ(U) < 1/2, then

U is realizable.
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From an intuitive perspective, this restriction on coherence is equivalent to nothing

in the column space of ΓL being too close to the standard basis vectors. In the context

of estimating insurgent groups, the standard basis vectors represent groups that are

only present in one district. It makes sense that groups of this sort will result in

the procedure in (3) being inconsistent: a group that is only present in one district

is indistinguishable from disorganized insurgents, as they both only appear in the

diagonal entries of the covariance matrix.

Saunderson et al. [2012] also provide a further result, regarding the “realizability

of random subspaces”. They argue that “most” subspaces of dimension less than

n/2 are realizable. The intuition here appears to be that a random subspace of

low dimension is unlikely to include anything close to a standard basis vector. In

general, then, if the number of groups is small relative to the number of districts,

the heuristic given in (3) will provide a consistent estimator for the group structure.

Cases where the estimator will not be consistent are those where one of the groups is

overwhelmingly located in a single district.

C Spectral Clustering Estimator

Spectral clustering is based on the “graph Laplacian” matrix

(17) L = D − ΓL

where D is a diagonal matrix with entries equal to the row sums of ΓL. The graph

Laplacian thus has off-diagonal entries equal to the negative of those of the adjacency

matrix, and diagonal entries such that all rows and columns sum to zero. The graph

Laplacian L has a rank ofN−J , and thus has J zero eigenvalues.66 Spectral clustering

focusses on the number of zero eigenvalues for the associated graph Laplacian matrix

66The number of zero eigenvalues of the graph Laplacian matrix corresponds to the number of
connected components of the weighted undirected graph described by the adjacency matrix ΓL. This
is J , the number of blocks of ΓL.
The intuition for this result is relatively straightforward. Each Γj

L block has rank one. The
corresponding block of the diagonal matrix D has full rank. Setting the entries in this diagonal
matrix so that rows and columns of the graph Laplacian L sum to zero ensures that the rows (and
columns) of L corresponding to each Γj

L block are linearly dependent. The Γj
L block that was

subtracted, however, is only rank one, and thus the null space of the resulting block of L must be
rank one. This is true for every block in L, and thus the null space of L has dimension J . This will
also be the number of zero eigenvalues of L.
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L, whereas the method used in the main text produces an estimate Ĵ of the number

of insurgent groups by examining (in a very broad sense) the rank of ΓL.

If ΓL were known, the number of organized groups could be calculated immedi-

ately, and it would equal both the rank of ΓL and the number of zero eigenvalues of

L. However, the data available gives the sample covariances γ̄ii′ rather than the true

γii′ , and thus a noisy Γ̂L must be used instead of the true ΓL. The simplest option

for actually implementing a spectral clustering approach is to use a modification of

Shi and Malik [2000]: use Γ̄ to construct L̄, and then count the “zero” eigenvalues of

L̄.

In a finite sample, however, these eigenvalues calculated from L̄ are subject to

finite sample variation. In particular, random variation will result in positive γ̄ii′

entries in some cases where the true γii′ is zero, and negative γ̄ii′ entries in some cases

where the true γii′ is positive. This random variation will tend to increase the rank of

the L̄ relative to L. This problem is particularly severe for districts i for which there

are few attacks: the data provides little information on the group structure in these

districts, and if one object of interest is J , the total number of groups, the inclusion

of these particularly noisy districts could result in a substantial amount of additional

noise in the estimate Ĵ .

A similar problem affects the approach presented in the main text, which is based

on using the the largest eigenvalues (or other components) of Γ̂L. Finite sample

variation will also affect these eigenvalues. The question thus arises whether it is

better to use Γ̂L directly, or instead use the corresponding graph Laplacian matrix

L. Direct use of Γ̂L requires confidence that the trace minimization algorithm in (3)

will work well in finite samples, while use of L avoids this issue because the diagonal

entries in question are subtracted away and thus are irrelevant. On the other hand,

using L requires labelling some eigenvalues as “zero” eigenvalues, despite the fact that

due to random noise all eigenvalues will probably be non-zero.67 A particular concern

here is that the eigenvalues in question are the smallest out of N eigenvalues. Monte

Carlo exercises (available upon request) suggest that the approach based on using

Γ̂L directly has better finite sample performance. We thus use this approach in our

analysis, as described in the main text. Below, we briefly discuss how the alternative

67Eigenvalues that would be zero asymptotically will not be zero in a finite sample, because some
of the entries that are zero in ΓL will be positive in the calculated Γ̂L. When using a covariance
matrix that includes this finite sample variation, it is thus necessary to account for the fact that
eigenvalues that are zero in the population may not be zero in the sample.
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approach (based on the smallest eigenvalues of the graph Laplacian) might be applied.

A heuristic method is available based on “eigengaps” similar to those used by

Ng, Jordan, and Weiss [2002]. Sort the eigenvalues λ of L in increasing order, such

that λ1 is the smallest and λN the largest.68 The difference λk+1 − λk is defined the

kth eigengap. Ng, Jordan, and Weiss [2002] argue that a large eigengap indicates

that perturbation of the eigenvectors of L would not change the clusters produced

by spectral clustering. Luxburg [2007] thus suggests that the right choice for Ĵ is

a number such that λk is “small” for k ≤ Ĵ , and the Ĵth eigengap is large.69 The

intuition here is that if there truly are Ĵ eigenvalues that are zero, then these appear

to be non-zero in the finite sample only due to random variation. In contrast, the

Ĵ +1th and larger eigenvalues would be strictly positive even if the true L were used.

An examination of the Ĵth eigengap thus provides a heuristic test of whether the

choice of Ĵ was reliable, or whether small changes due to random variation might

result in a different number of zero eigenvalues.

Using this approach, the estimated Ĵ corresponds to an eigenvalue such that λk

is “small” for all k ≤ Ĵ . The presence of high eigengaps for very high values of k is

not relevant for the eigengap procedure, so long as Jmax is lower than these values.

Luxburg [2007] suggests that the cutoff between “small” and “large” should not be

larger than the minimum degree in the graph. This is trivially met by Ĵ = 1, but

would be violated by any much larger estimate. Although the “eigengap” approach is

intended to be heuristic rather than formal, it is possible to compare the first eigengap

to simulated data where there is no group structure. Compared to data where the

attacks in each district have been reassigned to a random date, the first eigengap

in the actual Afghanistan attack data is larger, and this difference is statistically

significant at the 95% level.

More formal tests could also be constructed. Each off-diagonal γ̄ii′ entry will

converges to γii′ as the number of time periods grows, and the Γ̄L matrix will converge

to ΓL. Thus, L̄ will converge to L. Asymptotically, the correct number of the sample

68A first step to dealing with the problem of finite sample is to exclude districts with very few
attacks from estimation: for the analysis of the Afghan data, we used data only for those districts in
which there were 3 or more attacks (other cutoffs yielded similar results). This approach does not
fully solve the underlying issue, however. For simplicity the notation here assumes that no districts
are excluded on this basis and thus there are still N districts, and N eigenvalues.

69The underlying difficulty here is determining what exactly constitutes a “zero” eigenvalue, when
there is finite sample variation. The presence of a large eigengap would thus provide some confir-
mation that an appropriate definition of “zero” has been chosen.
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eigenvalues of L̄ will approach zero. Thus, from a theoretical perspective, a test

statistic similar to that given in Yao, Zheng, and Bai [2015] could be used to determine

the number of zero eigenvalues. This test statistic appears to have originated from

Anderson [1963], and a simplified version appears to be appropriate in this case: the

eigenvalues that are converging to zero are doing so at a
√
T rate, and thus for the

K smallest eigenvalues, the test statistic
√
T
∑K

k=1 λk or T
∑K

k=1 λ
2
k could be used.70

Unfortunately, the asymptotic distribution of these test statistics is not clear,

and it is also not obvious that a subsampling bootstrap approach would yield the

correct distribution either. Simulations suggest that there are certain cases where the

correct number of groups will only be obtained with high probability when a very

large number of time periods are observed. Specifically, consider the case where αij is

positive but very close to zero for some i and j. That is, there are members of group j

in district i, but there are very few of them. In this case γii′ will be very close to zero

for all the other i′ that contain members of group j. It is thus difficult to distinguish

between i containing its own separate group, and i being a part of group j. This

suggests that a formal test following this approach might be difficult to implement.

D NNMF Consistency

Conditions under which Γ̂L will converge to ΓL have been discussed in Appendix

B. We now consider conditions under which a non-negative matrix factorization of

ΓL will recover the {αij} group structure. It is clear that the index numbering of

the groups cannot be recovered, because ΓL is invariant to relabelling of groups. The

index numbering of groups is irrelevant throughout our analysis, however, and thus

we are only concerned with whether the group structure can be recovered up to a

reindexing.

The question of recoverability can be broken down into two parts. First, is the

non-negative factorization of ΓL unique? Second, what is required for the approach

for estimating the number of groups, Ĵ to be consistent? We consider these questions

in turn.

Huang, Sidiropoulos, and Swami [2014] discuss uniqueness of symmetric non-

negative factorizations at some length. They conclude that while there are no obvious

70The asymptotic argument is made with a fixed number of districts, N , and a growing number
of time periods, T .
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necessary conditions to check for uniqueness, simulations reveal that multiplicity of

solutions does not appear to be a problem unless the correct factorization is extremely

dense: factorizations with 80% non-zero entries are still reconstructed successfully.

The ΓL matrices considered in this paper would generally be expected to have a

relatively sparse factorization.

We now consider the approach for generating an estimate Ĵ for the number of

groups. Suppose that the true number of groups is J . If clustering is performed with

J+1 groups, the arrangement of these groups will be based on finite sample variation

in the attack covariance matrix. In expectation, Gap(J) ≥ Gap(J + 1), but in any

given finite sample this may not be true. The method of estimating Ĵ given in the

main text, then, is not consistent as written, because regardless of the sample size, it

will sometimes be the case that Gap(J) < Gap(J + 1), and changes to the “rule of

thumb” sJ+1 cannot rectify the situation.

In general, the “gap statistic” literature focuses on clustering the sample actually

available, and does not emphasize consistency of the proposed estimators. In the

case considered in this paper, consistency would require two modifications to basic

model presented. First, N would have to grow at some slow but non-zero rate:

the easiest way of handling this would be via infill asymptotics, where the country

in question were divided into progressively smaller districts. Second, the clustering

method employed should be hierarchical. This is because if number of groups is below

the true value of J , multiple groups will be clustered together. The way this occurs

will be determined by finite sample variation. It could be that at J/2, geographically

close groups are placed together, while at J/2 + 1, geographically distant groups are

placed together. Using a hierarchical clustering method would prevent this possibility.

We do not use such a method because implementation would be computationally more

challenging, and the problem just discussed does not appear to occur in the data we

use.71

71There are of course many other potential approaches. For example, at large sample sizes, one
could progressively revert to the “standard” Tibshirani, Walther, and Hastie [2001] setup, where the
gap statistic is calculated with respect to the same ΓL distance matrix that is used to perform the
clustering. In this case, For values k < J , Wk will converge to a positive value, so long as αik′ > 0
for at least two districts i and k′ > k. The main difficulty would then be selecting a threshold such
that asymptotically k = J will be selected instead of k = J + 1 or K < J . Convergence of WJ and
WJ+1 would be at the standard

√
T rate, and thus any threshold that also shrinks at this rate will

lead to an inconsistent estimator: this includes any the rule of thumb “one standard error” rule from
Tibshirani, Walther and Hastie [2001], as the errors in the random model with no group structure
will also shrink at

√
T rate. The solution would be to use a threshold that shrinks to zero, but at
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E Eigenratio type estimators: simulations

To better understand the finite sample properties of eigenratio type estimators,

we conduct a series of simulations. For simplicity, we do not use a model with

discrete attacks, as presented in Section 2, but instead use a more standard model

with normally distributed random variables. Let there be J = 4 groups, N = 100

districts, and T = 2000 days. Let there be exactly one group in each district, with

αi1 ∼ Uniform(0, 1) i.i.d. for i ∈ {1, ..., 25}, and no other group present in those

districts. In the same fashion, only Group 2 is present in districts 26-50, only Group

3 in districts 51-75, and only Group 4 in 76-100.

Our simplified model of attacks is that in each period t for each group j, an i.i.d.

draw ϵtj ∼ N(0, σ2) is made. The number of attacks is then given by

(18) xit =
∑
j

αijϵtj + uit

where uit ∼ N(0, 1), i.i.d.

We then consider eigenvalues associated with the (N by N) covariance matrix of

attacks. We perform 100000 simulations for each of σ2 = 1, σ2 = 0.1, σ2 = 0.05, and

σ2 = 0, generating a total of 400000 simulated sample covariance matrices.72

Figures E.1 - E.3 graphically display the results of these simulations. Figure E.1

shows the eigenvalues of the covariance matrix. We see that the group structure is

immediately apparent at σ2 = 1, still clear at σ2 = 0.1, but somewhat unclear at

σ2 = 0.05. There is no group structure with σ2 = 0, and thus Figure E.1d shows the

distribution of eigenvalues under J = 0.

Figure E.2 shows eigenratios, with the leftmost eigenratio being the ratio between

the largest (i.e. leftmost) and second-largest eigenvalues, and so forth. Here, on

average the largest eigenratio clearly corresponds to J = 4 when σ2 is large, but this

is no longer the case with σ2 = 0.05. Figure E.2d shows that the distribution of

eigenvalues when J = 0 leads to a somewhat peculiar distribution of eigenratios: the

a rate slower than
√
T . The probability of an incorrect selection of k = J + 1 or higher number

of groups would then decrease to zero asymptotically, and the probability of k < J being selected
would similarly decrease.

72Note that in the main text, the choice of σ2 = 1 is a normalization, because the {αij} are
unknown, and a decrease in the choice of σ2 would simply result in higher α̂ estimates. In contrast,
in the simulations in this appendix, the distribution of the {αij} are given, and thus choosing a
different value σ2 changes the signal to noise ratio for the attack covariance matrix.
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first few and last few eigenratios are much larger than the others. Figure E.2d thus

illustrates why it is important to have some maximum number number of possible

groups, Jmax. The eigenratios associated with the very smallest eigenvalues (towards

the right hand side of Figure E.1d) become quite large. With N = 100, and no Jmax,

choosing Ĵ based on the largest of all the eigenratios would lead to many Ĵ estimates

of 99 groups. However, as noted in Ahn and Horenstein [2013], any intermediate

choice of Jmax is unlikely to affect the results.

Figure E.3 shows the distribution of estimates Ĵ with Jmax = 50. Figures E.3a and

E.3b show that the eigenratio approach works very well when the signal to noise ratio

in the covariance matrix is relatively high. Figure E.3c, however, shows that with a

noisier covariance matrix, the estimated values for Ĵ tend to be too low. Figure E.3d

shows the distribution of estimates of Ĵ when there is no group structure.

In both of Figures E.3c and E.3d, Ĵ = 1 is the modal estimate. Figure E.3d

shows that the median estimated Ĵ is below the true value J = 4 (the mean is above,

but this is less apparent from the figure). However, Figure E.3d shows the case with

no group structure at all, and thus would not change regardless of the true value of

J . The bias of the estimator thus cannot be signed: this is a natural result of J

and Ĵ both being integers bounded between 0 and 50. Bias correction appears to be

non-trivial.

Figure E.3c provides a possible explanation for why estimates of Ĵ = 1 appear

so frequently in Table 5. The finite sample properties of eigenratio type estimators

are such that there is a tendency to estimate low values of Ĵ in cases where the

covariance matrix is noisy. This is due to the distribution of eigenvalues resulting

from the noise, as shown in Figure E.1d. The evidence provided in Table 5 should

thus mainly be taken as an indication that the null hypothesis of no group structure

should be rejected. Figure E.3c shows how estimates Ĵ = 1 occur frequently when

there is actually a group structure with J > 1.73

73In the empirical literature, “low” estimates for the number of factors (compared to other meth-
ods) are obtained by Choi et al. [2014] and Wu et al. [2011]. Figures E.3b and E.3c appear in line
with results reported (using actual data) in the supplement to Baurle [2013].
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Appendix Figure E.1: Eigenvalues
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Points indicate means over 100000 simulations. Bars show interquartile range.
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Appendix Figure E.2: Eigenratios
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Points indicate means over 100000 simulations. Bars show interquartile range.
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Appendix Figure E.3: Estimated number of groups (Ĵ)
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Histograms of estimated number of groups, over 100000 simulations. True value
J = 4 shown in red.
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F Reference Distributions

We consider three different “reference distributions”. First, suppose that the

structural model presented in Section 2.1 is correct. In this case, the distribution

of the number of attacks by disorganized militants in district i is the same for all

periods, with expected value ηℓi. Thus, under the null hypothesis that there is no

group structure, the observed attack data is weakly exchangeable: within a given

district, permuting the time indices does not change the joint distribution of the

attacks.74 The total number of such permutations is huge, and thus rather than

perform calculations using the entire set we consider only a random subset of these

permutations. By construction, the permuted data exhibits no group structure: all

the off-diagonal entries of the sample covariance matrix will be zero asymptotically.

To construct the desired reference distribution, we treat each of these permutations

as if it were the observed data.

Now, suppose instead that the structural model assumed is not exactly correct,

and there is some cross-time variation in the expected number of attacks by disor-

ganized militants within a district. Specifically, suppose that the probability that

a disorganized militant launches an attack is not a constant η, but rather varies

across months. The expected number of attacks on a given day in month m is then

ηimℓi, and will differ by month. In this case, the observed attack data is still weakly

exchangeable, but only within a given district and a given month. We can thus

still construct a reference distribution, provided that observations are permuted only

within each month for each district. In this case, the covariance matrices may not

have all off-diagonal entries zero asymptotically: it could be that ηim and ηi′m are

positively correlated, for example.

Finally, suppose that the expected number of attacks by disorganized militants

varies at the daily level, rather than the monthly level. The general case, with ηitℓi

attacks expected in district i at time t, is so general that it does not appear to allow

for any permutations. However, suppose that the number of expected attacks is

instead ηtℓi, where ηt now does not differ across districts.75 This might be the case,

74The intuition here can be provided by an example. Suppose there are three periods. If there is
no group structure, then the probability of observing {x1, x2, x3} in a given district must be equal to
the probability of observing {x1, x3, x2}, because the number of attacks is i.i.d. across time within
a given district.

75This gives the disorganized militants the same structure an additional organized group. The test
against the null hypothesis in this case is thus related to whether there is an organized group present
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for example, if there were particular days that, for whatever reason, generated large

amounts of random violence. In this case, observations are “approximately” weakly

exchangeable via the following sort of permutation, inspired by Good [2002]. Find

a pair of districts i and i′, and a pair of times t and t′, such that the following two

conditions hold: there were the same number of attacks x in district i at time t and

in district i′ at time t′, and there were the same number of attacks x′ in district i at

time t′ and in district i′ at time t. Permute the data by swapping x and x′ in these

four entries.76 These permutations are attractive from an intuitive perspective, as

they retain not only the same number of total attacks in each district, but also the

same number of total attacks on each day. In the Afghan data, there are relatively

few attacks on any given day and thus an enormous number of possible permutations

of this sort. A random sample of these permutations is used.

G Estimation using monthly covariance matrices

Suppose that attack probabilities are relatively small. Then the number of at-

tacks by unorganized militants can be approximated using a Poisson(ζimηℓi) dis-

tribution instead of using the actual Binomial(ζimη, ℓi) distribution. Similarly, the

distribution of attacks by members of an organized group can be approximated with

Poisson(ζimϵtjαij) in place of Binomial(ζimϵtj, αij).

Now, suppose that there are a total of xim attacks in district i. Conditional on

there being a total of xim attacks, the distribution of these attacks across days is given

by a Multinomial(xim, pi) distribution, where pi is a probability vector with elements

that is active in some districts but not others. Under the null hypothesis, the off-diagonal entries of
the sample covariance matrix should be directly proportional to the total number of attacks in the
districts in question.

76To see why this weak exchangeability holds “approximately”, note that the distribution of
attacks is binomial. Approximate the binomial with a Poisson distribution with expectation ηtℓi.
Then for observations of the type just described

Pr(x|ηtℓi)Pr(x′|ηt′ℓi)Pr(x′|ηtℓi′)Pr(x|ηt′ℓi′) =
(ηtℓi)

x

x!
e−ηtℓi

(ηt′ℓi)
x′

x′!
e−ηt′ℓi

(ηtℓi′)
x′

x′!
e−ηtℓi′

(ηt′ℓi′)
x

x!
e−ηt′ℓi′

= Pr(x′|ηtℓi)Pr(x|ηt′ℓi)Pr(x|ηtℓi′)Pr(x′|ηt′ℓi′)

by rearranging terms. The canonical reference for multivariate permutations appears to be Pesarin
[2001], although this specific type of permutation is not described. Good [2005] provides an accessible
introduction to permutation tests.
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of the form

pit =
ηℓi +

∑
j ϵtjαij∑

t′ (ηℓi +
∑

j ϵt′jαij)

If in some other district i′ there were xi′m attacks, then the covariance of daily attacks

has the useful form

Cov(xim·, xi′m·) = ximxi′m

∑
t

pitpi′t −
xim

T
· xi′m

T

= ximxi′m(
∑
t

pitpi′t −
1

T
· 1
T
)

Cov(xim·, xi′m·)

ximxi′m
= SCov(pit, pi′t)

where SCov(pit, pi′t) gives the sample covariance for a given draw of ϵ. The first

line of the above holds because each attack decision is independent given both the

total number of attacks and the realization of ϵ. If the ϵ are constructed such that∑
t′ ϵt′j = 1, then the denominator in the expression above for pit will simplify such

that

SCov(pit, pi′t) =

∑
j αijαi′jσ

2
j

(Tηℓi +
∑

j αij)(Tηℓi′ +
∑

j αi′j)

The Tηℓi +
∑

j αij term can be taken to be the “average” number of attacks, which

implies that α̃ij =
αij

Tηℓi+
∑

j αij
is the fraction of attacks in district i that group j will

be responsible for. Then

Cov(pit, pi′t) =
∑
j

α̃ijα̃i′jσ
2
j

Here α̃ and σ2 are not separately identified. If the normalization σ2
j = 1 is used, then

the estimated α̃ describe relative degrees to which groups are more or less responsible

for attacks, across districts.
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