
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 
 

1 
 

 

Modeling the Opportunity Costs of Reducing Legal Deforestation 

and the Implications for Forest Policy in Mato Grosso, Brazil 

 

 

Ruohong Cai 
Economist 

Environmental Defense Fund 
rcai@edf.org 

 
Ruben Lubowski 

Chief Natural Resource Economist 
Environmental Defense Fund 

rlubowski@edf.org 
 

Tiago Reis 
Environmental policy researcher 

IPAM - Instituto de Pesquisa Ambiental da Amazônia 
tiago.reis@ipam.org.br 

 
Marcelo Stabile 

Researcher  
IPAM - Instituto de Pesquisa Ambiental da Amazônia  

marcelo.stabile@ipam.org.br 
 

Andrea Azevedo 
Associate Director and Senior Researcher 

IPAM - Instituto de Pesquisa Ambiental da Amazônia 
andrea@ipam.org.br 

 

 

 

Selected Paper prepared for presentation at the 2016 Agricultural & Applied Economics Association Annual 

Meeting, Boston, Massachusetts, July 31-August 2 

 

Copyright 2016 by [Ruohong Cai, Ruben Lubowski, Tiago Reis, Marcelo Stabile, and Andrea Azevedo]. All rights 
reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, 
provided that this copyright notice appears on all such copies.

mailto:rcai@edf.org
mailto:rlubowski@edf.orf
mailto:tiago.reis@ipam.org.br
mailto:marcelo.stabile@ipam.org.br
mailto:andrea@ipam.org.br


 
 

2 
 

Modeling the Opportunity Costs of Reducing Legal Deforestation and the Implications for 

Forest Policy in Mato Grosso, Brazil 

 

ABSTRACT: In recent decades, global society has paid growing attention to tropical 

deforestation as it contributes significantly to global warming. One promising way of addressing 

the issue is to create economic incentives to protect forests. In this study, we estimate the 

opportunity costs of reducing legal deforestation in Mato Grosso of Brazil, based on an 

econometric model using fine resolution spatial data and administrative data on properties 

registered in the rural land registry. We find that, inside the properties that have rights to legally 

clear forest area, most projected demand for deforestation will fit within the legal limitations, 

making it essential to establish additional positive economic incentives for forest protection. 

Also in these properties, for the period of 2014-2030, total incentives of about US$ 279 million 

could reduce 77% of projected legal deforestation, from 278,257 ha to 64,287 ha. Certain 

incentives could come from the properties with forest restoration requirements under Brazil’s 

forest code, since we found that our modeled incentives can only cover about 7% of the forest 

restoration requirement in those properties through passive land abandonment. As a result, active 

reforestation or purchasing the Environmental Reserve Quota from properties with legal 

deforestation allowance may become attractive alternatives. 

 

Key words: Tropical deforestation, Forest policy, Opportunity cost, Brazil 
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1. Introduction 

Tropical deforestation contributes about 15% of annual global carbon emissions. Since Brazil 

has a third of the world’s rainforests, it plays a pivotal role in the global effort of reducing 

deforestation. In general, agriculture is a major cause of deforestation. For example, rapid 

expansion of cattle pasture is the biggest driver of deforestation in Brazil, and beef demand is 

expected to rise due to inexorable growth in food demand, bringing bigger threats to forest in the 

future.  

In recent decades, global society has paid growing attention to tropical deforestation. 

Article 5 of the Paris Agreement under the UN Framework Convention on Climate Change 

affirms the critical role of reducing tropical deforestation and forest degradation in climate 

mitigation. Domestically, in 1965, Brazil established the Forest Code (FC) which requires 

landowners to maintain certain portion of their property as forest, also called “Legal Reserve” 

(LR). In the revised FC approved in 2012, properties that had reduced their LR below the 

required levels before July 2008 are allowed to come into compliance either by restoring their 

forests to cover their LR deficit or by compensating for their deficit by purchasing 

Environmental Reserve Quotas (cotas de reserve ambiental; CRA) from properties with an LR 

surplus. The Brazilian federal and state governments are currently considering regulations for 

implementing the CRA market, which could potentially compensate for more than half of the LR 

debt (Soares-Filho et al. 2013), while creating incentives for reducing legal deforestation in 

properties with LR surplus. Significant policy design challenges include monitoring and 

enforcement as well as ensuring that properties selling CRAs are under threat of deforestation so 

as to ensure a net reduction in legal deforestation (May et al. 2015).  
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This study uses an econometric approach to estimate the incentives needed to achieve 

Mato Grosso’s targets for reducing deforestation, focusing on the deforestation that is legally 

allowed by the FC and which thus cannot be reduced through law enforcement alone. Mato 

Grosso is the largest agricultural state in the Brazilian Amazon and accounted for about a third of 

deforestation in Amazon during the period of 1988-2014. In the last decade, the Brazilian 

Amazon has been able to reduce its deforestation by about 70% (Nepstad et al. 2014). During the 

period of 2006-2010, deforestation in Mato Grosso “decreased to 30% of its historical average 

(1996-2005)” (Macedo et al. 2011). However, it is important to maintain this trend. In Paris, the 

state of Mato Grosso announced its intention to develop its agricultural economy while ensuring 

no further loss of native forests through a strategy based on three pillars (Produce, Conserve and 

Include). This study contributes to the literature in conducting an economic analysis based on the 

empirical estimation of historical data, better capturing the spatial heterogeneity of opportunity 

costs and deforestation, and, potentially, modeling of necessary incentives to reduce legal 

deforestation. Stickler et al. (2013) estimated the economics costs of compliance with the FC for 

both opportunity costs of protecting forests and restoring forest cover in Mato Grosso. Our 

econometric approach extends parts of their study in several ways by using unique fine scale 

spatial data from remote sensing, combined with administrative information on land use at the 

property level. To the best of our knowledge, this is the first econometric study to exploit this 

level of spatial and temporal richness for deforestation determinants for this region. 
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2. Methodology 

2.1. Empirical model 

We use a “revealed preference” approach to estimate the opportunity cost of reducing 

deforestation from agricultural land use. The “revealed preference” approach examines historical 

evidence on actual land-use decisions to study how landowners have responded in reality to 

variations in the net economic benefits of converting land from forests to non-forest uses (e.g., 

Lubowski, Plantinga, and Stavins, 2006; Busch et al. 2012). In particular, we estimate an 

econometric model to obtain the historical relation between deforestation and the estimated net 

returns from using the land for agriculture, specified as follows: 

 

 

 

where itDef  is the number of one hectare (100×100 meter) pixels  deforested annually between 

2003 and 2013 within an aggregated 900×900 meter (0.81 km2) grid cell in the state of Mato 

Grosso. itPRICE  is our principle independent variable, representing the spatially-interpolated 

estimate of the potential agricultural land price for grid-cell i at year t. Land price is used in our 

study to approximate the potential economic return with agricultural activities, which are 

believed to be the major causes of deforestation.1 Using the share of pasture and crop land area, 

we generate the area-weighted prices from both pasture and crop price for any specific locations 

in our study area. 

                                                           
1 Net returns can be approximated by land rent. We use the land price in both econometric model and simulation part, 
but we use land rent when presenting the results. Land price should capture the capitalized value of the expected 
future stream of profits from use of that asset. Using a discount rate of 10%, land price is converted to an estimated 
land rent by dividing ten (Rajão, R. and Soares-Filho, B., 2015).  
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The net returns to agricultural activities are affected by other spatial factors, such as the 

legal designation of the land (conservation land, protected land, indigenous land and rural 

settlements) where different regulations affect the chance of deforestation, and slope, proximity 

to roads, railroad, cities, main rivers, starting amount of forests within a grid cell, and the 

distance from forest to the nearest nonforest area which capture the actual costs of deforesting 

the land as well as the price of agricultural outputs and inputs (e.g., distance from cities as a 

proxy for transportation costs, distance from non-forest areas as a proxy for land conversion 

costs, etc.).2 We include these spatial factors that help capture finer scale variation in the net 

returns to agriculture not captured by our aggregate measure of the land price (principle 

independent variable). In the above model, iTYPE  represents several variables for different land 

types, such as conservation land, protected land, indigenous land, rural settlements. itDIST  

represents the distance of a specific site to the nearest town, river, road, railroad. The “forest 

category” itFCAT  is the starting amount of forests within a grid cell in the beginning of the year. 

We include this term as a proxy for conversion costs given that as more areas are cleared within 

a grid cell, the remaining areas become exposed and potentially less costly to deforest (Lubowski 

et al. 2014). These control variables, as shown in equation (1), are also included in two-way 

interaction terms with land price and forest category, and three-way interaction terms with land 

price and forest category, so as to better capture the response of deforestation to spatially-explicit 

differences in the net returns to agricultural land use. We also include a year trend to capture 

global deforestation changes in Mato Grosso over time. 65432143210 ,,,,,,,,,, δδδδδδβββββ and φ  

are parameters to be estimated. ijtε  denotes the error term.  

                                                           
2 Due to the limitation of the pages, please see Lubowski et al. (2014) for full explanation of the logic of using these 
variables. 
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For our dependent variable, the maximum number of 100×100 pixels in 900×900 meter 

grid cell is 81. Thus, our dependent variable is bounded by zero and 81, and we can divide our 

dependent variable by 81 to convert it to a fraction bounded by 0 and 1 for model estimation. 

Given the fact that our dependent variable is a fraction of a grid cell, we estimate a fractional 

logit model for this bounded dependent variable.3 We use the spatial resolution of 900×900 

meter, thus we have more than one million grid cells for the whole state of Mato Grosso. Since 

we have 11 years of data, we have in total about 13 million observations in our econometric 

model. Due to the size of our data, we use the cluster computing platform from Amazon Web 

Services to handle the computational demand.  

As the CRA demand could help provide incentives to reduce legal deforestation, we 

study the opportunity costs of abandoning land and enabling the natural regeneration of trees to 

gain insights into the potential size of the deficit that might need compensation. In particular, we 

regress the historical forest gains on land prices with similar model specification and the same 

set of independent variables given that the net returns to agriculture should also determine the 

profitability of converting land from agriculture to forests. The logic is that landowners will be 

more likely to abandon agricultural land and allow it to revert to forest cover when agricultural 

returns are lower. However, it should be noted that, this is not a representation of all potential 

reforestation but just that from natural regeneration (we have spatially removed plantations from 

the forest gain data).4 As compared to the annual data of deforestation, the data on reforestation 

is the 12-year aggregated reforestation for the period of 2001-2012. 

 

                                                           
3 The maximum number of 100×100 pixels in 900×900 meter grid cell is 81. Thus we divide our dependent variable 
by 81 to convert it to a fraction bounded by 0 and 1 for model estimation. We convert the unit back to hectare for 
simulation. 
4 Although plantations could also be eligible to comply with the FC by mixing with at least 50% native species, we 
do not consider this case here as we cannot distinguish this type of plantation in the historical data. 



 
 

8 
 

2.2. Simulation of the opportunity cost of reducing legal deforestation 

Based on the estimated fractional logit model, we project deforestation with and without 

hypothetical conservation incentives through the year 2030 for the properties with the LR surplus 

where deforestation is legally permitted. We choose to simulate deforestation through the year 

2030 since that is the time frame of Mato Grosso’s Produce Conserve Include strategy. Since the 

last year of our historical data is the year 2013, our simulation is actually for the period of 2014-

2030. We assume that all variables stay constant at the 2013 level in the future for our no 

incentive case, while we keep updating the forest category as the forest cover changes year by 

year. We develop an econometrically-calibrated and spatially-explicit map with the estimated 

opportunity costs of conserving forests given this future deforestation pressure. This is done by 

estimating the minimum incentive that achieves the deforestation reduction threshold. In 

particular, we subtract certain value from original land price to represent a reduction in the net 

benefit of converting forest to agriculture, and then we predict the relevant deforestation. Then 

we developed and used a LR map, which shows the boundaries of each property with surplus or 

deficit of LR according to the FC requirement, to overlay with our simulated deforestation and 

opportunity cost map. With alternative hypothetical conservation incentives, we are also able to 

estimate the aggregated marginal cost curve and the estimated total payment to reduce 

deforestation to certain level across all of the properties with the LR surplus.  

To help explore the potential of creating incentives to reduce legal deforestation from the 

properties with the LR deficit, we conduct similar simulations for properties with deficit to study 

scenarios of reforestation through natural regeneration on abandoned agricultural land under 

alternative incentives to establish forests. Different from the properties with surplus, for which 

we model hypothetical incentives to conserve forest, here we simulate the situation that the 
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landowners receives an incentive to convert to forestry, either through a subsidy for forestry or a 

fee for remaining in agriculture (with the CRA market, purchasing CRA is a way of complying 

with the Forest Code without having to restore forests which would entail an added cost to 

remaining in agriculture).5 When this incentive per ha increases, the landowner will tend to 

abandon more agricultural activities which may allow natural regeneration. Based on the 

estimated regression model of reforestation, we project relevant future reforestation with 

hypothetical incentive levels. Finally, we estimate the total opportunity cost to increase 

reforestation to a certain level. 

 

3. Data 

Deforestation data for the period of 2003-2013 are from PRODES (Project for monitoring 

deforestation in the Amazon), which has the 100×100 meter resolution and annual data for the 

Amazon area for both forest cover and deforestation. Cerrado native vegetation data is from 

Terra Class Cerrado 2013 with the same 100×100 meter resolution. Forest gain data are from 

Hansen et al. (2013), which are total cumulative forest gains during the period of 2000-2012. Its 

original resolution is 30×30 meter. For both deforestation and reforestation data, we aggregate 

them to a resolution of 900×900 meter to lower the computational demand which gives us about 

13 million of observations for model estimation. 

Informa Economics FNP (Land market analysis, 2003-2013) provided the land price data, 

which are based on the result of surveys and market monitoring. In this data, the state of Mato 

Grosso has been divided into 11 regions. Inside each region, the price data is available for 

                                                           
5 Although we view that the landowner receives incentives for keeping forest in the LR surplus properties and pays 
fines for keeping agricultural activities in the LR deficit properties, they all reflect the increasing of the opportunity 
cost of agricultural activities. Therefore, in the simulations for both cases, we subtract a certain value from our 
estimated agricultural land price. 
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different types of land, such as pasture, crop, and forest. For each land type price in a specific 

region, the relevant two or three municipalities are specified. We used the data for the period of 

2002-2012. Instead of using pasture or crop price alone, we choose to use the combination of 

these two prices weighted by the share of their areas in each municipality6. In order to estimate 

the potential land price in areas currently in forest cover, this combined price which reflects areas 

currently in agriculture is further scaled to introduce spatial-explicit variations from potential 

yield data, obtained from the FAO Global Agro-Ecological Zones (GAEZ) Data Portal version 

3.0 (http://gaez.fao.org/, accessed in May, 2016).7 

The property map that we use is a composition of Rural-Environmental Registry data 

(CAR, in Portuguese), Certified Private Properties data from the National Land Institute (INCRA, 

in Portuguese), geo-referenced land-boundaries from Terra Legal Program for land-tenure 

clarification, indigenous lands data from National Indigenous Foundation (FUNAI, in 

Portuguese), Conservation Units data from Ministry of Environment (MMA, in Portuguese) and 

rural settlements data from INCRA. Surplus and deficit are calculated from PRODES data 

(Project for monitoring deforestation in the Amazon), Terra Class data (land-use change and 

cover) both from the National Spatial Research Institute (INPE) for the forest area. For non-

forest native vegetation area, data are from Mato Grosso State Secretary of Environment 

(SEMA-MT) and Terra Class Cerrado (INPE). With deforestation dynamics from 1992 to 2015 

(non-forest areas) and from 1988 to 2015 (forest areas) and data of remaining vegetation we can 

estimate compliance with the FC at the property level. 

                                                           
6 The crop distribution data is from Gibbs et al. (2015), and the pasture distribution data is from 
http://maps.lapig.iesa.ufg.br/. 
7 For each municipality, the ratio of potential yields from nonforest and forest areas is used to calibrated the average 
land price for nonforest areas and extend this to forest area. By doing this, we introduce spatial-explicit variations 
from potential yield data to the original land price.  In particular, agro-climatically attainable yield at year 2000 from 
GAEZ is used for the following major crops: Banana, cassava, cocoa, coffee, coffee, corn, cotton, rice, sorghum, 
soybean, sugarcane, sunflower, sweet potato, and tomato. 

http://gaez.fao.org/
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The spatial files of conservation land are from Brazilian Ministry of Environment (MMA, 

in Portuguese), indigenous land are from FUNAI, rural settlements are from INCRA, slope, 

roads, railroad, cities, and main rivers are provided by the Brazilian Institute of Geography and 

Statistics (IBGE, in Portuguese). 

 

4. Results 

4.1. Model Validation  

Our empirical estimation is based on fractional logit regression as our deforestation data can be 

expressed as a fraction of grid-cell with fixed area. An alternative empirical strategy is using 

negative binomial regression which captures the count data feature of our data – the number of 

100×100 meter pixels in a 900×900 meter grid cell. We compared the out of sample prediction 

performance of these two methods using leave-one-out cross-validation. In particular, we set one 

year out of the 11-year data as the testing dataset, while the remaining ten-year as the training 

dataset. We fit the regression models only with the training dataset, and then compare the 

predicted and the observed deforestation for the testing dataset to calculate the Root Mean 

Squared Error (RMSE). We repeat the process for 11 times, so that each year take turns to be the 

testing dataset, and then compared the overall RMSE. In general, we find that the fractional logit 

model outperforms the negative binomial model in terms of RMSE based on leave-one-out 

cross-validation method. Therefore, we choose to use the fractional logit model here.  In Table 1, 

we compare the RMSE of two models by the same testing dataset year by year, and observe that 

the RMSE for the fractional logit model is larger than that of the negative binomial model for 10 

out of 11 years. We also calculate the Mean Percentage Error (MPE). It shows that the average is 

about 3.5% for both models which indicates good out-of-sample projections from our model. 
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4.2. Regression 

We include two-way and three-way interaction terms between land price and several spatial 

variables in the model, which help explore the spatially-explicit relation between deforestation 

and agricultural land price. Meanwhile, instead of reporting the estimated coefficients, we 

investigate the global relation between deforestation and land price with percentage change of 

independent variable.8 In particular, we reduce the land price value by 10%, and find that overall 

deforestation is predicted to be reduced by about 5.2%, while the elasticities do vary largely 

across different land characteristics which are estimated by interaction terms (see Figure 1). In 

the regression with reforestation, decreasing land price by 10% will increase reforestation by 

about 7.5%. These also show that our regression model estimation has the expected sign for the 

relation between deforestation/reforestation and agricultural return.  

 

4.3. Simulation 

Next, to simulate the overall deforestation/reforestation changes in the counterfactual cases 

where opportunity costs of agricultural activities are higher with conservation incentives, we 

subtract the value of the hypothetical incentive from the baseline land price.  

Figure 1 (A) shows a map with spatially-explicit estimates of minimum incentives to 

reduce deforestation by 50%. It shows that required incentives are in general lower in the 

Amazon region in the northwest part of Mato Grosso, while in many regions in the southeast part 

of the state, it is harder to reduce deforestation by 50%. In Figure 1 (B), we further show a 

similar map to reduce deforestation by 90%. As expected, it generally requires higher incentives 

to achieve more reductions. 
                                                           
8 The full regression results are available from the authors upon request. 
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In Figure 2, we find that the costs of reducing deforestation increases nonlinearly (at an 

increasing rate) as more and more incentives are needed to encourage greater forest conservation. 

By looking at the Amazon and Cerrado biomes separately, we find the nonlinear increasing trend 

in both biomes, and there are more deforestation saved in Amazon than in Cerrado for all levels 

of incentives. As shown in Table 2 column 1 where both illegal and legal deforested are counted 

(on the properties with an LR surplus), by providing up to R$ 900/ha of (US$ 405/ha)9 

conservation incentive, we can reduce about 78% of projected deforestation, from 291,528 ha to 

65,000 ha for the properties with surplus during the period of 2014-2030. The total payment for 

these 17 years is about US$ 279.5 million if we can target incentives to each landowner over 

both space and time, and assume that there will be the same payment for the following years 

after the initial year with deforestation threat. The net present value of the total payment over 17 

years with a discount factor of 10% is about US$ 108.8 million. Alternatively, if targeting is not 

feasible and all the landowners receive the same payment, the total payment will be about 

US$ 847.8 million for the period of 2014-2030, with net present value of US$ 327.1 million.  

Assuming strong government enforcement, a rational landowner in a property with the 

LR surplus will have reduced incentives to start illegal deforestation until the entire LR surplus 

has been depleted.  Thus in the simulation, any properties with more projected deforestation than 

the LR surplus indicate the existence of the illegal deforestation. The second column of Table 2 

shows the case which allows legal deforestation only. With up to R$ 900/ha of conservation 

incentive, there is an estimated reduction of 77% of projected legal deforestation, from 278,257 

ha to 64,287 ha for the period of 2014-2030. The total payment for these 17 years is about 

US$ 279 million if we can target incentives to each landowner over both space and time, and 

                                                           
9 The exchange rate 2.22 between Brazilian R$ and US$ are the 11 year average for the period of 2003-2013. Land 
price was used in the analysis, and we use land rent when reporting the results.  
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assume that there will be the same payment for the following years after the initial year with 

deforestation threat. The net present value of the total payment over 17 years with a discount 

factor of 10% is about US$ 108.7 million. Alternatively, assuming no ability to target, if all the 

landowners receive the same payment, the total payment will be about US$ 847 million for the 

period of 2014-2030, with net present value of US$ 327 million. 

Overall, we observe that most of projected deforestation in a property with the LR 

surplus will be able to fit into the legal deforestation quota, which means it is important to create 

incentives to help reduce the legal deforestation. One way to do this would be to allow selling 

CRA to a property that needs it. Thus next, we investigate the potential for CRA demand, which 

helps explore the potential of a CRA market in terms of creating incentives to help reduce legal 

deforestation.  

In Figure 3, we can see that reforestation costs increase with an increasing rate when the 

forest conservation incentives become higher for the landowners to maintain agricultural 

activities. By looking at the Amazon and Cerrado biomes separately, we also find that the 

nonlinear increasing trend happens in both biomes, and there are more reforestations in Amazon 

than in Cerrado for all levels of incentives. Our simulation for reforestation is tested with up to 

R$900 of agricultural cost, given a concern of the extreme out-of-sample projection by changing 

the independent variable too much. As compared to the incentives for deforestation which was 

able to reduce deforestation by 78%, the reforestation inside the properties with deficit will 

increase from 288,393 ha to 654,760 ha for the period of 2014-2030. The total payment is about 

US$ 1,196.5 million if we can target on each landowner specifically. If we pay all the 

landowners the same, the total payment will be about US$ 1,732.3 million for the period of 

2014-2030. If we do not count any reforestation exceed LR requirement, the numbers are slightly 
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smaller as shown in in Table 2 column 4. We also include the results that do not count any 

natural regeneration exceed the LR requirement, and the relevant NPV value. We do not observe 

much natural regeneration higher than the LR requirement. Overall, with up to R$ 900/ha of 

conservation incentives, the simulated passive abandonment is only about 7% of overall deficit 

area, indicating large potential for CRA demand from the remaining deficit properties.10  This 

could help create incentives to reduce legal deforestation.  

Using the year 2009 as the sample date, Stickler et al. (2013) has reported that the costs 

to protect the forest lands that can be legally cleared in Mato Grosso is US$ 151 million while 

the costs for restoration are from US$ 950 million to 1,083 million for alternative scenarios 

under Forest Code 2012. In the year 2030, the last year of our simulation, which has the most 

area of forest under threat – about 10% of the total surplus area, we estimate a need to pay about 

US$ 32 million to $100 million to reduce deforestation by 78% (lower and upper bound depend 

on how well we can target the payment on each landowner). The costs for restoration from 

natural regeneration on 7% of the deficit are from US$ 123 million to $179 million. It should be 

noted that these two studies have difference scope. For example, we do not assume that all lands 

subject to legal deforestation will be deforested, but rather estimate the threat of deforestation for 

the period of 2014-2030. Also, the property map that we use does not cover all the properties in 

Mato Grosso. For the restoration part, we only report the costs to restore part of the deficit. 

As reported in Table 2, in properties with surplus, the projected illegal deforestation is 

very small as compared to the overall deforestation for the period of 2014-2030. That means it is 

essential to create positive incentives to help reduce legal deforestation, as law enforcement 

alone will not reduce the deforestation that can occur legally. Since most projected deforestation 

                                                           
10 We do not yet model the costs of active reforestation, which could potentially lower CRA demand, and may even 
create CRA supply from a property with the LR deficit. 
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can happen legally in the property with LR surplus, other mechanisms to protect forests that can 

be legally deforested, such as CRA and payments for reducing carbon emissions from 

deforestation (i.e. REDD+), are necessary to address most of the deforestation issue. We find that 

there may be potentially strong CRA demand from a property with deficit, as passive 

abandonment only covers a small portion of deficit area, and thus a CRA market could help 

reduce legal deforestation. 

 

6. Conclusions 

In this study, we estimate the spatially-explicit cost of reducing legal deforestation in Mato 

Grosso, and explore one possible source that could provide such incentives. Using a fractional 

logit regression model, we estimate the historical relation between deforestation/reforestation 

and the agricultural land price based on the data for the period of 2003-2013. As expected, 

deforestation (reforestation) is positively (negatively) associated with the agricultural land price. 

Then with the estimated historical relation, we use hypothetical conservation incentives to 

project the future deforestation/reforestation and its relevant costs.  

With the forest conservation incentives up to R$ 900/ha (US$ 405/ha) and NPV of 

US$ 108.8 million for the period of 2014-2030, there is an estimated reduction of about 77% of 

legal deforestation. Illegal deforestation is not a major concern for the properties with a surplus. 

On the other hand, only 7% of the LR deficit will be abandoned to allow natural regeneration 

with up to R$900/ha. Therefore, it is important to implement the CRA trading system or to 

implement other measures to create positive economic incentives to reduce legal deforestation. 

Both the data and a model properly selected and specified provides a foundation for the next 
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level of this research – an in-depth analysis of CRA market should be explored for its economic 

and environmental consequences.  
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Table 1. Compare the Root Mean Square Error and Mean Percentage Error between Negative 

Binomial and Fractional Logit. 

Year Fractional Logit Negative Binomial Fractional Logit Negative Binomial  

 Root Mean Square Error Mean Percentage Error 
2003 8.504 8.684 7.33% 7.71% 
2004 8.608 9.029 8.88% 9.23% 
2005 7.082 14.107 5.85% 6.04% 
2006 4.070 4.145 3.01% 3.02% 
2007 3.776 3.811 2.87% 2.83% 
2008 4.087 4.106 3.45% 3.39% 
2009 2.373 2.394 1.42% 1.39% 
2010 1.961 1.974 1.13% 1.10% 
2011 2.938 2.933 2.13% 2.10% 
2012 2.406 2.416 1.30% 1.28% 
2013 2.722 12.786 1.83% 1.81% 

Average 4.412 6.035 3.56% 3.63% 
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Table 2. Deforestation and reforestation under alternative forest conservation incentives, and the 

total payment for the period of 2014-2030. 

  (1) (2) (3) (4) 

Modeled Forest 
Conservation Incentives 

Deforestation 
on properties 

with LR surplus 

Legal 
Deforestation 

Reforestation 
on properties 

with LR deficit 

Reforestation 
(capped at 

amount of LR 
deficit on each 

property) 
(R$/Ha) (Ha) (Ha) (Ha) (Ha) 

0 291,528 278,257 288,393 286,465 
100 204,699 198,644 302,902 293,958 
200 153,751 150,717 312,802 303,694 
300 120,906 119,120 330,179 320,699 
400 99,180 98,037 356,030 346,130 
500 84,486 83,668 391,355 380,831 
600 74,833 74,188 437,205 425,381 
700 68,878 68,303 495,268 481,321 
800 65,814 65,219 567,069 549,470 
900 65,000 64,287 654,760 630,655 

     
Total Payment during 2014-2030 with incentives up to R$900/Ha  
(US$)   

Lower bound payment(Total) 
 279,507,641 279,318,721 1,196,512,070 1,191,492,694 

Lower bound payment(NPV) 
 108,819,083 108,746,851 485,162,316 483,048,000 

Lower bound payment(Total) 
 847,814,693 846,572,154 1,732,269,986 1,723,875,410 

Lower bound payment(NPV) 
 327,094,269 326,622,153 700,077,843 483,048,000 

 
Note: Compared to deforestation in column (1), legal deforestation in column (2) excludes any illegal deforestation that exceeds 
the LR surplus. Compared to Reforestation in column (3), reforestation for LR only in column (4) excludes any reforestation that 
exceeds the LR deficit. Lower bound payment is targeting landowners differently based on local opportunity cost, while upper 
bound payment assumes we pay all the landowners the same amount (R$900). Net present values are based on a discount rate of 
10% for 17 years (2014-2030). 
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(A) 

  

(B) 

 

Figure 1. Minimum incentives per hectare to reduce deforestation for the period of 2014-2030. (A) by 50%. (B) by 

90%. Red area represents the region that could not be reduced to the threshold (by 50% or by 90%) with incentives 

up to R$900/ha, while black color represents the region that has less than 0.1 hectare of projected deforestation for 

each 900x900 grid cell for the period of 2014-2030. 
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Figure 2. Reduced deforestation with forest conservation incentives for properties with LR surplus. 
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Figure 3. Natural regeneration with forest conservation incentives for properties with LR deficit. 
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