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1. Introduction 

Coastal communities face increasing threat from climate change as sea level rise accelerates 

long-term shoreline erosion rates and more frequent storms bring sporadic but huge damages to 

properties and infrastructure. Simultaneous trends in eroding beaches and growing coastal 

development have led to active coastal management policy to stabilize shorelines through the 

construction of seawalls, jetties, and beach nourishment. Beach nourishment – the process of 

periodically rebuilding an eroding section of a beach with sand dredged from offshore sand 

reserves or nearshore inlets (Dean, 2002, Landry, et al., 2003), is the dominant climate 

adaptation policy in most parts of the US Atlantic coast.  

With increasing coastal development, the demand for beach nourishment continues to grow. 

Over the last few decades, the frequency of beach re-nourishment has increased from less than 

five nourishment projects per year in the 1930s to over 20 nourishment projects in the 2000s 

(Figure 1), which has resulted in an increasing volume of sand dredged for rebuilding beaches 

along the US Atlantic coast (Figure 2). Nourishment costs including fixed costs of infrastructure 

and project engineering and variable costs of nourishment sand are estimated between one and 

three million dollars per mile of shoreline (Dean, 2002). As a costly policy, beach nourishment in 

the US is primarily federally funded and implemented by the Army Corps of Engineers. 

Historically about two-thirds of the costs are supported by the federal expenditures (Trembanis, 

et al., 1999); appropriations for beach nourishment alone have exceeded $2.9 billion (Coburn, 

2009). Nevertheless, shrinking federal budgets have increased the share of costs funded through 

state and local governments. US congressional sessions are considering further cut-backs in 

federal contributions toward beach nourishment (U.S. Senate Amendment #815). Reductions in 
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federal subsidies for coastal adaptation can potentially result in dramatic changes in the coastal 

ecosystem and associated real estate markets (McNamara, et al., 2015). 

Coastal natural capital stocks provide amenities at different spatial scales ranging from 

localized storm protection services to regional and global public goods in the form of 

recreational amenities, carbon sequestration and marine biodiversity. Shoreline stabilization 

through beach nourishment is implemented by dredging sand from offshore sand reserves or 

nearshore sand deposits along inlets and waterways. When beach nourishment is the dominant 

policy, economically viable deposits of nourishment sand is becoming a scarce common-pool 

resource extracted by multiple towns to maintain beach amenities and to supply inputs for 

industry (Höflinge, 2014). Because offshore reserves are typically harder to access and replenish 

slowly, they are like non-renewable resources. Sand deposits from inlets and river channels are 

periodically replenished and are renewable on shorter time scales. Though towns would prefer to 

access sand reserves that are closest to the beach in order to minimize costs, not all nearby sand 

reserves are suitable for beach nourishment. If sediment placed on a beach is significantly finer 

or coarser than its natural sand, it will be ineffective for nourishment. For example, Nags Head in 

the Outer Banks of North Carolina was not able to use the sand deposit in Oregon Inlet for its 

nourishment project because of the significant variation in sediment texture (Nags Head, 2011). 

Accumulation chemicals and hazardous substances in sand deposits also raise public health 

concerns if used for beach nourishment (Berry, 2009). Depletion of sand reserves raises serious 

concern in coastal economies like Miami, FL that depend on coastal tourism and are exploring 

the feasibility of importing sand from international sources such as the Bahamas (Alvarez, 2013). 
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A systematic increase in the cost of nourishment sand over time reflects the scarcity of sand 

resources and increasing demand for shoreline management (Figure 3).  

The coastal economics literature largely focuses on estimating the value of beach amenities 

and evaluating the impact of coastal adaptation policies. Real estate markets respond directly to 

changes in coastal resource stocks and capitalize the value of coastal amenities and risks; 

empirical analyses have consistently shown that wider beaches, better beach views, lower flood 

risks, and proximity to waterfront increase coastal property values (Bin, et al., 2008, Bin and 

Polasky, 2004, Brown and Pollakowski, 1977, Gopalakrishnan, et al., 2011). Because coastal 

housing markets, at least partly, capitalize the impact of adaptation policies, quasi-experimental 

analyses using difference-in-differences approach can measure the value and potential spillover 

effects of investments in natural capital such as beach nourishment (Qiu and Gopalakrishnan, 

2016) and the construction of dunes (Dundas, 2014). 

The direct and indirect costs of coastal adaptation and the factors that affect the rate of 

extraction of sand reserves are, however, less understood. Alongshore towns that face similar 

physical environments pursue heterogeneous management strategies. For example, Carolina 

Beach in North Carolina implements a nourishment project approximately every three or fewer 

years, whereas beach nourishment intervals for communities on the Absecon Island, New Jersey 

are less systematic and more scattered. Examining the factors that determine the frequency of 

beach nourishment and the supply of beach amenities can provide insights to inform policies that 

efficiently allocate and price scarce sand resources. Empirical analyses looking into whether 

sand constraint influences beach nourishment can help us better understand the decision of beach 

nourishment.  
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Survival analyses are used to examine the duration until the occurrence of an event, such as 

the length of unemployment spells, the years in teaching for teachers, and the time to “IPO” for 

venture-backed firms (Giot and Schwienbacher, 2007, Moffitt, 1985, Singer and Willett, 1993). 

In environmental economics, duration models have been used to analyze firms’ adoption of 

international standards of environmental management (Nishitani, 2009), the influences of the 

interaction between neighboring agents and land use externalities, and implicit regulatory costs 

on land development (Irwin and Bockstael, 2002, Irwin and Bockstael, 2004), the ecological and 

political-economic determinants of deforestation (Vance and Geoghegan, 2002), and the 

influence of invasive species on lakeshore housing development (Goodenberger and Klaiber, 

2016). 

In this paper, we use a duration model to examine the differences in nourishment patterns 

across coastal towns. The unit of analysis is a beach town that makes nourishment decisions. 

Using data from coastal towns in North Carolina and New Jersey, we examine the effect of sand 

access and availability on beach nourishment decisions. Demand side covariates include house 

price index, number of housing units, and number of beach access points with parking. Supply 

side drivers include distance to the closest sand reserve which may influence the costs of 

nourishment projects and the percentage of using renewable sand resources in previous 

nourishment events which indicates the availability of renewable resources. We also include 

some geographic covariates such as the length of shoreline and long-term erosion rate. This 

analysis contributes to the existing literature in several ways. First, we are among the first to 

empirically examine the factors influencing a beach town’s decision of nourishment. Second, we 

test the effects of both supply and demand side drivers on the occurrence of beach nourishment.  



EARLY DRAFT – PLEASE DO NOT CITE 
 

5 
 

 

2.  Duration Analysis  

Duration models are often used to analyze factors that affect the time until “an event occurs 

(often referred to as failure)”. In our application this refers to the time between successive beach 

nourishment events. Following the framework and notation in (Greene, 2003) and 

(Goodenberger and Klaiber, 2016), 𝑇𝑇 is a random variable with a probability density function 

𝑓𝑓(𝑡𝑡) and a cumulative distribution function 𝐹𝐹(𝑡𝑡), where 𝑡𝑡 is a realization of 𝑇𝑇. Define the 

survival function 𝑆𝑆(𝑡𝑡) as the cumulative probability that the event has not occurred by time 𝑡𝑡. 

                            𝑆𝑆(𝑡𝑡) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑇𝑇 > 𝑡𝑡) = 1 − 𝐹𝐹(𝑡𝑡) = 1 − ∫ 𝑓𝑓(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡
0 .                                 (1) 

Often the information of interest is the probability that the event will occur in the next time 

period (∆𝑡𝑡) conditional on the fact that it has not occurred at time 𝑡𝑡. This probability, 𝜆𝜆(𝑡𝑡), is 

called the hazard rate and can be expressed as: 

           𝜆𝜆(𝑡𝑡) = 𝑓𝑓(𝑡𝑡)
𝑆𝑆(𝑡𝑡) = lim

∆𝑡𝑡→0

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑡𝑡 < 𝑇𝑇 ≤ 𝑡𝑡 + ∆𝑡𝑡�𝑇𝑇 > 𝑡𝑡�
∆𝑡𝑡

= 1
𝑆𝑆(𝑡𝑡)

lim
∆𝑡𝑡→0

𝑆𝑆(𝑡𝑡)−𝑆𝑆(𝑡𝑡+∆𝑡𝑡)
∆𝑡𝑡

                     (2) 

Parametric, semiparametric, and non-parametric hazard models can be used in duration 

analysis. Parametric hazard models assume a functional form of the hazard and survival 

functions. Semi-parametric hazard functions allow more flexibility in functional forms. In the 

economics literature applying duration models in analyzing land conversion decisions, 

researchers have generally found that parametric and semiparametric models are qualitatively 

similar (Goodenberger and Klaiber, 2016, Towe, et al., 2008). To examine factors that affect the 

implementation of a beach nourishment project, we use a Weibull hazard function because of its 

analytical simplicity and relevance for land use decisions.  

The Weibull hazard function 𝜆𝜆(𝑡𝑡) takes the following form: 
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                                                         𝜆𝜆(𝑡𝑡) = 𝜆𝜆𝜆𝜆(𝜆𝜆𝑡𝑡)𝑝𝑝−1.                                                        (3) 

𝜆𝜆 is the location parameter, and 𝜆𝜆 is the scale parameter that indicates acceleration or 

deceleration in hazard rates over time. If 𝜆𝜆 > 1, it indicates a decrease in the expected waiting 

time for the event to occur. If 𝜆𝜆 < 1, it indicates an increase in the expected waiting time for the 

event to occur. If 𝜆𝜆 = 1, the model reduces to an exponential hazard model and it suggests no 

change in the expected duration for the event to occur. In our application to coastal adaptation, 

the scale parameter 𝜆𝜆 allows us to test the hypothesis that beach nourishment needs to be 

undertaken more frequently over time because nourished beaches tend to face accelerated 

erosion as the shoreline returns to equilibrium (Ashton and Murray, 2006, Dean, 2002). Changes 

in climate forcing with sea level rise and more frequent extreme storms may also accelerate 

beach nourishment.  

The Weibull survival function and probability density function are given by: 

                                                      𝑆𝑆(𝑡𝑡) = exp (−(λ𝑡𝑡)𝑝𝑝).                                                      (4) 

                                             𝑓𝑓(𝑡𝑡) = 𝜆𝜆𝜆𝜆𝑝𝑝𝑡𝑡𝑝𝑝−1exp (−(λ𝑡𝑡)𝑝𝑝).                                                 (5) 

Linking the hazard function with the explanatory variables, the Weibull hazard function is: 

                                                          𝜆𝜆𝑖𝑖𝑖𝑖 = exp (𝑥𝑥𝑖𝑖𝑖𝑖′ 𝛽𝛽),                                                         (6) 

where 𝑖𝑖 represents each beach, and 𝑗𝑗 represents each nourishment episode for beach 𝑖𝑖. 

The log-likelihood function is then written as: 

                                               𝑙𝑙𝑙𝑙𝑙𝑙 = ∑ 𝑙𝑙𝑙𝑙𝑓𝑓(𝑡𝑡𝑖𝑖𝑖𝑖)𝛿𝛿𝑖𝑖𝑖𝑖=1 + ∑ 𝑙𝑙𝑙𝑙𝑆𝑆(𝑡𝑡𝑖𝑖𝑖𝑖)𝛿𝛿𝑖𝑖𝑖𝑖=0 ,                               (7) 

where 𝛿𝛿𝑖𝑖𝑖𝑖 = 1  if nourishment occurs to beach 𝑖𝑖  during the time-interval 𝑡𝑡𝑖𝑖𝑖𝑖 , and 𝛿𝛿𝑖𝑖𝑖𝑖 = 0  if 

observation is censored and event does not occur during the interval 𝑡𝑡𝑖𝑖𝑖𝑖 . Substituting the 
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parametric Weibull hazard and survival functions into the log-likelihood function, we have an 

analytical form of its log-likelihood function: 

             𝑙𝑙𝑙𝑙𝑙𝑙𝑊𝑊𝑊𝑊𝑖𝑖𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊(𝛽𝛽,𝜆𝜆|𝑡𝑡𝑖𝑖𝑖𝑖, 𝑥𝑥𝑖𝑖𝑖𝑖) = ∑ ∑ 𝛿𝛿𝑖𝑖𝑖𝑖�𝜆𝜆�𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖′ 𝛽𝛽� + 𝑙𝑙𝑙𝑙𝜆𝜆� − exp (𝜆𝜆�𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖′ 𝛽𝛽�) 𝑖𝑖𝑖𝑖 .           (8) 

Because there may be multiple nourishment projects for a single beach town, we define each 

time-interval (𝑡𝑡𝑖𝑖𝑖𝑖) as the duration from the last nourishment episode to the current time period.  

Duration analysis assumes that censoring of the observations does not influence the 

probability that an events will occur in the study period. Our analysis includes some beach towns 

that never implement a nourishment project during the study period 1990-2014, and are therefore 

right censored. For each beach town we also include each year from 1990 to 2014 so that we 

have a couple of observations for each town, providing more information to explain the 

heterogeneous nourishment frequency across space.  

The data structure in the duration analysis reflects the repetitive pattern of beach 

nourishment decisions with multiple-event observations per beach. Because historic beach 

characteristics are unavailable, we restrict our analysis to the 15-year period between 1990 and 

2014. We do, however, include left-censored observations of locations that have implemented 

beach nourishment prior to the study period. We also include the cumulative volume of sand 

placed on a beach through previous nourishment events as a covariate, which, at least partially, 

controls for the effect of historic nourishment patterns.  

 

3. Study Area and Data 

We focus on coastal towns in North Carolina and New Jersey – two states with densely 

developed sandy coastlines that have a long history of shoreline stabilization policy. However, 
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beach nourishment patterns and access to sand reserves are different across the two states (Figure 

4, Figure 5). The majority of sand resources in NC are near inlets or intracoastal waterways 

while NJ has a larger percentage of offshore sand reserves. The geographic scope of this analysis 

is driven primarily by availability of data on location of sand reserves and sand-source 

information for every beach nourishment episode. We acquired information on sand sources 

accessed for nourishment from the Army Corps of Engineers. We restrict the analysis to 

nourishment episodes that occurred after 1990 for two reasons. Data on sand access information 

and beach characteristics were not available for nourishment activity in prior years. Second, 

shoreline stabilization activity along the Atlantic coast systematically increased during the study 

period (Figure 1). Records maintained by Program for the Study of Developed Shoreline at West 

Carolina University (hereafter “PSDS”) indicate that over 65% of the sand dredged for beach 

nourishment in the study region was placed after 1990.  

The PSDS database provides information on the timing of nourishment projects, volume of 

sand placed and the nourishment costs for the 27 beach towns in our dataset. We calculate the 

cumulative volume of sand placed in previous projects events, which can partially account for 

the effect of nourishment in some locations prior to our study period. We include covariates that 

control for the cost of nourishment activity and factors that influence the demand for shoreline 

stabilization. A cost-side variable that is likely to influence beach nourishment is distance to the 

closest sand resource. We gathered spatial information of the location of sand reserves from the 

US Army Corps of Engineers (USACE, 2014). We use digital geospatial (GIS) information of 

sand reserves accessed for nourishment in New Jersey to calculate the Euclidean distance to the 

closest sand reserve for beaches in NJ using ArcGIS. However, such detailed spatial information 
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is not available for North Carolina. We therefore use beach nourishment records maintained by 

the North Carolina Department of Environment & Natural Resource (NC DENR) and Carteret 

County Shore Protection Office, to identify the locations of sand reserves used for beach 

nourishment in North Carolina. For sand dredge sites along inlets, we identify the coordinates of 

inlets to geocode sand reserves and calculated the distance from a nourished beach to inlet sand 

source using ArcGIS. Offshore sand reserves in North Carolina are manually geocoded using 

maps (in pdf. Format) to measure the distance between a beach and the sand reserve. 

Offshore reserves can be considered as non-renewable resources, while sand deposits from 

inlets and river channels are replenished on short time scales. We use an indicator variable to 

identify sand sources accessed for every beach nourishment event as renewable or non-

renewable and constructed an intensity variable measuring the percentage use of renewable sand 

reserves for nourishment activities in each beach location over time. We hypothesize that 

beaches relying largely on renewable sand deposits along inlets or river channels are likely to 

nourish more frequently because of access to sustainable sand sources. 

Demand for shoreline stabilization is driven by tourism and coastal amenities that are 

capitalized in housing markets (Qiu and Gopalakrishnan, 2016). We use geospatial information 

on beach attributes (NCDENR, 2013, NJDEP, 2014, USGS, 2014), to construct covariates 

representing beach characteristics such as shoreline length, long-term erosion rate, average 

elevation, and the number of beach access points with parking.  

Using data on coastal housing transactions during the study period, we constructed a time-

varying price index, which measures the baseline value of housing in each beach town over time. 
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We construct the housing price index following a strategy commonly used in the literature 

(Bayer, et al., 2009) and estimate the following function:  

                                            𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖,𝑃𝑃,𝑡𝑡 = 𝑙𝑙𝑙𝑙𝜌𝜌𝑃𝑃 + 𝑙𝑙𝑙𝑙𝑌𝑌𝑡𝑡 + 𝐻𝐻𝑖𝑖,𝑡𝑡𝛽𝛽 + 𝜀𝜀𝑖𝑖,𝑃𝑃,𝑡𝑡,                                      (9) 

where 𝑃𝑃𝑖𝑖,𝑃𝑃,𝑡𝑡 R is the sale price of house 𝑖𝑖 located in beach 𝑃𝑃 sold in year 𝑡𝑡. It can be decomposed 

into a function of structural housing characteristics 𝐻𝐻𝑖𝑖,𝑡𝑡, a scaling parameter 𝜌𝜌𝑃𝑃 that is specific 

for beach town 𝑃𝑃, sale year fixed effect 𝑌𝑌𝑡𝑡, and an idiosyncratic term 𝜀𝜀𝑖𝑖,𝑃𝑃,𝑡𝑡. Equation 9 allows us 

to construct a price index for the value of a representative housing unit in each beach location for 

each year, purged of the influence of structural housing characteristics. We obtained housing 

transaction data from the county tax assessors’ offices in North Carolina and county public 

records in New Jersey. We geocode the location of housing and calculated the distances to the 

oceanfront development line. Table A1 in the appendix shows the estimation results for the price 

index.  

We also account for the density of housing stock in each beach location as a measure of the 

population that is potentially affected by nourishment decisions. Data on housing stock for each 

beach were collected from US census (US Census Bureau, 2016). We control for time-invariant 

unobservables that may influence the nourishment decisions using county-level fixed effects.  

Our data set is composed of yearly observations of 13 beach towns in North Carolina and 14 

beach towns in New Jersey from 1990 to 2014. We aggregate few beaches in the dataset based 

on close proximity, shared sand reserves and jurisdictional boundaries that result in coordinated 

nourishment decisions. For example, Indian Beach, Salter Path, and Pine Knoll Shores on Bogue 

Banks in North Carolina; Oak Island and Caswell Beach in North Carolina; Longport City, 

Margate City, and Ventnor City on the Absecon Island in New Jersey, and communities on the 
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Long Beach Island in New Jersey are aggregated into spatial units for nourishment decisions 

(USACE, 2014).  

Beach towns that have not implemented beach nourishment prior to the start of the study 

period 1990 are assumed to have considered nourishment as a policy option since the year of the 

first beach nourishment project in the county. Table 1 shows a summary of beach nourishment 

activities in each beach town.  

Summary statistics of explanatory variables for the duration analysis are presented in Table 

2. Nourishment intervals (duration between two consecutive projects) range between 1 year 

(Emerald Isle, NC) and 58 years (Absecon Island, NC). The average nourishment interval is 6.05 

years. On average, beach towns have approximately 30 beach access points with parking. 

Average elevation of oceanfront houses is 9.88 feet and beaches have an average shoreline 

length of 8.65 km. Average number of housing units is 5979.69. A representative beach has 

access to nourishment quality sand within 2.18 km and draws on a renewable source of sand 

from inlet deposits for about two-thirds of its nourishment projects. The average cumulative 

volume of sand dredged for nourishment is 4.8 million cubic yards.  

 

4. Results and Discussion 

We estimate a Weibull hazard model to examine factors that affect beach re-nourishment 

decisions in coastal towns and present econometric results in Table 3.  A positive coefficient 

indicates that the covariate increases the probability of nourishment and a negative coefficient 

decreases the probability of nourishment (Column 1). Hazard ratios are given in Column 2. We 

control for geophysical features of the beach including shoreline length, average oceanfront 
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elevation, and erosion rate. Long-run erosion rates attributable to sea-level rise and local wave 

climates naturally influence nourishment patterns. A one-foot per year increase in the erosion 

rate increases the probability of nourishment by 96%, which is intuitive considering the potential 

loss in recreational and other coastal amenities from losing an additional foot of beach sand. 

Towns with longer coastlines are more likely to nourish their beach; an additional kilometer of 

coastline increases the probability of nourishment by 35%. This result, while seeming less 

intuitive, can be explained by two factors. First, towns with longer coastlines likely support 

larger populations of residents and beachgoers and therefore need adaptation measures to 

maintain value flows. Second, nourishment records, maintained at the town level, do not identify 

precise spatial extents of nourishment projects. It is possible that alongshore coverage of the 

town boundaries may require multiple successive nourishment projects; data limitations prevent 

us from identifying this effect. Higher elevation of housing and development can mitigate the 

risks from coastal erosion. We find that a one-foot increase in the elevation of oceanfront 

development lowers the likelihood of nourishment by 29%.   

To examine the effect of common-pool sand reserves on nourishment we consider the access 

to inlet sand deposits and offshore reserves. Because inlet sand deposits are effectively 

renewable resources, easy access to inlets can make beach nourishment more sustainable. We 

find that locations that depend largely on inlet deposits are much more likely to nourish their 

beach; when the proportion of prior nourishment events that use inlet deposits increases by 1%, 

the probability of re-nourishment increases by 1.5%. Farther the physical distance (in kms) to 

sand reserves, the less likely it is that nourishment will occur. While the direction of this 

influence is intuitive (towns depending on offshore sand reserves will nourish less often), the 
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coefficient is not statistically significant. This may be because the effect of proximity to sand 

source is absorbed by the dependence on inlet sources. Cumulative volume of sand placed on the 

beach in prior years likely increases the probability of nourishment, but this estimate is also not 

statistically significant.  

 We also control for the value of housing stock that is at risk from coastal erosion. An 

increase in the housing stock – measured as number of single family residences – by 100 units 

increases the probability of nourishment by 2%. Housing price index has a large coefficient of 

1.2 and is statistically significant. This suggests that locations with higher property values are 

much more likely to invest in beach nourishment. Our finding is consistent with the extensive 

empirical evidence that coastal real estate markets capitalize the value of coastal amenities 

(Brown and Pollakowski, 1977, Gopalakrishnan, et al., 2011, Landry and Hindsley, 2011, Pompe 

and Rinehart, 1995) and the benefits from investments in natural capital (beach nourishment, for 

example) to maintain amenity flows(Dundas, 2014, Qiu and Gopalakrishnan, 2016). We find that 

beach access slows down nourishment; an additional beach access point with parking space 

makes nourishment less likely by 7.9%. The process of beach nourishment is disruptive – it can 

block views, restrict ocean access, and limit recreational activity – and can therefore diminish 

beach value during the project implementation. Tourism-dependent locations with a high flow of 

beachgoers, that provide more beach access, may choose to nourish less frequently to minimize 

disruption. Alternatively, congestion resulting from increased beach access may decrease the 

value of recreational amenities, which makes nourishment less likely.  

The estimated shape parameter p is 1.33 (Table 3), which implies that the hazard risk from 

coastal erosion increases over time. This is consistent with the geophysical processes in the 
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coastal system that affect the rate of erosion; nourishment can accelerate erosion as a nourished 

beach returns to its equilibrium shoreline (Ashton and Murray, 2006, Smith, et al., 2009), and 

subsequently lead to more frequent nourishment.  

To control for unobserved spatial heterogeneity, we include spatial fixed effects at the 

county level. Comparing results from Weibull hazard models with and without county fixed 

effects (Table 4), we find that both magnitudes and statistical significance of coefficients are 

different. Results suggest that time-invariant unobservables and within-county variation in 

physical and economic factors drive nourishment decisions. 

 

4.1. Robustness Check 

We also estimate a Cox proportional hazard model, which is a commonly used 

semiparametric duration model, to test for robustness of the Weibull model estimates in Table 4. 

In this model, the hazard function 𝜆𝜆(𝑡𝑡) is assumed to be proportional to a baseline hazard 

function 𝜆𝜆0(𝑡𝑡): 

                                                    𝜆𝜆(𝑡𝑡) = 𝜆𝜆0(𝑡𝑡)exp (𝑋𝑋𝛽𝛽),                                                    (10) 

where 𝑋𝑋 is a vector of covariates. The model allows us to recover estimates of the coefficients 

(𝛽𝛽) through maximum likelihood estimation without estimating the baseline hazard 𝜆𝜆0(𝑡𝑡).  

We present results from a Cox proportional hazard model in Table 5. Comparing these 

results with the Weibull model (Table 3), we find that both magnitudes and statistical 

significance of estimated coefficients are very similar across these two models. Our results are 

robust across parametric and semiparametric specifications. 
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5. Conclusion 

Coastal ecosystems provide a variety of amenities and services that attract residential 

development and tourism. Coastal communities, that face continuous risk from rising sea levels 

and frequent storms, adapt by investing in shoreline stabilization to protect development. 

Empirical evidence suggests heterogeneous patterns across location along the U.S. Atlantic 

coast, but reflects an increasing number of shoreline stabilization projects via beach nourishment 

(Figure 1; Table 1; Gopalakrishnan, et al., 2016). When nourishment is the dominant policy, 

common-pool sand deposits accessed by multiple towns make localized decisions. In this paper 

we examine the geophysical features of the coastal-economic system, particularly the location of 

sand reserves, that affect beach stabilization decisions along sandy coastlines.  

Our analysis shows that increased access to sand deposits from inlets and river channels, 

which are periodically replenished, results in more frequent nourishment. Beaches that rely on 

offshore reserves nourish less frequently but these projects are likely to be larger in the volume 

of sand placed; in North Carolina volume of sand placed in any single nourishment project is 

three times larger when dredged from offshore reserve relative to sand dredged from inlet 

sources. This is not surprising because fixed costs associated with offshore dredging – such as 

infrastructure and equipment – and higher than inlet dredging even when the cost of sand is not 

different across sources. Our finding supports earlier theoretical models of beach re-nourishment 

(Smith et al. 2009) and illustrates the tradeoff between fixed and variable costs of nourishment. 

This empirical analysis also compliments numerical models of coastline change linked with 

economic decisions of beach re-nourishment that show that increasing costs of sand can 



EARLY DRAFT – PLEASE DO NOT CITE 
 

16 
 

accelerate the depletion of a finite sand reservoir when towns with high property values are 

located in regions with higher erosion rates (McNamara et al. 2011). 

Our analysis also reflects how physical coastline features, such as proximity to inlets, shape 

policy decisions. For beach nourishment to be a sustainable long-term climate adaptation policy 

access to renewable sand resources becomes critical.  As nourishment quality sand becomes 

scarcer, dredging common-pool sand reserves may be inevitable. However, accounting for 

spillover effects, coordination nourishment decisions across both sources of sand dredged and 

locations where sand is placed can make beach nourishment policy more effective. 
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Figure 1. Yearly Number of Beach Nourishment Events (3-Year Average for US Atlantic Coast) 

 

Figure 2. Yearly Volume of Sand Used for Beach Nourishment (in Cubic Yards, 3-Year Average 
for US Atlantic Coast) 
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Figure 3. Nourishment Sand Costs (in 2014$) over time 
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Figure 4. Sand Reserves in North Carolina 

  



EARLY DRAFT – PLEASE DO NOT CITE 
 

23 
 

 

 

Figure 5. Sand Reserves in New Jersey 
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Table 1. Nourishment Activities by Beach 

Beach County First_nourish_yr No. of 
events 

Average Duration 
(years) 

Absecon Island Atlantic 1990 17 15.60 
Atlantic Beach Carteret 1958 12 4.67 
Avalon Cape May 1962 11 3.22 
Avon-by-the-Sea Monmouth 1947 8 27.00 
Bald Head Island Brunswick 1992 10 4.20 
Brigantine Atlantic 1962 7 8.50 
Cape May Cape May 1962 20 1.79 
Cape May Point Cape May 2001 6 8.50 
Carolina Beach New Hanover 1955 28 3.00 
Emerald Isle Carteret 1984 17 1.71 
Holden Beach Brunswick 1971 22 2.89 
Indian Beach/Salter Path/Pine 
Knoll Shores Carteret 2002 4 13.75 

Kill Devil Hills Dare  0  
Kitty Hawk Dare  0  
Kure Beach New Hanover 1997 6 12.33 
Long Beach Island Ocean 1954 21 3.50 
Long Branch Monmouth 1943 8 17.00 
Monmouth Beach Monmouth 1995 3 23.00 
Nags Head Dare  1 37.00 
North Wildwood Cape May 1966 6 6.00 
Oak Island/Caswell Beach Brunswick 1986 5 6.67 
Ocean City Cape May 1952 29 2.18 
Ocean Isle Beach Brunswick 1974 12 5.00 
Sea Bright Monmouth 1963 5 10.00 
Sea Isle City Cape May 1965 9 8.33 
Stone Harbor Cape May 1967 6 11.25 
Wrightsville Beach New Hanover 1939 24 3.13 
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Table 2. Summary Statistics 

Variable Obs Mean Std. Dev. Min Max 
Duration: time between nourishment events 156 6.05 10.35 1.00 58.00 
Variable Obs Mean Std. Dev. Min Max 
Number of access points w/parking 675 30.44 38.41 2.00 193.00 
Shoreline length (km) 675 8.65 5.54 0.81 21.64 
Elevation (feet) 675 9.88 3.52 4.00 21.00 
Long-term erosion rate (feet)a 675 0.02 1.42 -3.53 3.96 
Distance to closest sand reserve (km) 675 2.18 1.87 0.34 8.03 
% Prior nourishment projects using inlet sand deposits 675 66.44 43.12 0.00 100.00 
Cumulative volume of sand placed (million cubic yards) 675 4.82 5.73 0.00 27.26 
Number of prior nourishment projects 675 7.48 7.28 0.00 29.00 
Number of housing units 675 5979.69 5118.64 501 20871 
Log price (housing) 675 12.69 0.38 12.07 13.39 

 a: Negative rate indicates accretion. 
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Table 3. Weibull Hazard Model 

Variables coefficients hazard ratio 
Number of access points w/parking -0.0827*** 0.9206273 

 (0.0101)  
Shoreline length (km) 0.300*** 1.3498588 

 (0.0551)  
Elevation of oceanfront houses (feet) -0.212*** 0.8089647 

 (0.0509)  
Long-term erosion rate (feet) 0.675*** 1.964033 

 (0.0864)  
Cumulative volume of sand placed (million cubic yards) 0.0466 1.0477028 

 (0.0357)  
Distance to closest sand reserve (km) -0.0884 0.9153946 

 (0.165)  
% Prior nourishment projects using inlet sand deposits 0.0149*** 1.0150116 

 (0.00472)  
Number of housing units 0.000172*** 1.000172 

 (4.37e-05)  
Price index 1.214*** 3.3669255 

 (0.255)  
Dummy (Dare County) -16.85***  

 (1.856)  
Dummy (Carteret County) -9.774***  

 (1.350)  
Dummy (Brunswick County) -11.02***  

 (1.674)  
Dummy (New Hanover County) -7.518***  

 (1.435)  
Dummy (Cape May County) -7.494***  

 (0.941)  
Dummy (Atlantic County) -9.916***  

 (1.788)  
Dummy (Monmouth County) -10.14***  

 (1.616)  
Constant -8.955***  

 (3.413)  
ln(p) 0.284**  

 (0.143)  
Observations 675   

Robust standard errors clustered by beach are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 4. Weibull hazard models with & without county FE 

Variables I II 
Number of access points w/parking -0.0827*** -0.00444 

 (0.0101) (0.00773) 
Shoreline length (km) 0.300*** 0.113*** 

 (0.0551) (0.0381) 
Elevation of oceanfront houses (feet) -0.212*** 0.0573 

 (0.0509) (0.0616) 
Long-term erosion rate (feet) 0.675*** 0.0550 

 (0.0864) (0.197) 
Cumulative volume of sand placed (million cubic yards) 0.0466 0.1300*** 

 (0.0357) (0.0302) 
Distance to closest sand reserve (km) -0.0884 -0.0899 

 (0.165) (0.108) 
% Prior nourishment projects using inlet sand deposits 0.0149*** 0.0150 

 (0.00472) (0.0135) 
Number of housing units 0.000172*** -6.06e-05 

 (4.37e-05) (5.39e-05) 
Price index 1.214*** 0.869*** 

 (0.255) (0.231) 
Dummy (Dare County) -16.85***  

 (1.856)  
Dummy (Carteret County) -9.774***  

 (1.350)  
Dummy (Brunswick County) -11.02***  

 (1.674)  
Dummy (New Hanover County) -7.518***  

 (1.435)  
Dummy (Cape May County) -7.494***  

 (0.941)  
Dummy (Atlantic County) -9.916***  

 (1.788)  
Dummy (Monmouth County) -10.14***  

 (1.616)  
Constant -8.955*** -16.06*** 

 (3.413) (3.813) 
ln(p) 0.284** 0.0659 

 (0.143) (0.212) 
Log pseudo likelihood -379.02616 -456.0665 
Observations 675 675 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 5. Cox Proportional Hazard Model 

Variables coefficients 
Number of access points w/parking -0.0734*** 

 (0.00788) 
Shoreline length (km) 0.248*** 

 (0.0414) 
Elevation of oceanfront houses (feet) -0.154*** 

 (0.0308) 
Long-term erosion rate (feet) 0.593*** 

 (0.0990) 
Cumulative volume of sand placed (million cubic yards) 0.0165 

 (0.0367) 
Distance to closest sand reserve (km) -0.119 

 (0.153) 
% Prior nourishment projects using inlet sand deposits 0.0143*** 

 (0.00421) 
Number of housing units 0.000155*** 

 (4.95e-05) 
Price index 1.094*** 

 (0.229) 
Dummy (Dare County) -14.49*** 

 (1.233) 
Dummy (Carteret County) -9.111*** 

 (1.156) 
Dummy (Brunswick County) -10.08*** 

 (1.289) 
Dummy (New Hanover County) -7.071*** 

 (1.307) 
Dummy (Cape May County) -6.752*** 

 (0.738) 
Dummy (Atlantic County) -8.813*** 

 (1.375) 
Dummy (Monmouth County) -9.332*** 

 (1.386) 
Log pseudo likelihood -787.99389 
Observations 675 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix  

 

Table A1. Hedonic Regression for North Carolina and New Jersey Coastal Towns 

Variables log_price 
Sqft 0.00102*** 

 (1.08e-05) 
Square of sqft -1.38e-07*** 

 (2.95e-09) 
Property's age -0.00145*** 

 (0.000218) 
Square of property's age -8.51e-06*** 

 (2.27e-06) 
Single family dummy 0.0306*** 

 (0.00718) 
Distance to oceanfront (m) -0.000245*** 

 (4.22e-06) 
Constant 10.51*** 

 (0.0278) 
Beach FE Yes 
Year FE Yes 
Observations 80,759 
R-squared 0.699 

 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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