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Abstract 

This paper introduces a nonparametric measure of coordination Luenberger productivity 

growth where the subprocesses are explicitly modelled in the production technology. The 

coordination productivity indicator is decomposed into a coordination technical inefficiency 

change component and a coordination technical change component. This decomposition allows 

to assess how reallocation impacts the different sources of productivity growth. The empirical 

application focusses on a large panel of English and Welsh farms over the period 2007−2013. 

The results show that coordination inefficiency significantly increases with the proportion of 

resources allocated to livestock production in economic and statistical terms. Coordination 

inefficient farms should generally allocate more land to crop production. Depending on the 

region, the average coordination Luenberger productivity growth ranges from -9.7 percent to 

15.9 percent per year. It is driven by coordination technical change rather than coordination 

inefficiency change. 
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1 Introduction

The economic choice for a farmer whether to engage in specialised or mixed agri-
culture is based on a comparison of the gains from economies of scale versus the
gains from diversifying risk and economies of scope. Crop-specific capital (e.g.
harvesters and ploughs) and livestock-specific capital (e.g. milking robots) are ex-
pensive and benefit considerably from economies of scale. Furthermore, these fixed
costs of capital can be spread more over higher production volumes. Thus, a re-
turn on these investments can only be achieved by increasing the scale of operation,
which in turn leaves little room for other farming activities (Chavas and Aliber,
1993; Fernandez-Cornejo et al., 1992). European agriculture is nowadays increas-
ingly characterised by specialised production. In light of the liberalisation of the
Common Agricultural Policy, input and output prices are becoming more volatile,
increasing the volatility of the farmer’s income. Economic intuition suggests to
diversify into more farming activities and mixed farms benefit considerably from
economies of scope resulting from complementarities between different farming
activities, which allows for production at lower cost (Chavas, 2008). Moreover, re-
searchers and policy makers are increasingly concerned about the negative environ-
mental impact of nutrient surplus associated with specialisation (Ryschawy et al.,
2012).

The efficiency and productivity of a farm play an essential role for its long-term
viability. Adequate coordination of crop- and livestock-specific land use is neces-
sary to this end. The overwhelming majority of the studies in the efficiency and
productivity literature treat agricultural production as a black-box where the sub-
processes are overlooked.1 This implicitly leaves the question unanswered whether
more or less specialisation would be needed for efficiency gains. In addition, this
hampers the comparability of farms with different subprocesses. The difficulty
to model these subprocesses may explain why most empirical studies only focus
on specialised farms. The current paper introduces a coordination Luenberger
productivity indicator that addresses these caveats.

Färe and Whittaker (1995) introduce an efficiency framework that takes into
account the production of intermediate inputs on the farm. In their model, crop
output can also also be used as a feed input in the livestock enterprise. Focussing on
a sample of cereal farms, Färe et al. (1997) develop an efficiency framework where
land use can be reallocated. Cherchye et al. (2013) develop a general framework
that opens the black-box of production by explicitly modelling input allocation
in a multi-output setting. They distinguish different subdivisions with their own
output. Every output uses its own associated output-specific inputs and common

1Färe and Whittaker (1995); Jaenicke (2000); Skevas et al. (2012) and Chen (2012) are ex-
ceptions
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joint inputs that are shared by all outputs. They develop a radial input-oriented
framework. Using this framework, Cherchye et al. (2015) address the question
of efficient allocation of common output-specific inputs over subdivisions. They
develop a coordination efficiency measure that quantifies the possible efficiency
gains from reallocating some inputs over the subdivisions.

Using a nonparametric framework, this paper extends the static, radial frame-
work suggested by Cherchye et al. (2015) to a dynamic context of coordination
Luenberger productivity growth. Cherchye et al. (2015)’s radial framework only
identifies inefficiencies in the input direction. We generalise this approach by
developing a directional distance function framework where inputs as well as out-
puts are choice variables, which is consistent with profit-maximising behaviour.
Explicitly taking into account the subprocesses of crop production and livestock
production, our framework is able to adequately compare the efficiency and pro-
ductivity of crop farms, mixed farms and livestock farms. It also indicates whether
coordination efficiency gains would be associated with specialisation or diversifi-
cation towards mixed farming. Moreover, we define a coordination productivity
indicator that measures productivity growth due to proper reallocation of process-
specific inputs over time which is decomposable in a coordination technical inef-
ficiency change component and a coordination technical change component. This
decomposition allows to assess how reallocation impacts the different sources of
productivity growth. The empirical application focusses on panel data from mixed
and specialised farms in England and Wales over the period 2007− 2013.

The remainder of the current paper is structured as follows. The next section
describes the theoretical framework for measuring the coordination Luenberger
productivity indicator and its components. This is followed by the practical im-
plementation and empirical application. The final section concludes this paper.

2 Mixed farm model

In this section we describe our mixed farm model. We distinguish two interde-
pendent subprocesses with their own technology. We then propose a coordination
Luenberger productivity indicator and its decomposition that identifies how coor-
dination inefficiency affects the different sources of productivity growth.

2.1 Model and technology description

We identify 2 processes: the crop subprocess (C) and the livestock subprocess (L).
The network structure is shown in Figure 1. Following Färe and Whittaker (1995),
both processes are interdependent because the livestock process uses unmarketed
residue of crops as feed for its livestock in addition to feed bought on the market.
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Figure 1: Network structure of the model

The crop subprocess has the following inputs and outputs:

• XC
t ∈ R

NC

+ : inputs such as labour, seeds, etc;

• YC
t ∈ R

OC

+ : outputs such as wheat, barley, etc;

• ZC
t ∈ R

OC

+ : outputs that are not sold, but used as feed in the same period
for the livestock.

The livestock subprocess has the following inputs and outputs:

• XL
t ∈ R

NL

+ : inputs such as labour, feed, etc;

• ZC
t ∈ R

OC

+ : outputs from the crops used as feed in the same period;

• YL
t ∈ R

OL

+ : outputs such as milk, meat, etc;

Note that XL
t and ZC

t can have common inputs: the farmer buys additional
feed for his livestock on top of the feed he already collected from his crops. Define
the index set H = {1, . . . , NL} ∩ {1, . . . , OC} for these common inputs.

There can be some inputs that are shared by both processes but which are
not joint. Land use is such an input: the farmer has to decide how much of
his land area to use for crop production and livestock production. Thus, these
subprocess-specific inputs have to be allocated among both processes. In line
with Cherchye et al. (2015), this allocation might not be optimal and a better
reallocation is possible. Let Xt ∈ R

C
+ with C ⊆ {1, . . . , NC} ∩ {1, . . . , NL} be the
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process-specific inputs that have to be allocated among both subprocesses such
that

XC,m
t +XL,m

t = Xm
t ∀m ∈ C. (1a)

Thus, C is the subset of inputs, common to crop and livestock, that can be real-
located among both subprocesses. In line with Färe et al. (1997), this application
regards crop land and livestock land as reallocatable, fixed inputs.

Furthermore, the levels of the other process-specific inputs must also be ad-
justed for the new reallocation:

∑

∀i∈{1,...,NC}\C

pC,i
t XC,i

t +
∑

∀j∈{1,...,NL}\C

pL,jt XL,j
t = PEXPt, (1b)

where pC
t ∈ R

NC

++ and pL
t ∈ R

NL

++ are the prices of crop-specific and livestock-
specific inputs and PEXPt is the total process-specific expenditures.

2 This budget
constraint allows the farmer to redistribute the process-specific budget over the
crop and livestock activities while staying within his budget. In general, we do not
know the individual farmer’s credit or budget constraints, but we do observe his
total process-specific expenditures. Therefore, process-specific expenditures can
be reallocated within the farmer’s observed budget.

Finally, the crop and livestock process share a joint input Qt ∈ R
M
+ (e.g.

buildings and machinery). Joint inputs are inputs which are shared by the different
subprocesses (see Cherchye et al. (2013)). Some of these joint inputs are fixed: let
F ⊆ {1, . . . ,M} denote the set of fixed joint inputs.

We now define the technology of each subprocess by their production set. The
crop subprocess production set is:

Y
C
t =

{

(XC
t ,Qt) produces (Y

C
t ,Z

C
t )
}

. (2)

Similarly, the livestock subprocess production set is:

Y
L
t =

{

(XL
t ,Z

C
t ,Qt) produces Y

L
t

}

. (3)

In the remainder of this paper, we assume the following basic axioms for both
subprocesses:

Axiom 1 (strong disposability of inputs). (x,y) ∈ Y and x′ ≥ x =⇒ (x′,y) ∈ Y

Axiom 2 (strong disposability of outputs). (x,y) ∈ Y and y′ ≤ y =⇒ (x,y′) ∈ Y

Axiom 3 (convexity). Technology set Y is convex.

The overall network production set is:

Y t =
{

(XC
t ,Qt,Y

C
t ,Z

C
t ) ∈ Y

C
t and (XL

t ,Z
C
t ,Qt,Y

L
t ) ∈ Y

L
t

}

, (4)

and satisfies the above axioms by construction.

2In the absence of price data, one could equivalently work with expenditures. The quantities
are then expenditures and the modified budget constraint would be (1b) without prices.
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2.2 The Luenberger productivity indicator and its decom-

position

We use Luenberger’s directional distance function to measure technical inefficiency
by simultaneously contracting inputs and expanding outputs. This is consistent
with profit maximisation. Shephard (1970)’s input and output distance functions
are special cases of the directional distance function (Chambers et al., 1996a) and
are consistent with cost minimisation and revenue maximisation, respectively. De-
fine, for notational convenience, Xt = (XC

t ,X
L
t ,Z

C
t ,Qt) as the input vector and

Yt = (YC
t ,Y

L
t ,Z

C
t ) as the output vector. The directional distance function pro-

posed by Chambers et al. (1996b) is:

Dt(Xt,Yt;gt) = sup
{

β ∈ R : (Xt − βgx,t,Yt + βgy,t) ∈ Y t

}

, (5)

if (Xt − βgx,t,Yt + βgy,t) ∈ Y t for some β and Dt(Xt,Yt;gt) = −∞ otherwise.
Here, gt = (gx,t,gy,t) represents the direction vector. The directional distance
function is a special case of Luenberger (1992)’s shortage function.

We denote the time-related directional distance function for (a, b) ∈ {t, t+ 1}×
{t, t+ 1}:

Db(Xa,Ya;ga) = sup
{

β ∈ R : (Xa − βgx,a,Ya + βgy,a) ∈ Yb

}

.

Furthermore, we distinguish between Dt(Xt,Yt;gt|R) and Dt(Xt,Yt;gt|NR): the
former allows for reallocation of the process-specific inputs over the subprocesses
(i.e. (1)), while the latter keeps these fixed.

In an analogous way, we define “reallocative” and “non-reallocative” Luen-
berger productivity indicators Lt,t+1(·|R) and Lt,t+1(·|NR) respectively. The Lu-
enberger productivity indicator proposed by Chambers (2002) is defined as:

Lt,t+1(Xt,Yt,Xt+1,Yt+1;gt,gt+1|c)

=
1

2

[

(Dt(Xt,Yt;gt|c)−Dt(Xt+1,Yt+1;gt+1|c))

+ (Dt+1(Xt,Yt;gt|c)−Dt+1(Xt+1,Yt+1;gt+1|c))
]

, (6)

for c ∈ {R,NR}. It can be additively decomposed into a technical inefficiency
change component and a technical change component:

Lt,t+1(c) =
(

Dt(Xt,Yt;gt|c)−Dt+1(Xt+1,Yt+1;gt+1|c)
)

+
1

2

[

(Dt+1(Xt+1,Yt+1;gt+1|c)−Dt(Xt+1,Yt+1;gt+1|c))

+ (Dt+1(Xt,Yt;gt|c)−Dt(Xt,Yt;gt|c))]

≡ ∆TEI(c) + ∆T (c), (7)
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where the first difference is the technical inefficiency change component ∆TEI(c)
and the arithmetic average of the two last differences captures technical change
∆T (c) (Chambers et al., 1996b). The technical inefficiency change component
quantifies the change in relative position of a given observation to the (shifted)
production frontier. The technical change component measures the change in the
production frontier itself and is therefore a measure of technical progress or regress.

2.3 Coordination inefficiency

Cherchye et al. (2015) consider a model of a firm with several subdivisions. They
are interested in measuring whether efficiency gains are possible from reallocating
common inputs over the different subdivisions. To this end, they distinguish radial
measures of decentralised and centralised efficiency. Decentralised efficiency is
the radial measure of efficiency when the current allocation is preserved over the
subdivisions. In contrast, centralised efficiency is the radial measure of efficiency
when the allocation is free to change over the subdivisions. Then, they define
coordination efficiency as the ratio of centralised over decentralised efficiency. We
make use of a directional distance function framework, which is more flexible in
that it allows for varying input and output levels.

An equivalent difference-based coordination inefficiency measure is:

CI = Dt(Xt,Yt;gt|R)−Dt(Xt,Yt;gt|NR). (8)

Here, one can see that Dt(Xt,Yt;gt|R) ≥ Dt(Xt,Yt;gt|NR), because the allo-
cation represented by Dt(·|NR) is always attainable when reallocation is allowed.
Put differently: the status quo allocation is always possible when reallocation is
allowed. Positive values for CI indicate that inefficiencies may arise from improper
allocation of inputs.

2.4 Coordination productivity indicator

We measure how much productivity growth is affected by proper reallocation of
inputs over time by comparing the reallocative Luenberger productivity indica-
tor with the non-reallocative Luenberger productivity indicator. Lt,t+1(R) > (<
)Lt,t+1(NR) indicates that a farmer becomes better (worse) at reallocating over
time which leads to improved (worsened) productivity growth. We define a “co-
ordination Luenberger productivity indicator” CLt,t+1 as the difference between
Lt,t+1(R) and Lt,t+1(NR):

CLt,t+1 ≡ Lt,t+1(R)− Lt,t+1(NR)

= [∆TEI(R)−∆TEI(NR)] + [∆T (R)−∆T (NR)]

≡ ∆CI +∆CT, (9)
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where ∆CI is coordination inefficiency change and ∆CT is coordination technical
change. ∆CI measures the change in coordination inefficiency that can be ascribed
to reallocation of process-specific inputs over time. ∆CT measures changes in the
production frontier due to reallocation of process-specific inputs over time.

3 Practical implementation

The empirical analyst can compute efficiency and productivity measures using
either a parametric or nonparametric approach. The parametric approach takes
into account stochastic factors and does not treat all deviations from the frontier as
inefficiency. However, it requires a specification of a functional form and technical
changes cannot be determined at the firm level. We opt for the nonparametric
approach which does not require such a specification and allows for determination
of firm-specific technical changes (Oude Lansink et al., 2015).

We assume that we have data

S =
{

pC
k,t,X

C
k,t,p

L
k,t,X

L
k,t,Z

C
k,t,Qk,t,Y

C
k,t,Y

L
k,t

}T

t=1

for Decision-Making Unit (DMU) k = 1, . . . , K. The DMU under evaluation is
k = 0.

3.1 Technology

The crop production set for a variable-returns-to-scale technology can be empiri-
cally approximated as:

Ŷ
C

t =
{

(XC
0,t,Q0,t,Y

C
0,t,Z

C
0,t) :

K
∑

k=1

λk,tX
C
k,t ≤ XC

0,t, (10a)

K
∑

k=1

λk,tQk,t ≤ Q0,t, (10b)

K
∑

k=1

λk,t(Y
C
k,t + ZC

k,t) ≥ (YC
0,t + ZC

0,t), (10c)

K
∑

k=1

λk,t = 1, (10d)

λk,t ≥ 0 } . (10e)
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The livestock production set for a variable-returns-to-scale technology can be
empirically approximated as:

Ŷ
L

t =
{

(XL
0,t,Z

C
0,t,Q0,t,Y

L
0,t) :

K
∑

k=1

γk,tX
L,h
k,t ≤ XL,h

0,t ∀h /∈ H, (11a)

K
∑

k=1

γk,t(Z
C,h
k,t +XL,h

k,t ) ≤ ZC,h
0,t +XL,h

0,t ∀h ∈ H,

(11b)
K
∑

k=1

γk,tQk,t ≤ Q0,t, (11c)

K
∑

k=1

γk,tY
L
k,t ≥ YL

0,t, (11d)

K
∑

k=1

γk,t = 1, (11e)

γk,t ≥ 0 } . (11f)

These approximations are the inner bound approximations of the technology
(Varian, 1984). From these subprocesses we obtain the approximation Ŷ t of the

overall technology by taking the intersection of Ŷ
C

t and Ŷ
L

t .

3.2 Inefficiency measurement

The implementation of the directional distance function (5) is:

Dt(X0,t,Y0,t;gt) = sup
{

β ∈ R : (X0,t − βgx,t,Y0,t + βgy,t) ∈ Ŷ t

}

. (12)

The combination of subprocesses is implemented by solving the linear program:
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Dt(X0,t,Y0,t;gt = (gx,t,gy,t)|NR) =

max
β,

λk,t,γk,t≥0

β

s.t.
K
∑

k=1

λk,tX
C,m
k,t ≤ XC,m

0,t − βgC,m
x,t ∀m /∈ C, (13a)

K
∑

k=1

λk,tX
C,m
k,t ≤ XC,m

0,t ∀m ∈ C, (13b)

K
∑

k=1

λk,tQ
f
k,t ≤ Qf

0,t − βgfQ,t ∀f /∈ F, (13c)

K
∑

k=1

λk,tQ
f
k,t ≤ Qf

0,t ∀f ∈ F, (13d)

K
∑

k=1

λk,t(Y
C
k,t + ZC

k,t) ≥ (YC
0,t + ZC

0,t) + βgC
y,t, (13e)

K
∑

k=1

λk,t = 1, (13f)

K
∑

k=1

γk,tX
L,m
k,t ≤ XL,m

0,t − βgL,mx,t ∀m /∈ C, ∀m /∈ H, (13g)

K
∑

k=1

γk,tX
L,m
k,t ≤ XL,m

0,t ∀m ∈ C, (13h)

K
∑

k=1

γk,t(Z
C,h
k,t +XL,h

k,t ) ≤ (ZC,h
0,t +XL,h

0,t )− βghx,t ∀h ∈ H, (13i)

K
∑

k=1

γk,tQ
f
k,t ≤ Qf

0,t − βgfQ,t ∀f /∈ F, (13j)

K
∑

k=1

γk,tQ
f
k,t ≤ Qf

0,t ∀f ∈ F, (13k)

K
∑

k=1

γk,tY
L
k,t ≥ YL

0,t + βgL
y,t, (13l)

K
∑

k=1

γk,t = 1. (13m)
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In line with the literature (e.g. Chambers et al. (1996b)), we select gx,t = Xt and
gy,t = Yt as the directional vectors. This choice of output direction ensures that
the directional distance function is feasible (Briec and Kerstens, 2009) and can
be interpreted as the maximum proportional contraction of variable inputs and
simultaneously as the maximum proportional expansion of outputs.

The directional distance function which allows for reallocation of land and the
process-specific budget is computed by solving the linear program:

Dt(X0,t,Y0,t; (X0,t,Y0,t)|R) = max
β,

λk,t,γk,t≥0,

XC
0,t,X

L
0,t≥0

β (14a)

s.t. (13a)− (13m) (14b)

XC,m
0,t +XL,m

0,t = Xm
0,t ∀m ∈ C (14c)

∑

∀i∈{1,...,NC}\C

pC,i
0,tX

C,i
0,t +

∑

∀j∈{1,...,NL}\C

pL,j0,t X
L,j
0,t = PEXP0,t

(14d)

The crop-specific (XC
0,t) and livestock-specific (XL

0,t) inputs are additional choice
variables in this linear program. The additional constraints ensure that the sum
of the optimal crop land and livestock land is equal to the total land area and
that the process-specific budget can be optimally redistributed over the crop and
livestock activities. Consider the following example to see why this redistribution
of the process-specific budget is necessary: it would make little sense for a fully
specialised livestock farm to diversify into crops without this reallocation of the
budget, for he would not be able to buy the necessary seeds for his crop land (i.e.
XC,m

0,t = 0 in (13a)). Therefore, he must be able to reallocate part of his budget to

crop specific inputs (such that XC,m
0,t > 0). An analogous reasoning holds for a fully

specialised crop farm3. Note that we implicitly assume that land is immediately
reallocatable and costless.4

3In exceptional cases, this budget constraint may lead to Da(X0,b,Y0,b;gb|R) <
Da(X0,b,Y0,b;gb|NR) for (a, b) ∈ {t, t+ 1} × {t, t+ 1} and a 6= b if the technically efficient
allocations fall outside the budget constraint. One can solve this by using expenditures instead
of (implicit) quantities, as prices are effectively equal to unity when using expenditures. However,
using expenditures conflates technical and behavioural efficiency.

4This assumption can be weakened by assuming that reallocation leads to temporary reduc-
tions in production. We refer to Oude Lansink and Stefanou (2001), Nemoto and Goto (1999,
2003) and Silva and Stefanou (2003, 2007) for specific examples to model these adjustment costs.
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4 Empirical Application

4.1 Data description

Our empirical application focusses on a large sample of specialised and mixed farms
in England and Wales. We obtain data from the Farm Business Survey (FBS)
dataset covering the period 2007 − 2013. The FBS dataset provides statistically
representative, farm-level information on economic and physical characteristics.
The farms remain in the panel for a maximum of on average 5 − 7 years. To
model the complex production processes on the farm in a detailed way, this paper
exploits the rich characterisation of outputs and inputs of the FBS dataset. We
distinguish 2 outputs, 12 variable inputs and 6 fixed factors. The outputs are crop
production and livestock production. Joint non-reallocatable variable inputs are
energy use, water use, hired labour and other inputs (costs on insurance, bank
charges, professional fees, vehicle tax and other general farming costs). Crop-
specific inputs are seed and young plants, fertilisers, crop protection and other
variable crop costs. Livestock-specific inputs are bought feed and fodder, veteri-
nary costs and medicine, and other livestock costs and the non-marketed crop out-
put used as feed. Family labour and joint capital costs are joint non-reallocatable
fixed factors. Aggregated crop-specific capital costs (permanent crops, debtors of
crop subsidies, off-farm grain storage, crops, cultivations and stores) and livestock-
specific capital costs (livestock and forage) are crop- and livestock-specific fixed
factors, respectively. Crop land and livestock land are assumed to be reallocat-
able among the outputs. Except for (hired and family) labour and land, which
are measured in annual working hours and hectares, respectively, all inputs and
outputs are measured in £. We compute implicit quantities of outputs and capital
costs by calculating the ratio of value to the respective price index. We aggregate
the monetary crop-specific, livestock-specific and joint variable inputs as implicit
quantities by computing the ratio of their aggregated value to their correspond-
ing aggregated Törnqvist price index. Price indices vary over the years but not
over the farms, implying that differences in the composition or quality of inputs
and outputs are reflected by differences in implicit quantity (Cox and Wohlgenant,
1986). The separate price indices are obtained from the Eurostat (2015) database.

Data Envelopment Analysis (DEA) is sensitive to different environmental con-
ditions (e.g. weather conditions), outliers and measurement errors. We address
these drawbacks as follows. First, we control for environmental differences by
separately running the DEA models per region. East Midlands (EM), East of
England (EE), South East (SE), North East (NE), North West (NW), Yorkshire
& the Humber (YH), South West (SW), West Midlands (WM) and Wales (WA) are
the considered regions. Second, we remove influential outliers using the approach
developed by Banker and Chang (2006). We run DEA model (14) for each observa-
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tion by excluding the observation itself from the reference technology. Outliers are
situated well outside the adjusted reference technology and appear ’super-efficient’
(Banker and Chang, 2006) with a score substantially below zero. We only include
the observations with a Dt(·|NR) between the 5 and 95 percentile5. Since we
explicitly account for heterogeneous technologies in our specification, we include
specialised as well as mixed farms in our analysis. The eventual dataset contains
12, 738 observations for a period of seven years.

Table 1 shows the descriptive statistics of the variables used in the analysis.

Variables Dimensions Average Std. Dev.
Crop-specific variable inputs XC

t £ 47,731 144,414
Livestock-specific variable inputs XL

t £ 15,160 28,083

Non-labour joint variable inputs Qf
t , f /∈ F £ 19,894 36,630

Hired labour Ann. Working Hours 4,977 15,592

Family labour Qf
t , f ∈ F Ann. Working Hours 2,631 969

Joint capital £ 1,086,669 1,505,083

Crop-specific capital XC,m
t , m /∈ C £ 85,416 250,381

Livestock-specific capital XL,m
t , m /∈ C £ 90,660 104,562

Crop land XC,m
t , m ∈ C Hectares 131 334

Livestock land XL,m
t , m ∈ C Hectares 224 286

Total crop output Y C
t + ZC

t £ 94,271 323,051
Crop output used as feed ZC

t £ 2,449 7,781
Livestock output Y L

t £ 165,403 376,680

Table 1: Descriptive statistics of variables

4.2 Static analysis: decomposing technical inefficiency

Table 2 presents the results of the static analysis of coordination inefficiency, CI,
technical inefficiency when process-specific inputs over crops and livestock are
optimally chosen, Dt(Xt,Yt;gt|R), and technical inefficiency when reallocation
of process-specific inputs is not allowed, Dt(Xt,Yt;gt|NR)6. Dt(Xt,Yt;gt|NR)
ranges from 0.044 (in NE) to 0.131 (in WA). Considering our specification of
directional vectors, this means that farms in NE and WA could simultaneously
expand their output levels and contract their input levels by on average 4.4%
and 13.1%, respectively if their land use would remain fixed. These regions also
provide the lowest (0.092) and highest (0.194) corresponding Dt(Xt,Yt;gt|R) if

5Infeasibilities may appear when the considered observation has a peer with a projected
negative output. Ray (2008) shows that these observations then have a score of lower than -0.5.
We treat these observations as outliers.

6We only include the arithmetic averages to conserve space, but yearly results are available
from the authors upon request.
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land use would be optimally reallocated. The wedge between Dt(Xt,Yt;gt|R)
and Dt(Xt,Yt;gt|NR), CI, is on average small and ranges from 0.036 (in EM) to
0.063 (in WA and WM). Thus, several regions may reduce technical inefficiency
by optimally diverting land use to livestock and crops.

This table also analyses the differences in CI,Dt(Xt,Yt;gt|R) andDt(Xt,Yt;gt|NR)
among livestock farms (crop production covers 0-33% of total utilised land area),
mixed farms (livestock production/crop production covers 33-66% of total utilised
land area) and crop farms (livestock production covers 0-33% of total utilised land
area).

Table 2 shows a clear pattern in differences in CI regarding farm types. CI in
livestock farms is higher than CI in crop farms. CI in mixed farms is higher (lower)
than CI in crop (livestock) farms. Specialisation in crop production thus leads
to reduction in coordination inefficiency and better allocation of process-specific
inputs. In what follows, we discuss the results that are significant at the 10% level
using the Wilcoxon rank test (see Table 5 in the Appendix). CI is significantly
higher in livestock farms than in crop farms for all regions. Livestock farms have
a significantly higher CI than do mixed farms in NW, SW and WA. In EM, CI
is significantly higher in mixed farms than in livestock farms, but the difference is
very small (0.006). In the majority of regions (EE, EM, NW, SE, SW and WM),
CI is higher in mixed farms than in crop farms. In summary, these differences in
CI are not only statistically significant, but also economically significant.

Turning to the non-reallocative directional distance function Dt(·|NR), no such
pattern is present: in some regions (NW, SE, SW, WA, WM and YH) Dt(·|NR) of
livestock farms is higher than for crop farms, while in others (EE, EM and NE) the
opposite holds. This result is significant for the majority of the regions. Similar
ambiguity holds for comparing mixed farms to specialised farms.

These inefficiencies are generally lower than those found in the efficiency liter-
ature on agriculture in the United Kingdom7. However, it is difficult to compare
our results with those in the literature. All previous results use radial measures
focussing solely on input reductions or output expansions. In addition, all (but
Hadley et al. (2013)) employ Stochastic Frontier Analysis where part of the ineffi-
ciency is explained as random noise. Finally, previous studies use a subsample of
our sample by only focussing on one type of farms or using data spanning different
periods.

Table 3 and Figure 2 analyse the land use changes that are associated with
eliminating coordination inefficiency. If CI = 0, farms do not need to change land
use (n.). If CI > 0, (14) also allows us to compute the optimal land allocations.
Farms should then either allocate more land to livestock (-) or crops (+). Inter-

7Similar studies were conducted by Areal et al. (2012); Hadley (2006); Hadley et al. (2013);
Karagiannis et al. (2002, 2004); Wilson et al. (2001).

14



Region Total sample Livestock Mixed Crops

EE
CI 0.037 0.073 0.057 0.027

Dt(·|R) 0.139 0.145 0.164 0.138
Dt(·|NR) 0.102 0.071 0.107 0.110

EM
CI 0.036 0.046 0.052 0.030

Dt(·|R) 0.095 0.086 0.138 0.099
Dt(·|NR) 0.059 0.040 0.085 0.070

NE
CI 0.048 0.049 0.050 0.044

Dt(·|R) 0.092 0.093 0.114 0.089
Dt(·|NR) 0.044 0.044 0.064 0.045

NW
CI 0.044 0.048 0.044 0.025

Dt(·|R) 0.112 0.122 0.105 0.069
Dt(·|NR) 0.069 0.074 0.061 0.044

SE
CI 0.042 0.063 0.050 0.028

Dt(·|R) 0.112 0.137 0.136 0.095
Dt(·|NR) 0.070 0.074 0.086 0.067

SW
CI 0.053 0.059 0.048 0.036

Dt(·|R) 0.175 0.186 0.185 0.145
Dt(·|NR) 0.122 0.127 0.137 0.109

WA
CI 0.063 0.064 0.038 0.034

Dt(·|R) 0.194 0.196 0.087 0.069
Dt(·|NR) 0.131 0.132 0.049 0.035

WM
CI 0.063 0.073 0.069 0.043

Dt(·|R) 0.170 0.192 0.184 0.131
Dt(·|NR) 0.108 0.119 0.115 0.087

YH
CI 0.048 0.053 0.039 0.043

Dt(·|R) 0.100 0.105 0.117 0.093
Dt(·|NR) 0.052 0.053 0.078 0.051

Table 2: Average static coordination inefficiency per region and level of speciali-
sation
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estingly, the required reallocation is considerably skewed towards more crop land
use. For almost every region, there is a higher proportion of farms that would
need to allocate more land to crops than to livestock. This holds for livestock
farms, mixed farms as well as crop farms. This implies gains from specialisation
(diversification towards mixed farming) for crop (livestock) farms. This confirms
the above finding that livestock farms have more scope to reduce inefficiency by
reallocating process-specific inputs.

These results hold only to a much lesser extent to WA, where the majority of
farms (63.6%) should not change their land allocation although the overwhelming
majority of farms are livestock farms.

region Livestock Mixed: 50− 66% Livestock Mixed: 50− 66% Crops Crops
- n. + - n. + - n. + - n. +

EE 0.022 0.078 0.099 0.014 0.000 0.040 0.015 0.004 0.066 0.118 0.080 0.465
EM 0.036 0.172 0.170 0.039 0.008 0.043 0.037 0.005 0.049 0.106 0.051 0.285
NE 0.132 0.279 0.308 0.023 0.002 0.055 0.028 0.010 0.036 0.051 0.011 0.065
NW 0.123 0.381 0.315 0.018 0.002 0.021 0.010 0.002 0.014 0.026 0.024 0.064
SE 0.068 0.135 0.192 0.049 0.002 0.061 0.041 0.001 0.079 0.093 0.082 0.199
SW 0.114 0.281 0.331 0.034 0.002 0.061 0.019 0.002 0.044 0.022 0.031 0.059
WA 0.169 0.636 0.182 0.005 0.001 0.003 0.002 0.000 0.000 0.000 0.000 0.001
WM 0.062 0.233 0.349 0.021 0.002 0.071 0.027 0.004 0.046 0.044 0.027 0.116
YH 0.072 0.227 0.251 0.040 0.005 0.029 0.025 0.005 0.026 0.115 0.032 0.174

Table 3: Share of farms that should allocate more land to livestock (-), crops (+)
or which mix should remain unchanged (n.) (averaged over all years)

4.3 Dynamic analysis: decomposing Luenberger produc-

tivity growth

Table 4 presents the average coordination Luenberger productivity growth and
its decomposition into coordination technical change ∆CT and coordination inef-
ficiency change ∆CI for all regions. The chosen directional vectors ensure that
all contemporaneous DEA scores are feasible. Infeasibilities may arise for the
components where the time period of the observation differs from the time pe-
riod of the reference technology. No easy solutions exist to avoid infeasibilities.
Briec and Kerstens (2009) therefore recommend to simply report the number of
infeasibilities (Table 7 in the Appendix). The share of infeasibilities is very to
moderately small, ranging from 4.67% to 23.67%.

Depending on the region, average Lt,t+1(NR) per year ranges from −29.5%
to 8.8%. Whereas annual average productivity declines in EM (−29.5%), NE
(−3.3%), SE (−7.3%), SW (−1.1%) and YH (−4.1%), it increases in EE (4.9%),
NW (8.8%), WA (0.8%) and WM (1.7%). The average coordination Luenberger
productivity growth ranges from −9.7% to 15.9%, depending on the region. This is
driven by ∆CT rather than ∆CI. The ability to reallocate process-specific inputs
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Figure 2: Distribution of optimal and actual land allocation in function of the
proportion of land allocated to crops
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over time does not change substantially, whereas changes in the technology due to
reallocation plays an important role.

In what follows, we only discuss the results that are statistically significant
at the 10% level according to the Kolmogorov-Smirnov test reported in Table 6
in the Appendix. Except for WM and YH, there are no significant differences
in distribution of Lt,t+1(NR) according to farm types. In contrast, the distribu-
tions of CLt,t+1 differ according to farm types, although the sign of the statistical
dominance is unclear in all regions except for NE.

Figure 3 shows the average coordination Luenberger productivity growth over
time for each region. In every region, CLt,t+1 is driven by ∆CT . Several large
fluctuations occur for CLt,t+1 and ∆CT between some years, which may be caused
by weather conditions or by a few frontier farms that drive ∆CT .

regions
EE EM NE NW SE SW WA WM YH

Lt,t+1(NR) 0.049 -0.295 -0.033 0.088 -0.073 -0.011 0.008 0.017 -0.041
Lt,t+1(NR) for livestock farms -0.009 -0.165 -0.035 0.107 -0.031 -0.017 0.007 0.015 0.044
Lt,t+1(NR) for mixed farms -0.025 -1.364 -0.004 -0.037 -0.191 -0.001 0.083 -0.017 -0.012
Lt,t+1(NR) for crop farms 0.061 -0.374 -0.028 -0.015 -0.095 0.005 0.083 0.021 -0.135
CLt,t+1 -0.072 0.159 0.019 -0.097 0.059 0.008 -0.006 0.051 0.014
CLt,t+1 for livestock farms -0.042 0.043 0.029 -0.112 0.027 0.014 -0.006 0.086 -0.048
CLt,t+1 for mixed farms -0.003 0.856 -0.030 -0.004 0.183 -0.005 -0.061 0.029 -0.015
CLt,t+1 for crop farms -0.079 0.228 -0.008 -0.013 0.077 -0.007 -0.061 -0.016 0.083
∆CT -0.072 0.161 0.015 -0.094 0.058 0.008 -0.002 0.056 0.016
∆CT for livestock farms -0.041 0.045 0.027 -0.111 0.026 0.015 -0.002 0.093 -0.045
∆CT for mixed farms 0.002 0.865 -0.046 0.017 0.179 -0.010 -0.059 0.026 -0.014
∆CT for crop farms -0.078 0.231 -0.016 -0.004 0.075 -0.012 -0.059 -0.015 0.084
∆CI -0.001 -0.003 0.004 -0.002 0.001 0.000 -0.004 -0.005 -0.002
∆CI for livestock farms -0.001 -0.002 0.002 -0.001 0.001 -0.001 -0.004 -0.007 -0.003
∆CI for mixed farms -0.004 -0.009 0.016 -0.021 0.004 0.004 -0.001 0.003 -0.001
∆CI for crop farms -0.001 -0.003 0.009 -0.009 0.002 0.004 -0.001 -0.001 -0.000

Table 4: Average Luenberger productivity change and its components

5 Conclusions

This paper develops a nonparametric measure of coordination Luenberger produc-
tivity growth where the subprocesses are explicitly modelled in the production
technology. This indicator allows us to assess the change in the farmers’ ability
to allocate inputs over crop and livestock outputs over time. Focussing on a large
panel of English and Welsh farms over the period 2007− 2013, this paper demon-
strates how better coordination of process-specific inputs may increase efficiency
and productivity. We decompose coordination Luenberger productivity growth
into coordination technical change and coordination inefficiency change. We ac-
count for heterogeneous production technologies by computing the efficiency and
productivity measures separately per region.
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The static analysis shows a clear pattern: crop farms have a lower coordi-
nation inefficiency than livestock farms, i.e. they allocate their process-specific
inputs more adequately. This result is statistically significant across all regions.
Furthermore, coordination inefficiency in mixed farms is higher (lower) than co-
ordination inefficiency in crop (livestock) farms. Coordination efficiency gains are
associated with allocating more land use to crop production. In contrast, no such
pattern exists considering the results for the non-reallocative directional distance
function, which is nowadays the standard way of measuring technical inefficiency.
This demonstrates that richer modelling of subprocesses uncovers an additional
source of inefficiency due to misallocation of resources.

According to the dynamic analysis, average non-reallocative Luenberger pro-
ductivity growth per year ranges from −29.5% to 8.8%, with considerable differ-
ences across regions. The Kolmogorov-Smirnov test finds almost no significant
distributional differences in farm types. We further find that average coordina-
tion Luenberger productivity growth ranges from −9.7% to 15.9%, depending on
the region. This is driven by coordination technical change rather than coordina-
tion inefficiency change. The ability to reallocate process-specific inputs over time
does not change substantially, whereas changes in the technology due to reallo-
cation plays an important role. The Kolmogorov-Smirnov test shows significant
distributional differences in farm types, which contrasts the findings regarding the
non-reallocative Luenberger productivity indicator. However, we find inconclusive
evidence which farm type stochastically dominates. Again, modelling subprocesses
and allowing for reallocation reveal differences in optimally allocating resources
over time. These differences are linked to heterogeneity in production technologies
of different farm types.

Although researchers and policy makers identified an interest in stimulating
mixed agriculture due to its environmental benefits, our results indicate that cau-
tion is required. Since coordination efficiency gains are generally associated with
more crop production for all farm types, one should stimulate mixed farming in
livestock farms rather than crop farms. However, this does not necessarily imply
that crop farms are more able at optimally allocating resources over time.

We have several recommendations for future research. First, we recommend
to open the black-box of efficiency and productivity by explicitly modelling the
subprocesses. This can guide decision makers in coordinating the subprocesses
to enhance efficiency and productivity. Second, this framework can be extended
by including stochastic factors. Agricultural production is impacted by weather
conditions, which cannot be influenced by the farms through choices of inputs
and outputs. Efficiency is biased downwards (upwards) under bad (good) weather
conditions. We have controlled for this issue by running the nonparametric mod-
els per region. This problem can be dealt with in a more structural way by
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using Stochastic Frontier Analysis or making DEA conditional on environmen-
tal variables (de Witte and Kortelainen, 2013; Jeong et al., 2010). Finally, this
framework can be augmented by taking into account intertemporal linkages. For
instance, manure from livestock enterprises can be modelled as future inputs of
crop production. Applied to the context of English and Welsh agriculture, this
will be possible as more and more fertiliser surveys will be made available.
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A Appendix: Additional Tables

Region
EE EM NE NW SE SW WA WM YH

CI

Livestock - Mixed 0.227 0.028 0.920 0.057 0.676 0.016 0.001 0.752 0.346
Livestock - Crops 0.000 0.000 0.069 0.000 0.000 0.000 0.000 0.000 0.003
Crops - Mixed 0.000 0.000 0.228 0.008 0.000 0.000 0.692 0.000 0.278

Dt(·|R)
Livestock - Mixed 0.117 0.000 0.166 0.097 0.274 0.903 0.000 0.673 0.489
Livestock - Crops 0.583 0.111 0.627 0.000 0.000 0.000 0.000 0.000 0.299
Crops - Mixed 0.127 0.001 0.130 0.024 0.000 0.000 0.673 0.001 0.197

Dt(·|NR)
Livestock - Mixed 0.000 0.000 0.089 0.357 0.016 0.263 0.000 0.935 0.030
Livestock - Crops 0.000 0.000 0.648 0.000 0.728 0.001 0.000 0.001 0.908
Crops - Mixed 0.550 0.072 0.083 0.060 0.013 0.001 0.762 0.011 0.038

Table 5: P-values of Wilcoxon rank test

Region
EE EM NE NW SE SW WA WM YH

Lt,t+1(NR)
Livestock - Mixed 0.553 0.547 0.547 0.147 0.917 0.835 0.291 0.061 0.640
Livestock - Crops 0.274 0.254 0.183 0.123 0.957 0.563 0.291 0.148 0.046
Crops - Mixed 0.993 1.000 1.000 0.722 0.998 1.000 1.000 0.980 0.812

CLt,t+1

Livestock - Mixed 0.179 0.410 0.338 0.784 0.073 0.334 0.037 0.102 0.515
Livestock - Crops 0.000 0.000 0.846 0.090 0.000 0.001 0.037 0.002 0.017
Crops - Mixed 0.001 0.003 0.995 0.330 0.014 0.091 1.000 0.366 0.799

∆CT

Livestock - Mixed 0.149 0.878 0.503 0.338 0.202 0.080 0.049 0.501 0.626
Livestock - Crops 0.000 0.000 0.603 0.005 0.000 0.000 0.049 0.002 0.008
Crops - Mixed 0.002 0.001 0.885 0.083 0.027 0.107 1.000 0.564 0.202

∆CI

Livestock - Mixed 0.154 0.437 0.313 0.548 0.985 0.082 0.229 0.648 0.743
Livestock - Crops 0.000 0.001 0.587 0.020 0.001 0.000 0.229 0.001 0.068
Crops - Mixed 0.059 0.002 0.894 0.271 0.016 0.067 1.000 0.496 0.962

Table 6: P-value of Kolmogorov-Smirnov test of non-reallocative Luenberger pro-
ductivity growth, coordination Luenberger productivity growth, coordination tech-
nical change and coordination inefficiency change.
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Region Dt+1(Xt,Yt;gt|NR) Dt(Xt+1,Yt+1;gt+1|NR) Dt+1(Xt,Yt;gt|R) Dt(Xt+1,Yt+1;gt+1|R)
EE 14.06 13.75 8.97 8.61
EM 13.67 13.99 10.32 9.36
NE 21.63 16.79 15.75 12.26
NW 14.95 13.52 11.42 9.66
SE 16.92 11.70 12.10 8.09
SW 9.52 9.18 7.84 6.84
WA 6.92 9.49 4.67 7.05
WM 18.49 12.71 14.17 8.55
YH 23.67 17.11 18.35 12.62

Table 7: Share of infeasibilities over all years (in %)
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