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Abstract 

Low income households, especially in the developing countries such as India could suffer losses 

due to weather related events such as drought, hurricanes, floods etc. Such losses could cast a 

household into a chronic poverty cycle - a poverty trap from which the household may find it 

difficult to re-emerge. Rainfall derivatives are the insurance contracts that compensate a household 

based on the weather outcome rather than the actual crop yield. Traditional methods for pricing 

rainfall derivatives include burn analysis, index value simulation and daily rainfall simulation. In 

this work, we price the rainfall derivatives using a different method that uses the Gaussian and t 

copulas to capture the dependence between the monthly rainfalls in the monsoon season in India.  

We find that though the premiums calculated using burn analysis and our proposed method were 

equal, the standard deviation and Value at Risk “VaR” of the insurance payoffs calculated using 

both the methods differed. Therefore, in practice, the actuarial pricing of the rainfall insurance 

contract using burn analysis and our proposed method could be different. Our method could be 

easily applied to price rainfall derivatives for the regions that exhibit extreme rainfall patterns. 
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1. Introduction 

Low income households especially in the developing countries such as India could suffer losses 

due to weather related events such as drought, hurricanes, floods etc. that could cast a household 

into a chronic poverty cycle - a poverty trap from which the household may find it difficult to 

remerge (Barnett et. al. 2008, Gien et. al. 2010). In a survey conducted by Gien et. al. (2010) in 

the Indian state of Andhra Pradesh, 89% of surveyed farmers indicated drought as the most 

important risk faced by them. Unfortunately, drought risk tends to be a locally systematic risk i.e. 

the drought tends to affect most households in an area simultaneously. Thus an affected household 

is less likely to get support from the family, friends or nearby households in a drought situation. 

But the risk exposure of a household to the drought is actually diversifyable because a drought 

based weather risk is less likely to be strongly correlated with the systematic risk factors such as 

the stock index returns.  Thus financial markets could be tapped to manage the weather risk.  A 

traded rainfall insurance contract could help households reduce their weather risk by providing a 

payoff when the rainfall is deficient (Skees et. al. 2002). 

India launched its first individual crop yield insurance scheme in the year 1972-73. The scheme 

was launched by the General Insurance Department of Life Insurance Corporation of India for the 

H-4 cotton (Singh 2010). After the Comprehensive Crop Insurance Scheme (CCIS) in 1985, 

Government of India launched National Agricultural Insurance Scheme (NAIS) in 1999. NAIS 

provided insurance against the crop yield losses due to variety of risks such as drought, fire, storm, 

pest etc. The scheme operated on a small defined area such as a village or a district as defined by 

the state government and the state administration assessed the crop yields and compensated the 

affected farmers. By 2008, the government had paid about 8% of the premium as subsidies and 

claims were 2.8 times the premium collected (Singh 2010). Despite the government subsidy the 

scheme did not achieve desired success largely due to an inefficient insurance design and the 

delays in the claim settlements (Clarke et. al. 2012).  Crop yield based schemes such as NAIS are 

plagued with the problems of moral hazard where the farmer’s behaviour could influence the crop 

yield which in turn determines the insurance payout and adverse selection due to asymmetric 

information where some farmers who are better aware of their lower risk voluntarily opt out of the 

insurance scheme. Furthermore, the assessment of the crop yield loss could be an administratively 

expensive process. As the local area level losses are not accurately measurable, crop yield based 

insurance products may not effectively use the financial markets for risk transfer or avail of the 

international reinsurance (Manuamorn 2005). 

A different approach to the crop insurance is to compensate the farmers based on the weather 

outcomes such as the extent of rainfall rather than the actual crop yields. Weather Index Insurance 

are contingent claims or derivatives where the payoff is a function of a weather parameter such as 

rainfall, temperature, humidity etc. as recorded at a specified local weather station. As the payoff 

of such a weather index insurance is dependent on an objective and transparent information, issues 

of moral hazard and adverse selection are substantially ameliorated and administrative costs are 
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also reduced as a local crop yield assessment is no longer necessary. Hence the claim settlement 

is not delayed as well (Manuamorn 2005). Furthermore, such weather index based contracts could 

be traded in the financial markets and these contracts could thus provide risk diversification 

opportunities to the other market participants as well. The tacit assumption underlying the weather 

index insurance is that the weather parameter such as rainfall which is the underlying, is highly 

correlated with the crop yield. After all the farmers need to be insured against the loss in the crop 

yield and not the weather parameter. The risk of insufficient correlation between the weather index 

and the actual crop yield in a region is called “Basis Risk” (Clarke et. al. 2012). Innovative ways 

such as blending of weather index insurance with rural finance needs to be found to mitigate the 

basis risk for sustained demand for weather index insurance (Manuamorn 2005). 

The first Rainfall Insurance3 product in India was introduced in 2003 by ICICI – Lombard General 

Insurance Company for Groundnut and Castor farmers of BASIX’s4 association in Mahabubnagar 

district of the Indian state of Andhra Pradesh (Clarke et. al. 2012). Then in 2007, the Government 

of India introduced its own Weather Based Crop Insurance Scheme (WBCIS). 

Analysis of any weather derivative requires performing following three steps (Musshoff et. al. 

2007): 

1. Measuring relation between the weather variable and the crop yield 

2. Statistical modelling of the weather variable - in our case rainfall 

3. Developing a theoretically consistent pricing model 

 

Our paper is structured as follows: In section 2 we try to answer the question if the rainfall affects 

the crop yields? In Section 3 we explore some relevant literature and methodologies for pricing 

rainfall insurance. In section 4, we describe a typical structure for the rainfall insurance and 

statistically model the rainfall variable. Then we price June, July and August rainfall insurance 

sub-contracts analytically. In section 5 we price the rainfall insurance contract using simple Monte 

Carlo technique and use Gaussian and t Couplas to capture rainfall dependence between the 

monsoon months. In section 6 we conclude. 

 

  

                                                           
3 We use the terms “Rainfall Index Insurance” and “Rainfall derivative” interchangeably in this work  
4 BAXIS is an association of Hyderabad – India based companies that provide financial services and technical 
assistance to the rural poor. 
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2. Data and the impact of rainfall on the crop yield 

The rains in India are seasonal and the south west monsoon season starts every year from the month 

of June and continues up till September. “Kharif” crops are the crops sown and harvested during 

this monsoon season5. The extent of monsoon rains and the cultivated Kharif crops vary from state 

to state in India. In this work, we focus on the state of Andhra Pradesh in India and analyse the 

rainfall derivative for the Mahabubnagar district in Andhra Pradesh. We define “Total Kharif 

rainfall” as the cumulative rainfall from June to September for the purpose of this study. 

Following table lists the data used in our work: 

 

Table 1: Data table6 

 

 

Rice (~ 32% of the cultivated area), Bajra (11%), Cotton (9%), Soyabean (7%) and Groundnut 

(7%) are the top five Kharif crops by the cultivated area (in hectares) in Andhra Pradesh from 1998 

to 2009. The ranking of the top five Kharif crops in the district of Mahabubnagar namely Castor 

seed (21%), Jowar (13%), Rice (13%), Maize (13%) and Cotton (10%); differs from that in the 

state as a whole. Annexure 1 provides a detailed crop yield summary for both the state - Andhra 

Pradesh and the district - Mahabubnagar. 

Figure 1 below depicts the distribution of the monthly rainfall in Mahabubnagar district from 1901 

to 2010. The seasonality of the rainfall in the region is prominent. The average total rainfall in the 

Kharif season was ~ 479 mm and the average rainfall peaked at ~ 159 mm in September. The 

maximum and minimum rainfall during Kharif season was 765 mm and 256 mm respectively. The 

standard deviation of the rainfall during Kharif season was 121 mm and the Kurtosis was absent. 

 

                                                           
5 The monsoon season is also described as Kharif season. 
6 Data from http://www.indiawaterportal.org/; https://data.gov.in/catalog/district-wise-season-wise-crop-
production-statistics; ftp://www.tropmet.res.in/pub/data/rain/iitm-regionrf.txt; “Rabi” season crops are sowed 
and harvested in the winter months. 

Data Region Period Frequency

Kharif and Rabi crop production in 

tons and Area of cultivation in 

hecters

All districts of Andhra Pradesh - 

India

1998 - 2009 Seasonal

Rainfall and Temperature All India 1901- 2007 Monthly

Rainfall All districts of Andhra Pradesh - 

India

1998 - 2009 Monthly

Rainfall Mahabubnagar district of Andhra 

Pradesh - India

1901 - 2010 Monthly

Covariance Analysis: Ordinary   

Included observations: 110   
     
     Correlation    

t-Statistic    

Probability JUN  JUL  AUG  SEP  

JUN  1.000000    

 -----     

 -----     

     

JUL  -0.043018 1.000000   

 -0.447468 -----    

 0.6554 -----    

     

AUG  0.196250 0.088126 1.000000  

 2.079934 0.919410 -----   

 0.0399 0.3599 -----   

     

SEP  0.001112 0.106749 -0.077912 1.000000 

 0.011553 1.115743 -0.812153 -----  

 0.9908 0.2670 0.4185 -----  
     
     
 

http://www.indiawaterportal.org/
https://data.gov.in/catalog/district-wise-season-wise-crop-production-statistics
https://data.gov.in/catalog/district-wise-season-wise-crop-production-statistics
ftp://www.tropmet.res.in/pub/data/rain/iitm-regionrf.txt
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Figure 1: Monthly rainfall in Mahabubnagar district from 1901- 2010 

 

 

 

The primary objective of rainfall derivatives is to hedge the crop yield (Crop production / 

Cultivated Area, kg/hectare) risk of the farmers that arise due to the deficient or excess rainfall. 

Studies by Prassanna (2014) and Auffhammer, Ramanathan and Vincent (2011) have found a 

positive impact of rainfall on the crop yields in India. We first perform a panel regression to test if 

the total Kharif rainfall has any explanatory power to explain the Kharif crop yields of 31 crops in 

22 districts in the state of Andhra Pradesh in India from 1998 up till 20097.  

We test the following regression model: 

𝑦𝑖𝑗𝑡 = 𝛼 + 𝜷𝑿𝒊 + 𝜸𝒁𝒋 + 𝜑𝑡 + 𝜔𝑅𝑇𝑜𝑡𝑘ℎ,𝑗𝑡 + 𝜀𝑖𝑗𝑡 

 

Where 𝑦𝑖𝑗𝑡 is the Kharif crop yield of crop i in the district j in the year t, 𝑿𝒊 and 𝒁𝒋 are vectors of 

dummy variables for crop types and districts respectively, 𝜷  and 𝜸  are the corresponding 

parameter vectors, 𝜑 is the parameter on the annual time trend, 𝜔 is the parameter on the 𝑅𝑇𝑜𝑡𝑘ℎ,𝑗𝑡 

                                                           
7 We exclude the year 2003 from our analysis as we do not have the rainfall data for this year. But for the time 
series analysis (table 3 and 7), June to September monthly rainfalls in the year 2003 are substituted with the 
corresponding June to September average monthly rainfalls estimated using rainfall data from 1901 up till 2002. 
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Average Kharif Rainfall

Month Rainfall, 

mm

% of Kharif 

Rainfall

June 85.85        18%

July 113.69     24%

August 119.69     25%

September 159.65     33%

Total 478.88     
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which is the total Kharif rainfall in district j in the year t and 𝜀𝑖𝑗𝑡 is the error term. The F statistic 

of this panel regression is statistically significant, F = 699, p- value ~ 0 and the adjusted R2 = 0.96. 

The parameter on the annual time trend, 𝜑 is not significant but the parameter on the total Kharif 

rainfall, 𝜔 is significant with the t value of 2.25 and a p-value of 0.02, indicating that the total 

Kharif rainfall has a significant impact on the crop yields. The detailed results are presented in the 

Annexure 2. 

Due to the basis risk, crop insurance needs to be designed for a specific crop in a given district. 

Thus we now analyse if the total Kharif rainfall in the Mahabubnagar district explains the variance 

in the crop yields of various crops in the Mahabubnagar district. We test the following regression 

model for six major crops (selected based on their rank by the hecters cultivated, except Groundnut 

which is included in the analysis because the first rainfall index insurance was launched for 

Groundnut in the Mahabubnagar district): 

𝑦𝑡 = 𝛽𝑜 + 𝛽1𝑅𝑇𝑜𝑡𝑘ℎ,𝑡 + 𝜀𝑡 

Where 𝑦𝑡  is the yield of a crop and 𝑅𝑇𝑜𝑡𝑘ℎ,𝑡  is the total Kharif rainfall in the year t in the 

Mahabubnagar district and 𝜀𝑡  is the error term. Table 2 below summarizes the results of the 

regression analysis. 

 

Table 2: Impact of total Kharif rainfall on the crop yields of major crops in the 

Mahabubnagar district 

 

 

The regression analysis indicates that the rainfall derivatives could hedge the crop yield risk of 

Groundnut, Maize and to some extent, that of Jowar and Cotton. This lends support to the decision 

by ICICI – Lombard General Insurance Company of launching the insurance product first for the 

Groundnut crop.  

 

  

Slope Slope, t 

Value

Slope, P 

Value

Adjusted R2

Castor seed 0.32                       1.25          0.24          5.4%

Jowar 0.61                       1.99          0.08          23.0%

Rice 0.90                       1.32          0.22          6.9%

Maize 3.67                       2.32          0.05          30.5%

Cotton 1.05                       1.68          0.13          15.4%

Groundnut 1.22                       2.92          0.02          43.0%

Impact of Total Rainfall (Kharif) on Crop Yield in Mahabubnagar District
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3. Methodologies for pricing rainfall derivatives and literature review 

Despite its relevance to the agriculture, rainfall derivatives have been studied less often than the 

temperature derivatives (Jewson et. al. 2005). There are fundamental differences between the 

modelling of a rainfall stochastic process and a temperature stochastic process. Rainfall is more 

erratic and the rainfall distribution at any time is bound by zero. Figure 2 below compares the 

coefficient of variation (CV), a ratio of the standard deviation to the mean, of monthly rainfall and 

monthly temperature from the year 1901 up to 2007 in India. CV of the monthly rainfall is almost 

10 times higher than that of the monthly temperature. 

 

Figure 2: CV comparison of monthly rainfall and monthly temperature in India from 1901 

- 2007 

 

 

There are primarily three methods to price rainfall derivatives (Jewson et. al. 2005, Musshoff et. 

al., 2007): 

1. Burn analysis: This is a non-parametric method where in the payoff of the rainfall 

derivative is calculated directly from the collected historical rainfall data. This method is 

empirical and makes no assumption about the parametric distribution of the rainfall. 

 

2. Index value simulation: Under this method a parametric or a non-parametric distribution 

is fitted to the historical rainfall data and the fitted distribution is then used to randomly 

draw the values of the required rainfall index. The payoff of the rainfall derivative is then 

calculated from this simulated rainfall index. 
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3. Daily simulation: This method requires developing a statistical model of the underlying 

daily rainfall process. The rainfall index is then calculated from this daily simulated rainfall 

process and the payoff of the rainfall derivative is estimated from this calculated rainfall 

index. 

 

Turvey (1999) estimates the prices of various rainfall derivatives under the assumption that the 

rainfall index is normally distributed. Stoppa and Hess (2003) develop a methodology to construct 

a rainfall index that correlates with the crop yield. Cao, Li and Wei (2004) estimate the rainfall 

derivative payoff from a daily rainfall process. They estimate the probability of the daily rainfall 

using a Markov chain and model the severity of the rainfall using a Gamma distribution and a 

mixture of two exponential distributions. Husak, Michaelsen and Funk (2006) also use Gamma 

distribution to estimate the severity of monthly rainfall and combine the severity with the 

probability of the rainfall. Musshoff, Odening and Xu (2007) use a similar methodology as that 

proposed by Cao et. al. (2004) for modelling the daily rainfall process. They study the hedging 

effectiveness of rainfall derivatives in mitigating wheat yield risk in northeast Germany and find 

that the daily models tend to underestimate the rainfall variability. Leobacher and Ngare (2009) 

propose a Markov Gamma model where in, they fit the Gamma distribution to the rainfall in every 

month and use a Gaussian copula to capture the correlation between two consecutive months. In 

their Markov model the rainfall is dependent only on the previous month. Cabrera, Odening and 

Ritter (2013) propose a daily rainfall model similar to that proposed by Cao et. al. (2004) and 

calculate the prices of rainfall derivatives using Esscher transforms.  

 

The model that we propose extends the previous works in the following two ways: 

1. We model rainfall over the Kharif season in a given year as a joint distribution of four 

monthly rainfall random variables, one each for four monthly rainfalls. We use copulas to 

capture the dependence between the four monthly rainfall marginal distributions. Each 

marginal distribution is assumed to be Gamma distributed and a copula couples these 

marginals to form a multivariate Kharif rainfall distribution. Thus in our model the rainfall 

in a given month may exhibit correlation with many months. 

2. We model the dependence between the marginal distributions using the Gaussian and the t 

copulas. A t copula also captures “thick tails” i.e. the risk of extreme floods or droughts. 

This higher risk of extreme events may not be captured using a Gaussian copula. 

 

Any rainfall derivative with the rainfall as an underlying would be priced in the incomplete markets 

because the underlying rainfall or an index based on rainfall is not a tradable asset; hence a 
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replicating portfolio cannot be built using such an underlying. Thus there is no unique price for a 

rainfall derivative. But if the markets were liquid, in order to avoid arbitrage opportunities, the 

rainfall derivatives if traded in the market, may satisfy some internal consistency relationship 

between them. But currently the rainfall derivatives are not traded in India, hence the market price 

of rainfall risk (weather risk) is not easily known. If the rainfall risk were assumed to be not 

diversifyable, the insurer could price the rainfall derivative using the standard Utility Principle 

(Delbaen et. al. 1989, Embrechts 1996, Gerber et. al. 1998, Hamisultane 2008, Shah et. al. 2015). 

Under this principle the total premium for underwriting a rainfall derivative will be such that the 

utility of the initial wealth of the insurer is same as the expectation of the utility of the summation 

of the initial wealth and the premium charged less the expected payoff under the rainfall derivative.  

Musshoff et. al. (2007) observe negligible correlation between the rainfall index and the stock 

market returns and hence they assume that the rainfall risk is not a systematic risk and the market 

price of rainfall risk is zero. Hull (2009 pg. 791) suggests a similar approach as well. Cao and Wei 

(2004) on the other hand use the investor’s risk aversion level and the parameters governing the 

aggregate dividend process to calculate a non-zero market price of the weather risk. 

Gine et. al. (2007) test the correlation between the Indian stock market returns and the rainfall 

insurance payouts and find that these two variables are not correlated. In this work, we also assume 

that the rainfall risk is idiosyncratic and diversifyable and thus the market price of the rainfall risk 

is zero. This assumption implies that the risk neutral distribution (Q measure) of the rainfall risk 

coincides with the real life distribution (P measure) of the rainfall risk. Thus the premium 𝜋(𝑡) 

charged by an insurer at the time t for underwriting a rainfall derivative is equal to the expectation 

of the discounted rainfall derivative payoff 𝑋(𝑇) at time T under the P measure. For a constant 

risk free interest rate r, 𝜋(𝑡) is given as (Bjork 2009): 

 

𝜋(𝑡) = 𝑒−𝑟(𝑇−𝑡)𝐸𝑡
𝑃(𝑋(𝑇)) 

 

This financial pricing approach is equivalent to the actuarial equivalence premium pricing 

principle (Bühlmann 1980, Mikosch 2009). For zero interest rate, the premium charged is given 

as: 

 

𝜋(𝑡) = 𝐸𝑡
𝑃(𝑋(𝑇)) 
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4. Structure of a rainfall insurance contract and modelling of the rainfall 

distribution 

In this section we analyse the structure of a rainfall insurance contract using the rainfall data of 

Mahabubnagar district. We assume that the rainfall in a given month is independent of that in the 

previous month. This assumption implies, for example that the July monthly rainfall is independent 

of the June monthly rainfall.  We will relax his assumption in the section 5. Now we perform a 

simple time series analysis of each of the twelve monthly rainfalls8, total Kharif rainfall9 and 

annual rainfall10 time series. We use Augmented Dickey Fuller (ADF) and KPSS test to test for 

unit root in all the above times series. In case of an ambiguous result, we test for a unit root using 

Philips Parron test. Then we use Ljung Box test to check if the autocorrelations up till a specified 

lag are equal to zero.  

The table 3 below summarizes the results of the three unit root and Ljung Box tests. 

 

Table 3: Summary of the unit root and Ljung Box tests11 

 

                                                           
8 By “monthly rainfall” we mean cumulative rainfall in a month measured at the end of the month. 
9 By “Total Kharif rainfall” we mean cumulative rainfall in the full Kharif season i.e. sum of four monthly rainfalls 
from June to September. 
10 By “annual rainfall” we mean cumulative rainfall in a calendar year. 
11 For the KPSS test, the null hypothesis of the absence of a unit root is rejected if the value of the test statistic is 
greater than 0.739 (1% significance) or 0.463 (5% significance). In the table, the bold values of the test statistics 
and the corresponding bold P values indicate a possible presence of a unit root. 

Rainfall time series ADF Stat. ADF 

Stat., P 

value

KPSS  

stat.

Ljung - 

Box, Q 

stat

Q stat, P 

value

PP Test 

Stat.

PP stat., 

P Value

January -10.07 0.00 0.21 29.10 0.79

February -9.31 0.00 0.16 28.38 0.81

March -10.76 0.00 0.47 14.26 1.00 -10.76 0.00

April -12.71 0.00 0.20 41.04 0.26

May -10.40 0.00 0.17 28.82 0.80

June -9.28 0.00 0.38 32.14 0.65

July -9.89 0.00 0.20 44.80 0.15

August -9.96 0.00 0.83 43.61 0.18 -10.24 0.00

September -10.39 0.00 0.21 24.12 0.94

October -8.98 0.00 0.29 31.76 0.67

November -10.38 0.00 0.14 62.03 0.00

December -11.50 0.00 0.28 46.88 0.11

Total Kharif Rainfall -11.14 0.00 0.49 30.58 0.72 -11.14 0.00

Annual Rainfall -9.32 0.00 0.60 29.73 0.76
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Though the ADF test null hypothesis of the existence of a unit root was rejected in all the rainfall 

time series, the null hypothesis of the KPSS test of the absence of a unit root was rejected for 

March and the total Kharif rainfall time series at 5% significance and for August rainfall time 

series at 1% significance. We then also perform Philips Perron (PP) test for these three rainfall 

time series and find that the null hypothesis of the existence of a unit root is rejected. When we 

apply the Ljung Box test to test if the autocorrelations up till a specific lag are zero, we find that 

only in case of the November rainfall time series the autocorrelations up till 36 lags were different 

from zero (Gujarati et. al. 2009). But a fit of ARIMA model based on Akaike information criterion 

(AIC) criterion indicated that the model ARIMA(0, 0, 0) was the best fit for the November rainfall 

time series. The autocorrelation and partial autocorrelation plots for November rainfall time series 

are presented in Annexure 3. 

 

We assume that the monthly rainfall in the month i, 𝑅𝑖 measured at the end of the month, has a 

cumulative distribution function (CDF) 𝐹𝑅𝑖
(𝑟𝑖) which is continuous and strictly increasing such 

that 𝐹𝑅𝑖

−1   exists and 𝑅𝑖  is Gamma distributed. We also assume that the time series 𝑅𝑖𝑡  is 

independent and strictly stationary 12  i.e. 𝑅𝑖𝑡−1, 𝑅𝑖𝑡 , 𝑅𝑖𝑡+1, .. are independent and identically 

distributed, for example the June monthly rainfall in the year 2009 is independent of the June 

monthly rainfall in the year 2008 but both the random variables are identically distributed. The 

CDF of the monthly rainfall 𝑅𝑖 is given as13: 

 

𝑅𝑖 ~ 𝐺𝐴𝑀(𝜃𝑖, 𝜅𝑖) 

𝐹𝑅𝑖
(𝑟𝑖) = ∫

1

𝜃𝑖
𝜅𝑖Γ(𝜅𝑖)

𝑥𝜅𝑖−1
𝑟𝑖

0

𝑒−𝑥 𝜃𝑖⁄ 𝑑𝑡 ,      𝑥 ≥ 0,   𝜃𝑖 , 𝜅𝑖 > 0 

Where 𝜃𝑖 is the scale parameter and 𝜅𝑖 is the shape parameter (Bain et. al. 1991). 

 

Our choice of Gamma distribution for describing the rainfall is based on the following two reasons 

(Husak et. al. 2006): 

                                                           
12 Note: As the monthly rainfall time series is Gamma distributed, absence of the correlation under Ljung Box test 
does not guarantee independence. Only in the case of the elliptical distributions does a zero correlation implies 
independence. Hence we separately introduce an assumption of independence. Also in a time series, a covariance 
stationarity does not imply a strict stationarity, hence we introduce the assumption of the strict stationarity here. 
13 Because of the independence assumption we now drop the subscript t for time. 
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1. Gamma distribution is bounded on the left at zero and this property is required to describe 

the rainfall, as the rainfall does not take negative values. Also Gamma distribution is 

positively skewed i.e. the distribution is long tailed on to the right and this property helps 

in describing the rainfall in the regions where extreme heavy rains are a possibility. 

2. Gamma distribution is flexible and thus it can represent many distributions with differing 

shapes using its shape and scale parameters. 

 

Because of the iid (independent and identically distributed) assumption for the monthly rainfall 

random variable, we estimate the parameters of the four monthly rainfall Gamma distributions 

from the rainfall data (1901 – 2010) using the maximum likelihood method. Table 4 below 

summarizes the shape and scale parameters of the fitted Gamma distributions. We use the 

Kolmogorov Smirnov (KS) test to test the null hypothesis that the empirical distribution of the 

monthly rainfall is Gamma distributed. Each of the four p-values in the table 4 indicates that we 

cannot reject the null hypothesis that the monthly rainfalls are Gamma distributed (Husak et. al. 

2006). 

Table 4: Gamma distribution parameters 

 

 

The rainfall insurance structure that we price in this work is summarized below in the table 5 and 

the structure is very similar to that underwritten by ICICI – Lombard General Insurance Company 

(Gine et. al. 2007). 

 

Table 5: Rainfall insurance contract structure (Term sheet) 

Phase 1 2 3 

Month June (*) July August 

Strike (Rainfall, mm) K1 = 70 K2 = 110 K3 = 95 

Notional (INR/mm) N1 = 10 N2 = 10 N3 = 10 

Policy Limit (INR) L1 = 1000 L2 = 1000  

Exit Rainfall (mm) E1 = 10   

 

The Kharif rainfall insurance contract consists of three insurance sub-contracts – one each for the 

June, July and August months. The full Kharif rainfall insurance contract (for all the three months) 

Monthly Rainfall Shape Scale KS Test*, P Value

June 5.272                                         16.283                                0.351

July 5.016                                         22.667                                0.955

August 3.285                                         36.430                                0.236

September 4.376                                         36.482                                0.777
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has to be purchased before the month of June i.e. the beginning of the Kharif rainfall season. In 

June, if the Monthly rainfall 𝑅1, is above 70 mm (K1), the June sub-contract expires out of money. 

For rainfall between 70 mm up till 10 mm (E1), INR 10 (N1) is paid for every mm deficiency in 

the rainfall. If the recorded rainfall is below 10 mm (E1), a flat INR 1000 (L1) payoff occurs. 

Mathematically the June payoff 𝑋1(𝑇1) payable at 𝑇1 is expressed as follows (Mack 1984, Panjer 

2006): 

𝑃𝑎𝑦𝑜𝑓𝑓1 = 𝑋1(𝑇1) = {
𝐿1,                                                       𝑅1 < 𝐸1

 𝑁1 × 𝑚𝑎𝑥(𝐾1 − 𝑅1, 0),                𝑅1 ≥ 𝐸1
 

 

The payoff of a July insurance sub-contract, 𝑋2(𝑇2) is equal to the INR 10 (N2) for every mm of 

rainfall below the strike rainfall of 110 mm (K2) up till the policy limit of INR 1000 is reached 

(L2). Mathematically the payoff is expressed as: 

𝑃𝑎𝑦𝑜𝑓𝑓2 = 𝑋2(𝑇2) = 𝑚𝑖𝑛(𝐿2,   𝑁2 × 𝑚𝑎𝑥(𝐾2 − 𝑅2, 0)) 

 

In the August sub-contract, there is no external policy limit imposed; the payoff, 𝑋3(𝑇3) is simply 

the notional (N3) i.e. INR 10 for every mm of rainfall below the strike rainfall of 95 mm (K3). 

𝑃𝑎𝑦𝑜𝑓𝑓3 = 𝑋3(𝑇3) = 𝑁3 × 𝑚𝑎𝑥(𝐾3 − 𝑅3, 0)  

 

Now we know that the premium for an insurance contract at time t, with the monthly rainfall for 

the month i, as the underlying is given by: 

𝜋𝑖(𝑡) = 𝐸𝑡
𝑃(𝑋𝑖(𝑇𝑖)) 

 

It is trivial to derive the following analytical expressions for the premiums for the June, July and 

August rainfall insurance sub-contracts described above (Bain et. al. 1991): 

 

𝜋1(𝑡) = 𝐿1𝐹(𝐸1;  𝜃1, 𝜅1)

+ 𝑁1 (𝐾1(𝐹(𝐾1;  𝜃1, 𝜅1) − 𝐹(𝐸1;  𝜃1, 𝜅1))

− 𝜃1 𝜅1(𝐹(𝐾1;  𝜃1, 𝜅1 + 1) − 𝐹(𝐸1;  𝜃1, 𝜅1 + 1))) 
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Where 𝐹(𝐾1;  𝜃1, 𝜅1) is a Gamma cumulative distribution function (CDF) with the upper limit of 

integration K1 and parameters 𝜃1 and 𝜅1. 

 

𝜋2(𝑡) = 𝐿2𝐹 (𝐾2 −
𝐾2

𝑁2
;  𝜃2, 𝜅2)

+ 𝑁2 (𝐾2 (𝐹(𝐾2;  𝜃2, 𝜅2) − 𝐹 (𝐾2 −
𝐾2

𝑁2
;  𝜃2, 𝜅2))

− 𝜃2 𝜅2 (𝐹(𝐾2;  𝜃2, 𝜅2 + 1) − 𝐹 (𝐾2 −
𝐾2

𝑁2
;  𝜃2, 𝜅2 + 1))) 

and 

 

𝜋3(𝑡) = 𝑁3(𝐾3𝐹(𝐾3;  𝜃3, 𝜅3) − 𝜃3 𝜅3𝐹(𝐾3;  𝜃3, 𝜅3 + 1)) 

We then calculate the premiums for June, July and August rainfall insurance sub-contracts using 

both analytical and Monte Carlo simulation methods and the results are summarized in the table 6 

below. 

 

Table 6: Premium for the June, July and August rainfall insurance sub-contracts under the 

assumption of no correlation between the rainfalls in various months 

 

Note: the standard error of simulation for n number of trails is defined as 
𝜎

√𝑛
 where 𝜎 is the standard 

deviation of the n simulated payoffs (Hull 2009). 

 

In the next section we assume that there is correlation between the monthly rainfalls of the Kharif 

season in a given year i.e. for example the monthly rainfall in August is correlated with the monthly 

rainfall in July in a given year; and we use a copula to capture this dependence. 

Premium for the Kharif Contract (Assumption of  no correlation between the rainfall in the kharif months)

Insurance Contract Month Method Premium, INR Standard Error, 

INR

June Analytical 72.32                                  N/A N/A N/A

Monte Carlo 71.68                                  0.77                        70.17                       73.18                  

July Analytical 179.06                               N/A N/A N/A

Monte Carlo 176.30                               1.45                        173.47                     179.14               

August Analytical 134.36                               N/A N/A N/A

Monte Carlo 133.78                               1.31                        131.20                     136.35               

95% Confidence Interval for 

premium
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5. Rainfall insurance contract pricing using Gaussian and t Copulas 

We first test if the monthly rainfall in May could predict the total Kharif rainfall in the 

Mahabubnagar district, if yes, one could “cheaply” purchase the Kharif rainfall insurance contract 

given this information asymmetry. Table 3 shows that both the monthly rainfall in May and total 

Kharif rainfall time series do not possess a unit root thus we regress the total Kharif rainfall 

(𝑅𝑇𝑜𝑡𝑘ℎ,𝑡) on the May rainfall (𝑅𝑀𝑎𝑦,𝑡) to test if May rainfall could predict the total Kharif rainfall. 

The simple regression model is given below: 

𝑅𝑇𝑜𝑡𝑘ℎ,𝑡 = 𝛽𝑜 + 𝛽1𝑅𝑀𝑎𝑦,𝑡 + 𝜀𝑡 

We find that the regression model has an adjusted R2 of ~ 0 and the slope coefficient 𝛽1is not 

statistically significant (t stat = -0.87, p-value = 0.38). Thus we assume that the total Kharif rainfall 

cannot be predicted given the monthly rainfall in May. 

 

Now we analyse the rainfall over the Kharif season as a four dimensional multivariate time series, 

𝑹𝒌𝒕 with monthly rainfall in each of the four Kharif months i.e. from June, 𝑅1𝑡 to September, 𝑅4𝑡 

as the components of that multivariate time series (Tsay 2014). 

𝑹𝒌𝒕 = (𝑅1𝑡, 𝑅2𝑡, 𝑅3𝑡, 𝑅4𝑡)′ 

To measure the linear dynamic dependence of  𝑹𝒌𝒕 , we define its lag 𝑙 cross- covariance matrix 

as follows (Tsay 2014): 

Γ𝑙 = 𝐶𝑜𝑣(𝑹𝒌𝒕, 𝑹𝒌𝒕−𝒍) = 𝐸[(𝑹𝒌𝒕 − 𝝁)(𝑹𝒌𝒕−𝒍 − 𝝁)′] 

Γ𝑙 = [
𝐸(𝑅1𝑡,̃ 𝑅1,𝑡−𝑙,̃ ) ⋯ 𝐸(𝑅1𝑡,̃ 𝑅4,𝑡−𝑙,̃ )

⋮ ⋱ ⋮
𝐸(𝑅4𝑡,̃ 𝑅1,𝑡−𝑙,̃ ) ⋯ 𝐸(𝑅4𝑡,̃ 𝑅4,𝑡−𝑙,̃ )

] 

 

Where 𝝁 = 𝐸(𝑹𝒌𝒕)  is the mean vector of 𝑹𝒌𝒕  and 𝑹𝒌�̃� = 𝑹𝒌𝒕 −  𝝁  is the mean adjusted time 

series. The mean vector is constant and the cross covariance matrix is a function of only lag 𝑙 and 

not time t under the assumption that 𝑹𝒌𝒕 is covariance stationary. Note the cross covariance matrix 

above captures not only the auto covariance between, say June monthly rainfall at time t and June 

monthly rainfall at time  𝑡 − 𝑙 but also cross covariance between June monthly rainfall at time t 

and monthly rainfalls in July, August and September at the time 𝑡 − 𝑙. 

We test the existence of linear dynamic dependence in 𝑹𝒌𝒕 using a multivariate Ljung Box test. 

The test statistic is defined as (Tsay 2014): 



16 | P a g e  
 

 𝑄𝑘(𝑚) = 𝑛2 ∑
1

𝑛−𝑙

𝑚
𝑙=1 𝑡𝑟(Γ̂𝑙

′Γ̂0
−1Γ̂𝑙Γ̂0

−1) 

Where k is the dimension= 4, in our case, n is the sample size and tr(A) is the trace of matrix A. 

We assume that only one year lagged rainfall i.e. lag 𝑙 = 1, may affect the rainfall in a given year. 

Thus 𝑚 = 1 and our null hypothesis is as follows: 

𝐻0: Γ1 = 0 and the alternative hypothesis is given by: 

𝐻𝑎: Γ1 ≠ 0 

The value of 𝑄4(1) in our case is 19 with a p-value of 0.27; thus we do not reject the null 

hypothesis that Γ1 = 0. 

 

As the lag 1 cross covariance matrix is not different from zero, we focus on the concurrent 

correlation matrix14 (i.e. lag 0, cross-correlation matrix) and test if any of the correlations in the 

concurrent correlation matrix is significant. We first test for the significance of the Pearson 

correlations and find that only the correlation between June and August monthly rainfalls is 

significant (p-value = 0.03). But Pearson’s correlation is an accurate measure of the association 

only if the random variables have an elliptical distribution. Thus we also test for the significance 

of the Spearman rank correlation and find that Spearman rank correlation between June and August 

monthly rainfalls is not significant (p-value = 0.1). The results are presented in the table 7 below. 

 

  

                                                           
14 Concurrent correlation matrix can be easily calculated from lag 0 cross-covariance matrix 𝛤0. Lag 0 – cross 

correction matrix �̂�0 = �̂�−1�̂�0�̂�−1, where �̂� = 𝑑𝑎𝑖𝑔{𝛾0,11
1/2

, … 𝛾0,44
1/2

} and 𝛾0,𝑖𝑖
1/2

 is the (𝑖, 𝑖)𝑡ℎ element of �̂�0. 
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Table 7: Correlation analysis 

 

 

We now summarize the assumptions: 

 In a given year, total Kharif rainfall cannot be predicted using the rainfall data before the 

Kharif season. The June, July, August and September monthly rainfalls in a given year 

could exhibit some dependency between them.  

 Though the monthly rainfalls during the Kharif season in a given year show some 

dependency, the monthly rainfalls in a given year are independent of the monthly rainfalls 

in the previous year. For example there could be some dependency between monthly 

rainfalls in June and July in a given year but the monthly rainfall in June of this year is 

independent of the monthly rainfalls in the previous year. 

 Multivariate time series 𝑹𝒌𝒕 is strictly stationary and independent15. i.e. 𝑹𝒌 is independent 

and identically distributed. This assumption implies that the rainfall over the Kharif season 

every year is a random draw from a stationary joint rainfall distribution of four monthly 

rainfall random variables. 

 

Because of i.i.d assumption, dropping the subscript t, we consider 𝑹𝒌 as a four dimensional vector 

valued random variable as below: 

𝑹𝒌 = (𝑅1, 𝑅2, 𝑅3, 𝑅4)′  

∀(𝑟1, 𝑟2 ⋯ 𝑟4) ∈ [0, ∞)4 

And assume that 𝑹𝒌 is continuous with a joint CDF as below: 

                                                           
15 For a time series that does not have an elliptical distribution, absence of serial and cross correlation does not 
guarantee independence. Hence we introduce the assumption of independence separately. Similarly weak 
stationarity does not imply strict stationarity and hence the strict stationarity assumption. 
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𝑭𝑹𝒌
(𝒓𝒌) = 𝐹𝑅1,𝑅2,𝑅3,𝑅4

(𝑟1, 𝑟2, 𝑟3, 𝑟4) = 𝑃(𝑅1 ≤ 𝑟1, 𝑅2 ≤ 𝑟2, 𝑅3 ≤ 𝑟3, 𝑅4 ≤ 𝑟4 )

= ∫ ∫ ∫ ∫ 𝑓𝑅1,𝑅2,𝑅3,𝑅4
(𝑣, 𝑤, 𝑥, 𝑦)𝑑𝑦𝑑𝑥𝑑𝑤𝑑𝑣

𝑟4

0

𝑟3

0

𝑟2

0

𝑟1

0

 

As in the previous section, we assume that each, 𝑅𝑖 is Gamma distributed. 

𝑅𝑖 ~ 𝐺𝐴𝑀(𝜃𝑖, 𝜅𝑖) 

 

Now every joint distribution implicitly contains both a description of the marginal distribution of 

the random variables and a description of the dependence structure between these random 

variables. We model the dependence between the monthly rainfalls in the Kharif season using the 

concept of a copula. Simply put, a copula is a d-dimensional distribution function on [0,1]𝑑 with 

standard uniform marginal distributions. A copula joins the univariate distributions to form a joint 

distribution. In our case a copula joins Gamma distributions of the monthly rainfalls 𝑅𝑖, 𝐹𝑅𝑖
(𝑟𝑖) 

and forms a joint distribution of rainfall over the Kharif season 𝑹𝒌 , 𝑭𝑹𝒌
(𝒓𝒌) with a defined 

dependence structure. Under the condition of continuity of the marginals, the famous theorem due 

to Sklar guarantees the uniqueness of a copula 𝐶 (Schmidt 2006, Emberechts 2009 and Meucci 

2011).  

𝑭𝑹𝒌
(𝒓𝒌) = 𝐹𝑅1,𝑅2,𝑅3,𝑅4

(𝑟1, 𝑟2, 𝑟3, 𝑟4) = 𝐶 (𝐹𝑅1
(𝑟1), 𝐹𝑅2

(𝑟2), 𝐹𝑅3
(𝑟3), 𝐹𝑅4

(𝑟4)) 

 

Now by definition 𝐹𝑅𝑖
(𝑟𝑖) = 𝑢𝑖 where 𝑢𝑖 is uniformly distributed i.e. 𝑢𝑖 ∈ [0,1] therefore we get 

(McNiel et. al. 2005, Alexander 2008): 

𝐶(𝑢1, 𝑢2, 𝑢3, 𝑢4) = 𝐹 (𝐹𝑅1

−1(𝑢1), 𝐹𝑅2

−1(𝑢2), 𝐹𝑅3

−1(𝑢3), 𝐹𝑅4

−1(𝑢4)) 

 

We use two copulas to capture the dependence between the monthly rainfalls – a Gaussian copula 

and a t copula. We use a t copula to capture the higher likelihood of the extreme values or “fat 

tails”, in case, 𝑹𝒌 were to exhibit this phenomenon. 

A Gaussian copula is defined as below (McNiel et. al. 2005, Alexander 2008, Fusai 2008): 

 

𝐶𝑃
𝐺𝑎(𝑢1, 𝑢2, 𝑢3, 𝑢4) = 𝚽𝑃(Φ−1(𝑢1), Φ−1(𝑢2), Φ−1(𝑢3), Φ−1(𝑢4)) 

Where 𝚽𝑷 is the standard multivariate normal distribution, Φ is the standard univariate normal 

distribution function and P is the correlation matrix. 
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A t copula is defined as below (McNiel et. al. 2005, Alexander 2008, Fusai 2008): 

 

𝐶𝜐,𝑃
𝑡 (𝑢1, 𝑢2, 𝑢3, 𝑢4) = 𝒕𝜐,𝑃(𝑡𝜐

−1(𝑢1), 𝑡𝜐
−1(𝑢2), 𝑡𝜐

−1(𝑢3), 𝑡𝜐
−1(𝑢4)) 

Where 𝒕𝜐,𝑃 and 𝑡𝜐 are multivariate and univariate student t distributions respectively with 𝜐 degree 

of freedom and P correlation matrix. As the degree of freedom 𝜐  becomes larger a t copula 

approaches the corresponding Gaussian copula (Demarta et. al. 2004). 

 

We follow the following procedure to generate the joint distribution of rainfall over the Kharif 

season, 𝑹𝒌: 

1. Generate cumulative density values for Kernel density i.e. 𝑢𝑗𝑖 for each data point j of the 

monthly rainfall for month i (in our case 109 X 4, 𝑢𝑗𝑖values). 

2. Fit both Gaussian and t copulas to the computed 𝑢𝑗𝑖 values in step 1. Unlike the parameter 

estimation for a Gaussian copula, the parameter estimation for a t copula is complex, as the 

likelihood function needs to be maximized with repect to both the degree of freedom 𝜐 and 

the correlation matrix P (Kjersti 2004). Hence we assume that the t copula has the same 

correlation matrix as that of the Gaussian copula and estimate only the degree of freedom. 

The fitted parameters for both the copulas are summarized in table 8. 

3. Once both the copulas are fitted, simulate random samples of the cumulative densities16 of 

𝑹𝒌 i.e. 𝑼𝒐, using each copula. 

4. Then use inverse cumulative density function of each 𝑅𝑖 to get the joint distribution of 𝑹𝒌. 

 

  

                                                           
16 Each 𝑼𝒐 = (𝑢𝑜1, 𝑢𝑜2, 𝑢𝑜3, 𝑢𝑜4) where  𝑢𝑜𝑖  is the oth simulation of the cumulative density of 𝑅1and 𝑢𝑜𝑖 ∈ [0,1]. 
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Table 8: Parameters of the fitted copulas 

 

Note: As the degree of freedom 𝜐 is very large the t copula will approach the Gaussian copula. 

Once we have the simulated values of monthly rainfall in each Kharif month, we can calculate the 

premium for the full Kharif rainfall insurance contract. We also perform burn analysis and provide 

the calculated burn premium for the comparison with the premium calculated using our proposed 

method. We also calculate the premium under the assumption that the rainfall over the Kharif 

season, 𝑹𝒌 follows a multivariate normal distribution implying that the marginal distributions of 

the monthly rainfalls are normal as well. 

 

Table 9: Calculated premium for the full Kharif rainfall insurance contract using various 

methods 

 

 

It is clear from the table 9 above, that the premiums calculated using burn analysis, Gaussian 

copula and t copula are equal but the premium calculated under the assumption of multivariate 

normal distribution for 𝑹𝒌 is higher than the rest.   

Correlation matrix for Gaussian copula

Monthly Rainfall June July August September

June 1.00                 -0.03               0.18                 -0.02               

July -0.03               1.00                 0.11                 0.12                 

August 0.18                 0.11                 1.00                 -0.07               

September -0.02               0.12                 -0.07               1.00                 

Correlation matrix for t copula

Monthly Rainfall June July August September

June 1.00                 -0.03               0.18                 -0.02               

July -0.03               1.00                 0.11                 0.12                 

August 0.18                 0.11                 1.00                 -0.07               

September -0.02               0.12                 -0.07               1.00                 

nu = 1,71,90,998   

Premium for the Kharif Contract

Method Premium, INR Standard Error, INR

Burn Analysis 386.91                       N/A  N/A N/A

Monte Carlo (Gaussian Copula) 384.77                       2.231                                  380.40                   389.15                     

Monte Carlo (t Copula) 385.96                       2.230                                  381.59                   390.33                     

Monte Carlo (Aussumption of 

Multi variate Normal distribution) 397.20                       2.712                                  391.89                   402.52                     

95% Confidence Interval for the 

premium
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In this work we have assumed a zero market price of rainfall risk but in practice the actuarial 

pricing may be performed using a standard pricing principle such as the standard deviation 

principle given below (Mikosch 2009): 

 

𝜋(𝑡) = 𝐸𝑡
𝑃(𝑋(𝑇)) + 𝜁√𝑉𝑎𝑟(𝑋(𝑇)) 

Where 𝑋(𝑇) is derivative payoff at time T and 𝜁 is a positive constant 

This principle incorporates a risk measure such as standard deviation or variance in the pricing 

calculation. The second risk measure that we consider here is the Value at Risk (VaR). VaR is 

defined as a 𝛼𝑡ℎ quantile of a loss distribution. Formally, VaR of a variable (X) for a given quantile 

(𝛼) at given time t is defined as (McNiel et. al. 2005, Panjer 2006): 

𝑉𝑎𝑅𝛼(𝑋) =  𝐹𝑋
−1(𝛼) 

 

We provide a summary of risk measures for the Kharif rainfall insurance contract payoff in the 

table 10 below: 

Table 10: Risk measures for the payoff of the Kharif rainfall insurance contract 

 

 

We note that the standard deviation of the payoff calculated using the burn analysis is greater than 

that obtained using our methodology (Monte Carlo analysis and Gaussian and t copulas). Thus our 

proposed method could result in lower premiums charged to farmers in comparison with the burn 

analysis, at least in the case where the pricing is performed using the standard deviation principle. 

The Value at Risk (VaR, 99%) of the insurance payoff computed using burn analysis is lower than 

the VaR of the payoff computed using our method. This shows that the burn analysis could result 

in an underestimation of the actuarial risk and thus could lower the regulatory capital requirement 

of the insurers.  

 

  

Method Standard Deviation VaR, 99%

Burn Analysis 367.0                                     1,287.5                              

Monte Carlo (Gaussian Copula) 352.8                                     1,398.9                              

Monte Carlo (t Copula) 352.6                                     1,393.3                              
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6. Conclusion 

In this work we propose a methodology for pricing a Kharif rainfall insurance contract using 

Gaussian and t copulas that capture the dependence between the June, July, August and September 

monthly rainfalls in the Mahabubnagar district in Andhra Pradesh – India. We find that though the 

premium calculated using burn analysis and our proposed method were equal, the standard 

deviation and Value at Risk “VaR” of the insurance payoffs using both the methods differed. 

Therefore, in practice, the actuarial pricing of the rainfall insurance contract using burn analysis 

and our proposed method could be different. Furthermore, our method could find more 

applicability in regions with extreme rainfalls where burn analysis may prove to be inappropriate 

especially because of limited data. 

In this work, we did not quantify the basis risk in a district for a given crop which could be crucial 

to the efficient design of the rainfall insurance. Also, it is difficult to trade rainfall derivatives for 

each crop and each district separately in the capital markets as these contracts may not find enough 

liquidity. We leave this onerous task of designing at least a state level rainfall index for India to 

the future works. 
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Annexures 

Annexure 1: Crop yield data for Andhra Pradesh and Mahabubnagar 

 

 

 

 

 

 

 

Crop Production in 

Tons

Area in 

Hectares

Crop Yield, 

Kg/Hectare

% Area

Rice 57,55,26,474 27,75,01,863 2,074.0           31.8%

Bajra 7,70,07,223    9,23,75,243    833.6              10.6%

Cotton 14,86,83,404 8,31,34,976    1,788.5           9.5%

Soyabean 6,41,12,751    6,45,58,566    993.1              7.4%

Groundnut 6,06,14,809    6,10,56,000    992.8              7.0%

Maize 11,20,93,192 6,06,26,330    1,848.9           7.0%

Jowar 3,90,65,293    3,92,62,499    995.0              4.5%

Arhar 2,16,47,668    3,19,54,190    677.5              3.7%

Moong 89,95,641       2,61,38,569    344.2              3.0%

Urad 82,36,758       2,02,89,881    406.0              2.3%

Production of top 10 Crops by Area of cultivation in the state of 

Andhra Pradesh from 1998 - 2009

Crop Production in 

Tons

Area in 

Hectares

Crop Yield, 

Kg/Hectare

% Area

Castor seed 6,65,805                16,61,370 400.8           21.1%

Jowar 7,47,193                10,29,194 726.0           13.1%

Rice 23,82,170             10,00,061 2,382.0       12.7%

Maize 20,44,928             9,98,029    2,049.0       12.7%

Cotton 9,67,334                7,53,732    1,283.4       9.6%

Arhar 2,75,685                7,12,515    386.9           9.1%

Groundnut 3,78,751                6,08,126    622.8           7.7%

Moong 62,399                   4,27,719    145.9           5.4%

Sunflower 1,35,026                2,15,091    627.8           2.7%

Bajra 72,691                   1,36,301    533.3           1.7%

Production of top 10 Crops by Area of Cultivation in district 

Mahabubnagar from 1998 - 2009



27 | P a g e  
 

Annexure 2: Linear regression results 

 

 

Linear Regression Table:

Estimate t Value  P Value

(Intercept) 2,613.05            1.10          0.27          

Arhar -281.85              -0.12        0.90          

Bajra 1,024.70            0.45          0.66          

Banana 17,627.06          7.34          0.00          

Cashewnut 249.94                0.10          0.92          

Castor.seed -74.81                 -0.03        0.97          

Cotton.lint. 1,012.44            0.45          0.65          

Dry.chillies 1,932.06            0.84          0.40          

Groundnut 881.96                0.39          0.70          

Horse.gram 89.55                  0.04          0.97          

Jowar 868.55                0.38          0.70          

Korra 411.33                0.15          0.88          

Maize 2,562.39            1.13          0.26          

Masoor 79.74                  0.03          0.97          

Mesta 9,723.06            4.07          0.00          

Moong -443.99              -0.20        0.85          

Niger.seed 2,925.69            1.05          0.29          

Onion 17,619.48          6.79          0.00          

other.oilseeds 18,881.21          5.89          0.00          

Ragi 1,823.80            0.79          0.43          

Rice 1,954.18            0.86          0.39          

Samai 2,959.91            1.01          0.31          

Sesamum 366.58                0.16          0.87          

Small.millets 1,348.00            0.55          0.58          

Soyabean 755.86                0.31          0.76          

Sugarcane 79,784.24          34.78        0.00          

Sunflower 200.95                0.09          0.93          

Tapioca 9,870.95            3.34          0.00          

Tobacco 26.66                  0.01          0.99          

Turmeric 5,423.24            2.32          0.02          

Urad -298.03              -0.13        0.90          

Adilabad -3,321.18           -4.51        0.00          

Anantapur -2,812.21           -3.59        0.00          

Chittoor -2,421.45           -3.03        0.00          

Cuddapah -2,949.15           -3.73        0.00          

East Godavari -2,276.18           -2.79        0.01          

Guntur -1,505.40           -1.98        0.05          

Karimnagar -2,850.03           -3.76        0.00          

Khammam -2,311.53           -3.06        0.00          

Krishna -1,152.96           -1.51        0.13          

Kurnool -2,808.18           -3.82        0.00          

Mahabubnagar -3,235.37           -4.47        0.00          

Medak -3,099.56           -4.23        0.00          

Nalgonda -3,198.53           -3.90        0.00          

Nellore 54.29                  0.06          0.95          

Nizamabad -2,904.13           -3.88        0.00          

Prakasam -2,644.72           -3.50        0.00          

Rangareddi -3,024.81           -4.10        0.00          

Srikakulam -4,980.70           -5.89        0.00          

Vishakhapatnam -6,055.93           -8.09        0.00          

Vizianagaram -5,857.75           -7.89        0.00          

Warangal -3,126.55           -4.27        0.00          

Trend 36.04                  1.47          0.14          

Total Rainfall (Kharif) 1.10                     2.25          0.02          

Note: Crop yields of areas less than 1000 hecters excluded in the 

analysis
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Annexure 3: ACF and PCF plots of November rainfall time series 

 

 

 


