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Abstract

Individual farm-level expected yields serve as the foundation for crop insurance de-

sign and rating. Therefore, constructing a reasonable, accurate, and robust model for

the farm-level loss distribution is essential. Unfortunately, farm-level yield data is often

insufficient or unavailable in many regions to conduct sound statistical inference, espe-

cially in developing countries. This paper develops a new two-step relational model to

predict farm-level crop yield distributions in the absence of farm yield losses, through

“borrowing” information from a neighbouring country, where detailed farm-level yield

experience is available. The first step of the relational model defines a similarity mea-

sure based on a Euclidean metric to select an optimal county, considering weather

information, average farm size, county size and county-level yield volatility. The sec-

ond step links the selected county with the county to be predicted through modeling

the dependence structures between the farm-level and county-level yield losses. De-

tailed farm-level and county-level corn yield data in the U.S. and Canada are used to

empirically examine the performance of the proposed relational model. The results

show that the approach developed in this paper may be useful in improving yield fore-

casts and pricing in the case where farm-level data is limited or not available. Further,

this approach may also help to address the issue of aggregation bias, when county-level



data is used as a substitute for farm-level data, which tend to result in underestimating

the predicted risk relative to the true risk.

Keywords: Relational Model; Aggregation Bias; Shortness of Data; Euclidean Dis-

tance; Crop Insurance; Yield Forecasting; Ratemaking.

1 Introduction

The U.S. Federal Crop Insurance Program (FCIP) has provided Multiple Peril Crop Insur-

ance policies since its establishment in 1938. Until the 1980s, FCIP provided protection

and ratemaking for all individuals in certain area, which caused adverse selection over time

(Skees and Reed, 1986; Woodard et al., 2012). In 1980, the Federal Crop Insurance Act was

established, and MPCI contracts were developed based on individual expected yields (i.e.,

the Actual Production History - APH program). Therefore, individual farm-level expected

yields serve as the foundation for crop insurance design and rating to avoid problems such as

adverse selection(Ker and Coble, 2003). Unfortunately, farm-level yield data is often insuf-

ficient or unavailable in many regions to conduct sound statistical inference due to different

reasons (Gerlt et al., 2014). For example, there is only one growing season, and hence one

yield observation per year. Moreover, due to crop rotation and other market forces, farmers

do not grow the same crop each year. Therefore, farm-level yield observations are usually

quite limited. In addition, when new MPCI programs are created, or coverage for new crop

types are added, there are possibly no historical records for individual farm-level yields. The

shortness of farm-level data may be particularly exagerated in developing countries.

Shortness and scarcity of crop yield data in one of the major challenges that hinder scientific

statistical inference of the crop yield distribution, and hence the implementation of efficient

MPCI programs(Borman et al., 2013; Porth et al., 2014). In the absence of sufficient qualified

farm-level data, many studies have proposed methodologies to link county-level data and

farm-level data (Coble and Barnett, 2008; Deng et al., 2007; Miranda, 1991), in order to
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improve the prediction of individual farm-level loss distribution. Miranda (1991) uses a

farm-specific “beta” to represent systemic risk in farm-level yield and adjust the county-

level yield experience. Extending (Miranda, 1991), Coble and Barnett (2008) investigate the

systemic risk and idiosyncratic risk by allowing the beta to vary over an assumed normal

distribution. By assuming that farm yield is multiplicative conditioned on county yield, Deng

et al. (2007) simulate a large number of pseudo farm-level yield distribution for pricing.

To date, literature has focused only on the problem of predicting farm-level yields using

county-level yields within the same country, where at least some farm-level historical crop

yield data is available to serve as the underlying basis of prediction. These approaches,

however, do not address the challenge of statistical inference and actuarial pricing where

farm-level yield data is completely absent. This paper for the first time investigates this

problem and develops a new two-step relation model to predict individual farm-level yield

distributions for country A, in absence of farm-level data, by borrowing information from

the neighbouring country B, where detailed farm-level yield experience is available. The

data set utilized in this analysis includes both farm-level and county-level corn production

experience from the U.S. and Canada. This allows the evaluation of the farm-level yield

prediction methodology developed in this study, through using the prediction errors of the

estimated farm-level yield distributions relative to the actual farm-level yield distributions.

In this study, Canada is the country to be predicted (i.e., country A) and the U.S. data is

used as the basis for the prediction (i.e., country B).

The relational model developed in this paper for predicting farm-level crop yield distributions

in the case where no individual farm yield losses are available involves two stages. First,

we search for the most “similar” county in the U.S. relative to the Canadian county to be

predicted. The second stage links the selected U.S. county with the county to be predicted

in Canada. The first stage defines a similarity measure based on a Euclidean metric to select

the optimal county in the U.S. This measure considers the “Euclidean distance” between the
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two data objects, where a shorter distance implies more similar data objects. The Euclidean

distance measure incorporates weather information over the target growing season, average

farm size, county size and county-level yield volatility. The second stage links the two data

sets, through modeling the dependence structures between the farm-level and county-level

yield losses in the U.S. and applying the dependence structures to the Canadian data.

Given that this is the first paper to address the issue of farm-level yield prediction in the

absence of farm-level data within the country, there is no benchmark model for comparison.

However, the performance of the prediction methodology developed in this study is tested

by comparing the pseudo farm-level yield data to the actual Canadian farm-level yield data

(which is available, but, not utilized). In addition, we generalize the methods in Deng et al.

(2007) to provide additional benchmarks for the relational model.

It has been shown that when county-level data is used as a substitute for farm-level data,

aggregation bias may result (Gerlt et al., 2014) and this may lead to underestimating the

predicted risk relative to the true risk. Therefore, the relational model proposed in this

paper may help to overcome aggregation bias. The empirical results show that the relational

model developed in this paper is able to predict the farm-level yield accurately. On the

other hand, the existence of aggregation bias may lead to misleading and erroneous pricing

results.

The remainder of this paper proceeds as follows. Section 2 introduces the data and notation

used in this paper. Section 3 discusses the selection of the optimal U.S. proxy counties using

the Euclidean distance measure. Next, the relational framework is introduced in Section 4

and robustness checks are discussed in Section 5. Section 6 shows the advantages of the

relational model proposed in this paper with a MPCI pricing example. Section 7 concludes

the paper.
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2 Data and Notations

2.1 Data

A proprietary data set that includes actual farm-level and county-level corn production

experience from the U.S. and Canada is utilized, including information regarding crop yield

and farm size. The data sets cover the period from 1996 to 2011, and in Canada includes

1440 farms, and in the U.S. includes 5817 farms. In addition, corresponding weather data is

used, including temperature and precipitation. These two countries are selected for the focus

of the study because they both have relatively long and credible data sets available at both

the farm and county levels. This allows the evaluation of relational model for predicting

farm-level yields, using the prediction errors of the estimated farm-level yield distributions

relative to the actual farm-level yield distributions. In this study, Canada is the country to

be predicted (i.e., country A) and the U.S. data is used as the basis for the prediction (i.e.,

country B). Each of the data sets are discribed in more detail next.

U.S. Data Set:

The U.S. data set contains both farm-level and county-level yields per acre for different

types of crops such as corn, sugarcane, soybeans, etc. across the country. For example, the

corn data from Minnesota includes historical records from more than 120,000 farms in 78

counties. The time range of the data is from 1975 to 2013. In addition, U.S. weather data

is considered including daily average temperature and rainfall from 1975 to 2013.

Canadian Data Set

The Canadian data set contains farm-level and municiple-level (which is equivalent to county-

level in the U.S.) yields from the province of Manitoba covering 216 crop types from 19238

farms. The time range of the data is from 1996 to 2011. In addition, corresponding weather

data is considered including daily temperature (maximum, minimum, and average) from 24
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weather stations, as well as daily precipitation from 30 weather stations in Manitoba over

the period of 1975 to 2011.

It is noteworthy that although there is a large county-level data set, the farm-level data

is limited, with typically no more than 10 years of observations. This is to be expected,

however, and is a motivation of this paper.

2.2 Notations

• For c = 1, 2, . . . , C, let c be the index of U.S. counties and C denote the number of

counties in U.S.

• For d = 1, 2, . . . , D, let d be the index of Canadian counties and D denote the number

of counties in Canada.

• For each U.S. county c,

– Let yUS
c,t denote the county-level yields for county c in year t, where t = t0, . . . , T

denotes the index year of county-level observations.

– Let AUS
c,t be the total number of acres for county c in year t, which represents the

county size.

– Denote WUS
c,t,p, p = 1, . . . , P as weather variables for county c, and there are P

weather variables in total.

– For each farm f (c), f (c) = 1, 2, . . . , F (c), where F (c) is the total farm number:

∗ Let s
(c)
f be the index year of farm-level observations, where s

(c)
f = s

(c)
f,0, . . . , S

(c)
f .

∗ Let yUS

f (c),s
(c)
f

be farm-level yields for farm f (c), in year s
(c)
f .

• For each Canadian county d,

– Let yCA
d,t denote the county-level yields for county d in year t, where t = t0, . . . , T
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denotes the index year of county-level observations.

– Let ACA
d,t be the total number of acres for county d in year t, representing the

county size.

– Denote WCA
d,t,p, p = 1, . . . , P as weather variables for county d and there are P

weather variables in total.

– For each farm g(d), g(d) = 1, 2, . . . , G(d)), where G(d) is the number of total farms:

∗ Let s
(d)
g be the index year of farm-level observations, where s

(d)
g = s

(d)
g,0, . . . , S

(d)
d .

∗ Let yCA

g(d),s
(d)
g

be farm-level yields for farm g(d), in year s
(g)
d .

3 Searching for the Optimal U.S. Proxy County

3.1 Euclidean Distance Measure

Suppose that we are interested in predicting the farm-level yield in county d0 in Canada using

supplemental data in the U.S. The first step is to search for the most “similar” county in the

U.S. In this paper, the similarity between two variables is described based on a similarity

metric. There are different types of similarity metrics , and one of the most commonly used

ones is the (normalized)“Euclidean distance”, where a shorter distance implies more similar

data objects. 1 Generally, given two points p = {pi : i = 1, . . . , N} and q = {qi : i =

1, . . . , n}, the Euclidean distance dp,q between the two points can be written as

dp,q =

√√√√ n∑
i=1

(pi − qi)2. (1)

1A detailed introduction of similarity measures is available in Goshtasby (2012).
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In order to eliminate the intensities of bias and scale, the data is normalized by the means

and standard deviations, i.e., normalized Euclidean distance dNp,q is used,

dNp,q =

√√√√ n∑
i=1

(
pi − µp

σp
− qi − µq

σq

)2

. (2)

3.2 Selecting the Optimal U.S. Proxy County

In this study the Euclidean distance measure incorporates the following information:

• Growing season weather information,

• Average farm size,

• County size,

• Yield volatility on county level, CV US, CV CA, where CV is the coefficient of variation

(CV), which is defined as the ratio of standard deviation over mean.

Growing season for corn starts in April and the harvest ends in November. Therefore, the

weather variables considered in this analysis correspond to the growing season, and include

monthly mean temperature and cumulative precipitation from April to November. More

specifically, they are TempApr, TempMay, TempJun, TempJul, TempAug, TempSep, Tem-

pOct, TempNov, PreApr, PreMay, PreJun, PreJul, PreAug, PreSep, PreOct, PreNov.

As an example, we are interested in predicting yield in county named “Dufferin” (county

d0) in Manitoba, Canada. Based on the weather variables, as well as the county-level yield

experience in the U.S. and Canada, we search for the counties in both countries that are

most “similar”. This similarity is based on the Euclidean distance measure defined according

to Equation (2), where the U.S. county that has the smallest distance is selected. For the

example “Dufferin”, a mapping for the US/Canada is displayed in Figure 1, which shows
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how dNc,d0 changes spatially. The x-axis is for longitude, y-axis is for latitude and z-axis is

for the distance, dNc,d0 . We can see that the selected county has the smallest dNc,d0 , and also

locates very closely to the county “Dufferin”.

Figure 1: Scatter Plot of Locations of Counties.
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4 Relational Prediction Model

4.1 Stochastic Specification

Without losing generality, we assume that both the county-level and farm-level yields in the

U.S and Canada satisfy the following processes:

log
(
yUS
c,t

)
= µc,t + εc,t, t = t0, . . . , T, (3)

log
(
yCA
d,t

)
= µd,t + εd,t, t = t0, . . . , T, (4)

log
(
yUS

f (c),s
(c)
f

)
= µ

f (c),s
(c)
f

+ ε
f (c),s

(c)
f
, s

(c)
f = s

(c)
f,0, . . . , S

(c)
f , (5)

log
(
yCA

g(d),s
(d)
g

)
= µ

g(d),s
(d)
g

+ ε
g(d),s

(d)
g
, s

(c)
f = s

(c)
f,0, . . . , S

(c)
f , (6)
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where εc,t ∼ WN(0, σ2
c ), εd,t ∼ WN(0, σ2

d), εf (c),s(c)f
∼ WN(0, σ2

f (c)
), ε

g(d),s
(d)
g
∼ WN(0, σ2

g(d)
),

and “WN” represents a white noise process.

Following Deng et al. (2007), it is further assumed that the drift terms of the yield processes

are linear. More specifically,

µc,t = ac + bc(t− t0), t = t0, . . . , T, (7)

µd,t = ad + bd(t− t0), t = t0, . . . , T, (8)

µ
f (c),s

(c)
f

= af (c) + bf (c)(s
(c)
f − s

(c)
f,0), s

(c)
f = s

(c)
f,0, . . . , S

(c)
f , (9)

µ
g(d),s

(d)
g

= ag(d) + bg(d)(s
(d)
g − s

(d)
g,0), s(d)g = s

(d)
g,0, . . . , S

(d)
g , (10)

4.2 Relational Model

The question of interest is to predict the farm-level yields in county d∗ in Canada, with

information from county c∗ in the U.S. county borrowed based on the Euclidean measure.

The relational model proposed in this paper first models the dependence between the U.S.

county-level and farm-level yields, and then applies the resulting dependence for the Cana-

dian county-level and farm-level yields. Additionally, it is assumed that Cov(εc,s, εf (c),s) =

σcf (c) = ρcf (c)σf (c)σc, Cov(εd,s, εg(d),s) = ρdg(d)σg(d)σd, where ρcf (c) = ρ(εc,s, εf (c),s) and ρdg(d) =

ρ(εd,s, εg(d),s) are correlation coefficients. Therefore, the variance-covariance matrix of εc,s

and εf (c),s as

ΣUS =

 σ2
c σcf (c)

σcf (c) σ2
f (c)

 , (11)
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and the variance-covariance matrix of εd,t and ε
g(d),n

(d)
g

, as

ΣCA =

 σ2
d σdg(d)

σdg(d) σ2
g(d)

 . (12)

Since county c∗ is the U.S. county selected based on the Euclidean measure and used to

predict the farm-level yields in county d∗ in Canada, parameters ac∗ , bc∗ , ad∗ , bd∗ , af (c∗) ,

ΣUS, and σ2
d∗

are estimated based on the available data. In order to predict the unknown

farm-level distribution parameters of Canada, ag(d∗) , bg(d∗) , σd∗g(d∗) , and σ2
g(d∗)

, the following

additional assumptions are made.2.

In the relational model proposed in this paper, we assume that the

µg,s = α× µf,s, (13)

σg = β × σf (14)

where s ∈ {sf,0, . . . , Sf} ∪ {sg,0, . . . , Sg}. In addition, it is assumed that they have the

same dependence structure, which indicates that in the special bivariate normal case when

(εc∗ , εf ) ∼ MN(0,ΣUS), we have ρcf (c) = ρdg(d) . Algorithm 4.1 summarizes the step-by-step

farm-level yield forecasting procedure for the relational model.

Algorithm 4.1 (Relational Farm-Level Prediction Model).

Step 1: Detrend the U.S. county-level data according to Equation (3), (7), detrend U.S.

farm-level data according to Equation (5), (9), and obtain εc∗,t, and εf,s, respectively,

where f = 1, . . . , F, t = 1, . . . , T, s ∈ {sf,0, . . . , Sf}.

Step 2: Estimate the marginal distributions of εc∗,t and εf,s, denoted as fc∗(x;θ) and ff (y;θ),

where θ is the parameter vector of the distributions.

2Without confusion, we eliminate the superscripts of (c∗) and (d∗) in the rest of the paper.
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Step 3: Estimate the dependence structure of εc∗,t and εf,s, denoted as lc∗,f (x, y;η), where

f = 1, . . . , F and η is parameter vector of the dependence structure. In the bivariate

normal case, it is equivalent to estimate ΣUS.3

Step 4: Detrend Canadian county-level data according to Equation (4), (8), and obtain εd∗,t.

Step 5: By applying the relational assumptions in Equation (13) and Equation (14), deter-

mine the margins and the dependence structure of εd∗,t and εg∗,s, denoted as fd∗(x;θ),

fg∗(y;θ), and ld∗,g∗(x, y;η), where g∗ is the Canadian farm in county d∗ we are inter-

ested in predicting.

Step 6: Simulate N bivariate distribution according to fd∗(x;θ), fg∗(y;θ), and ld∗,g∗(x, y;η),

denoted as (ε̂f,i, ε̂g∗,i), where i = 1, . . . , N . In the special case of the bivariate normal

distribution assumption, simulate N pairs of bivariate normal samples with variance

covariance matrix ΣCA = ΣUS.

Step 7: For each simulated sample, recover predicted yields in year s, ŷCA
g∗,s, according to

Equation (6), namely,

ŷCA
g∗,s,i = e(αµf,s+ε̂g,i∗), i = 1, . . . , N. (15)

4.3 Prediction Results

One advantage of Algorithm 4.1 in Section 4.2 is that it is able to predict the whole distri-

bution of farm-level yields for Canadian county d∗. In order to assess the performance of the

relational model, we compare the predicted pseudo farm-level yield distribution to the actual

Canadian farm-level yield data (which is available, but, not utilized). Due to the limited

farm-level data, which contains less than 10 years observation for each farm, the mean and

3In multivariate normal setting, the dependence structure is fully determined by the covariance. More
generally, different dependence structure models, such as copula models, can be applied.
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standard deviation of the predicted pseudo farm-level distribution are compared with actual

farm-level data. To be more specific, for each county d∗ being predicted, the relative mean

squared error (RMSE) for the statistic, Q, is calculated as,

RMSE
(d∗)
Q =

√√√√ 1

F (d∗)

F (d∗)∑
f=1

(
Q̃f − Q̂f

Q̃f

)2

, (16)

where Q represents mean or standard deviation; Q̃ is the estimator of Q calculated with

actual Canadian farm-level data; Q̂ is the estimator of Q calculated from the predicted

pseudo farm-yield data. In addition, the calculation of the RMSE, considers the farms in each

county that contain a minimum of 6 years of observations, and hence F (d∗) in Equation (16)

is the total number of farms in county d∗ that satisfy this criterion.

As mentioned previously, this is the first paper to develop an approach to forecast farm-level

yield data in the absence of farm-level data within the same county. Therefore, in order to

evaluate the performance of the relational framework developed in this paper, the methods

of Deng et al. (2007) are generalized to serve as a benchmark model. Deng et al. (2007)

model farm-level yield distributions, assuming that farm yield is multiplicative conditioned

on county yield. More specifically, for each farm i in county j, crop yield observation in year

s, yi,s and yj,s have a multiplicative relationship:

yi,s = yj,s × ηi,s, (17)

where ηis are defined as the idiosyncratic shocks in farm i relative to county j. The algorithm

of the benchmark model is summarized as follows:
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Algorithm 4.2 (Benchmark Prediction Model).

Step 1: Calculate the detrended county-level yields as

yDet-US
c∗,t =

yUS
c∗,t

eµc∗,t
eµc∗,T , (18)

yDet-CA
d∗,t =

yCA
d∗,t

eµd∗,t
eµd∗,T , (19)

where t = 1, . . . , T,; µc∗,t, µd∗,t are calculated according to Equation (7) and Equa-

tion (8), respectively.

Step 2: Calculate the U.S. farm-level idiosyncratic shock for farm f year sf , η
US
f,sf

,

ηUS
f,sf

=
yUS
f,sf

yUS
c,sf

, (20)

where f = 1, . . . , F ; sf = sf,0, . . . , Sf ; F is the total number of farms in county c∗; and

Sf is the total number of observations in farm f .

Step 3: By assuming that Canada and U.S. share the same idiosyncratic shocks, simulate

pseudo farm-level yields as

yPseudo-CA = yDet-CA
d∗ ⊗ ηUS

f , (21)

where yDet-CA
d∗

= (yDet-CA
d∗,sf,0

, . . . , yDet-CA
d∗,Sf

)′ is a ((Sf − sf,0 + 1)× 1) vector; ηUS
f = (ηUS

f,1 , . . . , η
US
f,F )

is a (1× F ) vector; ⊗ represents the Kronecker product 4.

The resulting ((Sf − sf,0 + 1) × F ) matrix of yPseudo-CA contains the pseudo farm-level

Canadian yields predicted from the benchmark model in Algorithm 4.2. The prediction

results for both Algorithm 4.1 and Algorithm 4.2 are summarized in Table 1 5. The first

4Kronecker product of (n×1) vector a and (1×m) vector b is defined as a⊗b =

 a1b1 . . . a1bm
. . .

anb1 . . . anbm

.

5Counties that do not cover the whole period from 1996-2011 are excluded from the analysis.
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column records county names. Columns 2 and 3 (Column 4 and 5) summarize results for the

relational model proposed in this paper (benchmark model). We start the investigation of the

relational model by simply assuming that α = β = 1 in Equations (13) and Equation (14),

which implies that the farm-level and county-level yields in Canada and U.S. share the same

drifts and variance. This assumption is generalized in the next section in an optimization

framework.

Table 1: Summary Results of the Relational Model. The first column records county names.
Columns 2 and 3 (Columns 4 and 5) summarize results for the relational model proposed
in this paper (benchmark model). “Avg” represents mean estimation and “Std” represents
standard deviation estimation.

County Name
Relational Model Benchmark Model

Avg Std Avg Std

Brokenhead 9.57% 62.94% 31.20% 75.59%
Desalaberry 21.49% 24.42% 37.11% 43.87%
Dufferin 66.64% 176.81% 40.98% 91.65%
Grey 25.20% 55.80% 37.57% 59.99%
Hanover 37.12% 37.40% 38.92% 39.30%
Labroquerie 23.65% 40.21% 22.93% 46.51%
Montcalm 38.40% 117.34% 42.91% 180.57%
North Norfolk 31.17% 55.44% 94.38% 1237.00%
Pembina 24.08% 37.08% 29.88% 93.18%
Portagelaprairie 22.19% 56.03% 28.35% 82.18%
Rhineland 38.51% 143.89% 47.68% 97.18%
Roland 41.06% 55.63% 41.25% 95.21%
Steanne 25.53% 36.18% 49.62% 17.67%
South Norfolk 19.80% 33.29% 36.34% 821.44%
Stanley 32.22% 86.39% 41.44% 111.48%
Tache 18.21% 66.01% 34.24% 54.93%
Thompson 30.93% 130.05% 44.31% 1785.00%
Whitemouth 13.44% 62.47% 36.20% 64.98%

Avg 28.85% 70.97% 40.85% 277.65%
Min 9.57% 24.42% 22.93% 17.67%
Max 66.64% 176.81% 94.38% 1785.00%

Prediction results show that the relational model proposed in this paper performs better,

and more accurate predicts the mean of the farm-level yield distribution compared to the
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benchmark model, with only two exceptions, including county Dufferin (38.5% worse) and

county Labroquerie (3.02% worse). The average RMSE for mean prediction is 28.85% from

the relational model, which is 41.62% better than the benchmark model (40.85%). In the

best case of the relational model prediction, the RMSEAvg is 9.57% in county Brokenhead.

In terms of the standard deviation prediction, the best result from the relational model is

24.42% in county Desalaberry, which is 72.71% better than the benchmark. Although the

RMSEStd in some counties are large, the prediction based on relational model is still better

than the benchmark model.

It is noteworthy that the Deng et al. (2007) method is to predict farm-level distribution

within the same county, while the objective of this paper is, in the absence to actual farm-level

yield data, to predict farm-level distribution by borrowing information from another county.

Hence, compared to (Deng et al., 2007) method, the benchmark model in Algorithm 4.2

has an additional assumption that Canada and U.S. share the same idiosyncratic shocks,

ηUS
f , in order to provide an idea of the performance of the relational model. Therefore, the

benchmark model are not the same as Deng et al. (2007) and the results of the benchmark

model in Table 1 does not indicate that the methodology in Deng et al. (2007) is not good

because they are essentially different models to address issues.

5 Robustness Checks

5.1 An Optimization Framework

Recall that the general relational model proposed in this paper assumes α and β are preset to

be 1 in Equation (13) and Equation (14) in the prediction results in Subsection 4.3. In this

section, the appropriateness of this assumption is investigated. More specifically, the optimal

α and β in a general relational model is explored, based on an optimization framework in

this subsection.
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Let us assume that ỹg,s is the predicted farm-level yield based on the relational model,

satisfying

logỹg,s = µ̃g,s + ε̃g,s, (22)

µ̃g,s = αµf,s (23)

ε̃g,s = βεx,s (24)

where εx,s is a random variable such that Var(εx,s) = σ2
f . These assumptions guarantee that

Equations (13), (14) are satisfied. The objective is to minimize the RMSE, denoted as

L(α, β) = E

(
yg,s − ỹg,s

yg,s

)2

(25)

Proposition 5.1. For the predicted yield ỹg,s satisfying Equation (22) to Equation (24), the

optimal α and β that minimize the RMSE as Equation (25) are expressed as

α =

(
3

2
σ2
gρ

2
gx − 3σ2

gρ
2
gx + µg +

3

2
σ2
g

)
/µf,s, (26)

β =
σg
σf
ρgx. (27)

where ρxg = ρ(εx,s, εg,s).

Proof. Proof of Proposition 5.1 is collected in Appendix A.

Table 2 summarizes the optimal α and β for each county and the corresponding prediction re-

sults 6. The optimal α and β are close to 1, indicating that the assumptions in Equation (13)

and Equation (14) are appropriate for the data utilized in this paper.

6Since the hypothetical random variable ε̃g,s is latent in reality, the prediction results are calculated
numerically.
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Table 2: Summary Results of the General Relational Model in an Optimization Framework.
The first column records county names. Columns 2 and 3 display the optimal α and β.
Columns 4 and 5 summarize the RMSE results for the general relational model with the
corresponding α and β. “Avg” represents mean estimation and “Std” represents standard
deviation estimation.

County Name α β
Relational Model

Avg Std

Brokenhead 0.9928 0.9522 8.74% 60.44%
Desalaberry 1.0004 1.0008 19.51% 24.46%
Dufferin 0.8815 0.3821 20.85% 60.45%
Grey 1.0225 1.0164 24.76% 58.69%
Hanover 0.9915 1.0099 37.00% 37.29%
Labroquerie 0.9539 0.9539 22.78% 43.99%
Montcalm 1.1083 1.1260 8.27% 254.92%
North Norfolk 1.0088 1.0024 30.48% 73.01%
Pembina 1.0502 0.9605 14.52% 57.01%
Portagelaprairie 1.0395 1.0337 16.30% 83.94%
Rhineland 0.8267 0.8305 30.84% 48.13%
Roland 0.8031 1.2826 34.71% 39.38%
Steanne 1.0721 0.9174 8.52% 25.55%
South Norfolk 1.0330 1.0347 15.55% 52.20%
Stanley 0.8837 1.2820 23.47% 94.93%
Tache 0.9998 1.0001 17.88% 63.27%
Thompson 1.0004 1.0008 26.06% 143.02%
Whitemouth 0.9957 0.9920 13.22% 63.58%

5.2 Robustness Check for Euclidean Distance Measure

This paper develops a relational model to predict farm-level yield in the absence of farm-level

losses, through borrowing information from another country based on Euclidean distance.

More specifically, for each Canadian county we are interested in predicting, the U.S. county

with the smallest Euclidean distance is selected, defined according to Equation (2). The

robustness check of this subsection shows the usefulness of the Euclidean distance in selecting

the optimal county for the relational analysis.

The robustness check proceeds as follows. The Canadian farm-level yield is predicted based

on the relational model, but, without selecting an “optimal U.S. county” using the Euclidean
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distance. Instead, in the prediction for each county, we randomly select a county from all

U.S. counties and then perform the relational analysis. This exercise is repeated 100 times

for each Canadian county and the average RMSE is recorded. The results are displayed in

Table 3.

The prediction results based on selecting the optimal county using the Euclidean distance

(hereafter we call “Euclidean method”) performs much better than the randomly selected

counties (hereafter we call “Random method”). On average, the Euclidean method is 155.44

% (
73.68%− 28.85%

28.85%
) better in mean prediction and 70.11% (

120.85%− 70.97%

70.97%
) better in

standard deviation prediction. In particular, the mean estimation for the county “Broken-

head” with the Euclidean method is 1002.97% better than the Random method, while the

standard deviation estimation for the county “Desalaberry” with the Euclidean method is

227.94% better than the Random method.

6 Pricing Example

The relational model developed in the preceding sections provides a framework to achieve ac-

curate farm-level crop yield forecasting, which is the foundation for crop insurance ratemak-

ing, such as Multi-Peril Crop Insurance (MPCI) contracts. In this section, a pricing example

is used to illustrate the importance of estimating unknown farm-level yields to establish ro-

bust premium rates. A MPCI contract is priced, with coverage levels varying from 50%

to 100%. In calculating premium rates, both the expectation premium principle and the

standard deviation premium principle are considered. The expectation premium principle

and standard deviation premium principle for a certain loss random variable X are defined

as

Expectation: Premium Rate = E(X)(1 + θ); (28)

StdDev: Premium Rate = E(X) + θ
√
Var(X), (29)
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Table 3: Summary Results of the Relational Model. The first column records county names.
To compare, Columns 2 and 3 summarize results for the relational model with a U.S. county
selected by minimizing the Euclidean distances. Columns 4 and 5 display the predicting
results without selecting an optimal county. “Avg” represents mean estimation and “Std”
represents standard deviation estimation.

County Name
Minimum Euclidean Distance County Randomly Selected County

Avg Std Avg Std

Brokenhead 9.57% 62.94% 105.50% 128.48%
Desalaberry 21.49% 24.42% 64.56% 80.08%
Dufferin 66.64% 176.81% 73.30% 179.10%
Grey 25.20% 55.80% 93.86% 124.45%
Hanover 37.12% 37.40% 104.57% 80.46%
Labroquerie 23.65% 40.21% 123.37% 101.44%
Montcalm 38.40% 117.34% 39.86% 163.48%
North Norfolk 31.17% 55.44% 114.22% 137.44%
Pembina 24.08% 37.08% 48.22% 83.10%
Portagelaprairie 22.19% 56.03% 80.54% 125.87%
Rhineland 38.51% 143.89% 48.97% 158.06%
Roland 41.06% 55.63% 42.76% 123.65%
Steanne 25.53% 36.18% 49.56% 70.60%
South Norfolk 19.80% 33.29% 82.59% 109.66%
Stanley 32.22% 86.39% 47.64% 127.35%
Tache 18.21% 66.01% 76.02% 108.63%
Thompson 30.93% 130.05% 59.49% 218.26%
Whitemouth 13.44% 62.47% 71.26% 95.26%

Avg 28.85% 70.97% 73.68% 120.85%
Min 9.57% 24.42% 39.86% 70.60%
Max 66.64% 176.81% 123.37% 218.26%

where θ is the risk loading parameter. Different θ is considered ranging from 0.1 to 0.4.

The range is selected based on supporting literature (Porth et al., 2013; 2014) and market

convention.

Premium rates are calculated using the loss-cost ratio (LCR), defined as the ratio of indem-

nity over liability. More specifically, the liability of a contract with coverage level c is defined

as L = c ·E(yt), and the indemnity of the contract is defined according to I = max(L−yt, 0).

19



Hence the LCR is defined as:

LCR =
I

L
=

max(c · E(yt)− yt, 0)

c · E(yt)
. (30)

To illustrate the existence of aggregation bias and highlight the importance of the relational

model proposed in this paper, pricing results based on different underlying data are con-

sidered. More specifically, we compare premium rates calculated from county-level yields,

predicted farm-level yields (using the relational model), as well as the actual farm-level

yields. Estimated densities of the three types of underlying data are pictured in Figure 2.

The pricing results for the county with the smallest prediction error in Table 4 7. The

prices based on the predicted farm-level data are very close to results from the actual farm-

level data, demonstrating the usefulness of the relational model proposed in this paper. For

both premium principles, the premium rates increase with the coverage level c and the risk

loading parameter θ. Generally, pricing with the predicted farm-level data is slightly more

conservative compared to the actual farm-level data.

Comparing the pricing results based on county-level data and farm-level data, the discrep-

ancies indicate aggregation bias, which demonstrates the importance of improving the pre-

diction accuracy of farm-level data using approaches such as the relational model proposed

in this paper. In the case where actual farm-level data is not available, the aggregation bias

can be formally measured by the difference between the variances of county-level yields and

predicted farm-level yields. The aggregation bias can be considered from both absolute and

relative views as follows,

Absolute Aggregation Bias = σ2
f − σ2

c , (31)

Relative Aggregation Bias =
σ2
f − σ2

c

σ2
f

. (32)

7Refer the first row in Table 1. Due to length restriction, pricing results for other counties are available
upon request.
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Table 4: Summary of Pricing Results. The first panel shows the results for expectation
premium principle (“Expectation”) and the second panel for standard deviation premium
premium principle (“StdDev”). The underlying data used for pricing are displayed in the
column named “Underlying” including county-level data, predicted farm-level data with the
relational model, and real farm-level data.

θ Underlying c = 0.5 c = 0.65 c = 0.75 c = 0.85 c = 0.95

Expectation

0.1
County 0.0122 0.0521 0.0772 0.1176 0.1599

Farm-Predict 0.0184 0.0558 0.1001 0.1380 0.1899
Farm-Real 0.0184 0.0521 0.0874 0.1373 0.1799

0.2
County 0.0146 0.0560 0.0900 0.1330 0.1826

Farm-Predict 0.0264 0.0640 0.1050 0.1547 0.1972
Farm-Real 0.0218 0.0630 0.1029 0.1464 0.1956

0.3
County 0.0160 0.0585 0.1019 0.1416 0.2097

Farm-Predict 0.0264 0.0711 0.1112 0.1561 0.2072
Farm-Real 0.0243 0.0664 0.1074 0.1543 0.2042

0.4
County 0.0150 0.0651 0.0967 0.1409 0.2040

Farm-Predict 0.0219 0.0634 0.1128 0.1537 0.2191
Farm-Real 0.0238 0.0775 0.1041 0.1644 0.2331

StdDev

0.1
County 0.0161 0.0587 0.0837 0.1225 0.1634

Farm-Predict 0.0236 0.0627 0.1071 0.1440 0.1934
Farm-Real 0.0232 0.0585 0.0938 0.1430 0.1839

0.2
County 0.0228 0.0695 0.1031 0.1435 0.1895

Farm-Predict 0.0374 0.0776 0.1184 0.1657 0.2046
Farm-Real 0.0316 0.0770 0.1161 0.1569 0.2024

0.3
County 0.0247 0.0738 0.1147 0.1577 0.2071

Farm-Predict 0.0424 0.0914 0.1370 0.1810 0.2162
Farm-Real 0.0360 0.0811 0.1327 0.1809 0.2118

0.4
County 0.0313 0.0913 0.1233 0.1633 0.2212

Farm-Predict 0.0395 0.0886 0.1387 0.1781 0.2359
Farm-Real 0.0447 0.1036 0.1304 0.1868 0.2458

21



Figure 2: Estimated Densities of the Three Types of Underlying Data.
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Table 5 summarizes both absolute and relative aggregation biases for each county. Intuitively,

aggregation cancels idiosyncratic risks, leading to smaller total risk in aggregated data.

Therefore, we expect higher variance in county-level yields compared to farm-level yields.

Based on the results in Table 5 confirm this hypothesis, for 16 out of 18 counties, Aggregation

biases are positive, indicating that variances of the predicted farm-level yields are greater

than the county-level yields. However, this is not conclusive as there are still counties with

negative aggregation biases.

7 Conclusion

This is the first paper to develop a relational model to predict farm-level crop yield distribu-

tions in the absence of farm-level losses, through borrowing information from a neighbouring

country, where detailed farm-level yield experience is available. Detailed corn yield data sets

at the farm-level and county-level from the U.S. and Canada are utilized, as well as corre-

sponding weather data including temperature and precipitation, in the empirical analysis

to facilitate the examination the efficiency of the proposed relational model. The empirical
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Table 5: Summary of Aggregation Biases.

County Absolute Bias Relative Bias

Brokenhead 4.28 0.14
Desalaberry 3.44 0.10
Dufferin 27.74 1.01
Grey 8.80 0.32
Hanover 2.93 0.09
Labroquerie 5.85 0.19
Montcalm 4.74 0.15
Northnorfolk 3.95 0.13
Pembina 2.79 0.08
Portagelaprairie 7.59 0.29
Rhineland -24.33 -0.68
Roland 2.60 0.09
Steanne -1.54 -0.04
Southnorfolk 10.58 0.42
Stanley 7.21 0.27
Tache 1.13 0.03
Thompson 8.87 0.32
Whitemouth 4.96 0.16

results show that the relational model developed in this paper is able to predict the farm-

level yield accurately. The approach developed in this paper may be useful in improving

yield forecasts and pricing in the case where farm-level data is limited or not available. Fur-

ther, this approach may also help to address the issue of aggregation bias, when county-level

data is used as a substitute for farm-level data, which tend to result in underestimating the

predicted risk relative to the true risk.

Although the results of this paper are mainly based on the normal distribution, the rela-

tional model presented in this paper is very flexible. In the future research, other marginal

distributions and other dependence structures containing heavy tails can be applied to the

relational model. With additional data and information, more assumptions can be made to

generalize the relational model idea and improve the prediction ability.

23



A Proof of Proposition 5.1

Note that
yg,s
ỹg,s

= e(µg,s−αµf,s)+εg,s−βεx,s , and the first order conditions are

∂L(α, β)

∂α
= 2(−µf,s)E

(
1− e(µg,s−αµf,s)+εg,s−βεx,s

)
· e(µg,s−αµf,s)+εg,s−βεx,s = 0, (33)

∂L(α, β)

∂β
= 2(−εx,s)E

(
1− e(µg,s−αµf,s)+εg,s−βεx,s

)
· e(µg,s−αµf,s)+εg,s−βεx,s = 0. (34)

Equation (33) is equivalent to

E
(
eεg,s−βεx,s − eµg−αµf,s+2εg,s−2βεx,s

)
= 0. (35)

Note that εx,s|εg,s ∼ N(
σf
σg
ρgxεg,s, (1− ρ2gx)σ2

f ), hence,

E
(
eεg,s−βεx,s

)
= E

(
eεg,sE

(
e−βεx,s|εg,s

))
= exp

(
1

2
β2σ2

f − βσfσgρgx +
1

2
σ2
g

)
, (36)

In addition,

E
(
eµg−αµf,s+2εg,s−2βεx,s

)
= exp

(
2β2σ2

x − 4βσfσgρgx + 2σ2
g

)
. (37)

Therefore, according to Equation (35),

αµf,s =
3

2
β2σ2

x − 3βσxσgρgx + µg +
3

2
σ2
g . (38)

Similarly, according to Equation (34), we have

exp

(
1

2
σ2
xβ

2 − βσgσfρgx +
1

2
σ2
g

)
(σxσgρgx − βσ2

x) (39)

= 2 exp
(
2σ2

xβ
2 − 4βσgσfρgx + 2σ2

g

)
(σxσgρgx − βσ2

x), (40)
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indicating

σxσgρgx − βσ2
x = 0. (41)

Combining Equation (38) and Equation (41), we have

α =

(
3

2
σ2
gρ

2
gx − 3σ2

gρ
2
gx + µg +

3

2
σ2
g

)
/µf,s, (42)

β =
σg
σf
ρgx. (43)
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