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Two-Stage Estimation to Control for Unobservables in a

Recreation Demand Model with Unvisited Sites

Abstract

The role of unobserved site attributes is a growing concern in recre-

ation demand modeling. One solution in random utility models (RUM)

involves separating estimation into two stages, where the RUM model is

estimated with alternative-specific constants (ASCs) in the first stage,

and the estimated ASCs are regressed on the observed site attributes in

the second stage. Prior work estimates the second stage with OLS and

2SLS regression. We present an application with censored regression

in the second stage. We show OLS produces inconsistent parameters

when there are unvisited sites with no estimable ASCs and that cen-

sored regression avoids this problem.

Keywords : Random utility model; non-market valuation; recreational fishing

JEL codes : C25; Q26; Q51
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1 Introduction1

There is growing recognition that unobserved site characteristics are a serious prob-2

lem in random utility models (RUM) of recreation demand. Failure to control for3

unobservables in these models can lead to severely biased parameter and welfare4

estimates [1]. Similar issues have been noted in applications to differentiated con-5

sumer products, for example price endogeneity in modeling the supply and demand6

for automobiles [2]. Price endogeneity is also known to arise in recreation demand7

modeling [3]. However, the problem of unobservables in RUM models extends8

beyond endogeneity. Unobserved choice attributes independent of the included ex-9

planatory variables still produce biased standard errors, which effectively overstate10

the precision of the parameters [4]. Given the difficulty of measuring environmen-11

tal quality, it may be challenging for RUM models of recreation demand to avoid12

the bias from unobservables.13

To address problems of endogeneity and neglected heterogeneity, several papers14

with recreational RUM model applications use two-stage estimation [4, 5, 6]. The15

first stage of this procedure estimates the RUM model specified with a full set of16

alternative-specific constants (ASCs). The second stage regresses the estimated17

ASCs on the observed, alternative-specific characteristics not identified in the first18

stage.1 Two-stage estimation is flexible in that a variety of estimators can be used19

in the second stage [4]. If the analyst is only concerned with neglected hetero-20

geneity, then OLS will be sufficient [7, 8]. If an alternative-specific characteristic21

is thought to be endogenous, 2SLS can be used [5]. In general, the appropriate22

second-stage estimator will depend on the nature of the ASCs and the omitted23

variables problem.24
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In this paper we examine several second-stage regression models. Our moti-25

vation comes from the persistence of unvisited sites in RUM models of recreation26

demand—it is not unusual for several sites to receive no visits in a sample of trips.27

These occurrences do not preclude estimating RUM models, but in the context of28

two-stage estimation only the ASCs of visited sites are identified, so applying OLS29

in the second stage produces biased parameters. To our knowledge, only Timmins30

and Murdock [5] acknowledge this issue. Their solution adds small increments to31

the number of visits each site receives and applies a quantile estimator to the sec-32

ond stage to control for the fact that the ASCs for unvisited sites are arbitrarily33

small. In contrast, we use censored regression in the second stage. Rather than34

assigning arbitrarily small values to ASCs, this approach assumes the ASCs of35

unvisited sites are censored from below. Censored regression can be carried out36

in most statistical software packages, so analysts will find this procedure simple37

to perform. Specifically, we adopt censored Tobit regression in the second stage,38

which is preferrable to OLS and certain quantile regression strategies (such as me-39

dian regression) because it remains a consistent estimator when there is a large40

number of unvisited sites in the data.41

Our application is to recreational fishing in Oklahoma. One of our objectives42

was to derive welfare estimates for fishing in the state, which has about 150 fishable43

public lakes. Only secondary data were available for this task, which left about44

45% of lakes with no visits from the sample. We also lacked a rich dataset on site45

characteristics, so neglected heterogeneity is likely to be a problem. In applying the46

two-stage correction procedure, the results show failing to account for the censored47

nature of the ASCs can lead the analyst to falsely conclude relevant measures of48

site quality are not important to anglers.49
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2 Empirical stategy50

2.1 RUM model of recreational fishing51

For a RUM model of recreational fishing we want to relate the demand for fishing52

sites to differences in site attributes such as travel cost and fish abundance. RUM53

models assume an individual chooses the alternative with highest utility. For an54

individual angler i, assume there are A alternatives, each associated with a utility55

level of Uij, where j = 1,. . . , A. The indirect utility level from choosing alternative56

j has the form:57

Uij = xjβ + zijγ + pijρ+ νj + εij (1)

which can be rewritten as58

Uij = δj + zijγ + pijρ+ εij (2)

where the term δj = xjβ + νj is the component of utility that varies across alter-59

natives but not across anglers. The vector xj contains the observable site-specific60

characteristics and νj the unobservable site characteristics. The vector zij con-61

tains the site characteristics relevant to angler i at site j, pij is the travel cost, and62

εij is the random part of utility. Anglers are assumed to choose the alternative j63

where Uij > Uik for all j 6= k, although the researcher only observes the portion64

Vij = xjβ + zijγ + pijρ and out of sample cannot predict with certainty the pre-65

ferred fishing alternative for a given trip. Assuming νj = 0 and εij is distributed66

extreme value yields the conditional logit site choice model, where the probability67

3



of visiting site j is68

probi(choose j) =
eVij∑A

k=1 e
Vik
. (3)

The utility specification in equations (1)-(2) allows for preference heterogeneity in69

the observable characteristics. Additional heterogeneity could be incorporated by70

using a random parameters logit model, which allows parameters to vary among71

individuals.272

The welfare impact associated with changing site characteristics is measured73

by the maximum amount an angler is willing to pay (WTP) to equate the utility74

they would get in the altered state to the utility they get in the current state.75

Following Haab and McConnell [9], WTP is expressed as76

WTPi =
1

ρ

[
ln
( A∑
k=1

eV
1
ik

)
− ln

( A∑
k=1

eV
0
ik

)]
(4)

where V 0 denotes utility in the current state and V 1 utility in the altered state.77

As in any regression model, correlation between the observables xj and zij and78

the unobservable νj leads to endogeneity [1]. However, νj will cause problems in79

RUM models even if it is uncorrelated with the observables, by creating atten-80

uation bias in the standard errors. This bias can be significant even when the81

neglected heterogeneity is slight, producing standard errors that grossly overstate82

the precision of the parameters [4]. The solution is to estimate the utility function83

in equation (1) in two stages. First, estimate equation (2) as the discrete choice84

model, where δj is a constant for each site. The resulting set of ASCs capture all85

site-specific heterogeneity—observable and unobservable—so the first stage pro-86

duces consistent parameters and standard errors. Second, regress the ASCs on the87

common observable utility component xj to estimate β. Assuming νj is uncor-88
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related with the observables, the parameters can be consistently estimated using89

OLS and reported with robust standard errors in the usual fashion. An instrumen-90

tal variables strategy can be applied in the second stage to correct for the more91

serious case of endogeneity [5].92

2.2 Second stage estimation93

An important consideration in estimating the ASCs is whether any of the alterna-94

tives go unchosen. This problem often arises in RUM models of recreation demand95

unless sample sizes are very large. For each site the ASC is estimated based on the96

proportion of trips it receives in the sample. If a site receives no trips, then the97

ASC associated with it cannot be identified (besides knowing the constant must98

be small, so the number of sample visits predicted by the RUM model is zero).99

This is a problem in our application, in which about 45% of lakes were not visited100

in the sample.101

There are several strategies to deal with this identification problem. First, un-102

visited sites can be aggregated with visited sites to ensure a non-zero share of trips103

go to all alternatives. Site aggregation should be done with caution because doing104

so can result in biased parameter estimates [10]. However, Lupi and Feather [11]105

demonstrate a partial site aggregation strategy can potentially avoid this bias by106

keeping a large fraction of the most popular sites disaggregated while aggregating107

the remaining sites into groups. Second, the choice set can be restricted so the108

model is applied only to visited sites. This strategy does not affect the properties109

of the first-stage estimates, but it will limit inference about the effects of the com-110

mon utility component β estimated in the second-stage. Researchers employing111

this approach will have to be careful interpreting the role of β, unless sites went112
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unvisited arbitrarily [12]. This strategy has been adopted in a few cases of two-113

stage estimation [4, 7]. A third strategy is to assign suitably small values to the114

constants of unvisited sites (enough so that the predicted share of trips to these115

sites is zero) and use quantile regression in the second stage [5]. We consider each116

of these as a possible remedy in our own application below.117

We propose a fourth strategy based on the intuition of Timmins and Murdock118

[5]. With δ denoting the baseline utility or ASC to each site, let δ̂ denote the119

“observable,” estimated ASCs and δ̃ the unidentified ASCs. Given the unidentified120

ASCs will tend to be smaller than any δ̂, we propose there exists some δ where121

δ̃ ≤ δ. We can then say δ̂ is censored at δ and write the second-stage model as122

δ̂j = xjβ + νj (5)

123

δ̂ = max(δ, δ) (6)

Assuming νj is homoscedastic normal, equations (5) and (6) compose the standard124

censored Tobit model [13]. It is impossible to know the true δ, but Carson and125

Sun [14] and others [15] demonstrate that when the censoring threshold is unknown126

Tobit regression yields consistent parameters if the minimum order statistic of the127

observed sample is used as the threshold. The strategy we propose is to use this128

estimator in the second stage, with the smallest estimated ASC as the censoring129

point, δ = min{δ̂}.130

It is important to provide some remarks on the difference between a Tobit model131

for data censoring applications and a Tobit model for corner solutions. With corner132

solutions, the entire distribution of the data lies at and above some lower bound,133

and there is no data observability problem. Consequently, when Tobit models134
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are applied to corner solutions the partial effect is computed conditional on the135

observed distribution of the data, which involves weighting β by the probability136

of an interior solution. Calculating partial effects and the meaning of β is much137

simpler in applications to censored data. Because δ is not inherently bounded, the138

Tobit parameters can be interpreted as they are written in equation (5), just as if139

there had been no censoring problem and the second stage was estimated by OLS140

[13].141

A further assumption in applying a censored estimator in recreation demand142

applications is that the δ̂ must not be substantially influenced in the first-stage143

estimation by the δ̃ (or lack thereof). Note that this is similar to the assumption144

Timmins and Murdock make in their procedure, i.e. the arbitrary amount added to145

the total number of visits in their model to estimate the ASCs is small enough not146

to affect the relative odds of any two choices with a positive number of visitors.3147

We compare the results from two-stage estimation with censored Tobit to sev-148

eral alternative regressions. Initially, we ignore the potential influence of unob-149

served site characteristics and estimate a standard conditional logit. We then150

restrict the choice set to visited sites and estimate a conditional logit with ASCs.151

This first stage identifies the effects of the heterogeneous utility components and152

the ASCs of visited sites. OLS regression is then applied to the estimated ASCs153

in order to identify β. Next, we adopt a partial site aggregation strategy in which154

the lakes with ≥ 2 visits from the sample are left disaggregated and the remain-155

ing lakes are aggregated into a few alternatives, each with at least one visit. We156

estimate this model with ASCs, and then OLS in the second stage to identify β.157

Finally, we assign small values to the constants of unvisited sites and use quantile158

(median) regression in the second stage.159
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The five regressions examined can be summarized as:160

� Case 1: Estimate equation (1) as a conditional logit.161

� Case 2: Estimate equation (2) as a conditional logit. Estimate β by OLS162

from only the set of chosen alternatives.163

� Case 3: Estimate equation (2) as a conditional logit after partial site aggre-164

gation. Estimate β by OLS from the set of partially aggregated alternatives.165

� Case 4: Estimate equation (2) as a conditional logit. Estimate β by median166

regression from the complete choice set by assigning values δ̃=ln(0.001/A)167

to the ASCs of unvisited sites.168

� Case 5: Estimate equation (2) as a conditional logit. Estimate β by censored169

Tobit regression from the complete choice set by assuming δ̃ ≤ min{δ̂}.170

The degree of bias from discarding the unvisited sites in the second stage is assessed171

by comparing case (2) with case (5). Case (3) will be useful in determining whether172

partial site aggregation with ASCs can correct for unobserved heterogeneity when173

there are unvisited sites (in addition to estimating choice models with a large174

number of alternatives, for which partial site aggregation was originally intended)175

[11]. Case (4) mirrors an existing two-stage RUM estimation strategy to deal with176

unvisited sites [5].177

2.3 Additional details178

Along with the site characteristics that vary across individuals, we estimate the179

ASCs in the RUM model by maximum likelihood. All regressions are performed180

8



in Stata 13 [16]. Our partial site aggregation strategy is based on Parsons et al.181

[12] in that the least popular lakes (with < 2 visits) are aggregated into one of182

eight regional groups, which are then described by the average lake data among183

the group [11].4 In the results, we report heteroscedasticity-robust standard errors184

for the OLS and quantile-estimated parameters.185

3 Data186

The fishing trip data were obtained from a survey conducted by the Oklahoma187

Department of Wildlife Conservation in 2014 of 3,000 randomly-selected resident188

fishing license holders. The department conducts the survey approximately every189

five years to collect data about angler opinions, attitudes and preferences. The190

questions in the 2014 survey were not designed for the purpose of this study.191

Individuals were initially contacted with a mailed packet containing a letter, a192

questionnaire and a pre-stamped return envelope. The letter described the purpose193

of the survey and informed anglers they could participate by returning the enclosed194

paper questionnaire, filling out a web-based questionnaire, or waiting several weeks195

to complete a follow-up phone survey. The response rate was 26%.196

Among other items, the survey asked anglers to indicate their species prefer-197

ences and recent fishing trip location. Removing those who did not fish in the198

past year (17% of respondents), did not report an identifiable destination (2% of199

respondents) or whose trip was not taken primarily for the purpose of fishing (14%200

of respondents) left 536 trips suitable to estimate the RUM model.201

We developed a list of 146 lakes based on an index maintained by the Oklahoma202

Water Resources Board as well as the destination information provided by anglers203
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in the survey. To account for potential substitution between fishing at lakes and204

other waterbodies [17], we added a two aggregated alternatives, one each for stream205

and pond sites. The complete choice set in our model therefore includes 148206

alternatives.207

Travel costs to each lake were calculated using information on travel distances,208

angler demographics and gasoline prices. Travel distances from an angler’s home209

zip code to each lake were calculated using the PC*Miler program [18]. The210

opportunity cost of travel time was constructed from a wage proxy. This wage211

proxy was one-third the midpoint of an angler’s income category from one of six212

possible categories on the questionnaire (or the observed mean for anglers who213

omitted a response) divided by 2000 (the approximate number of working hours214

in a year). We used a per-mile driving cost of $0.28, based on the marginal change215

in driving costs for a large sedan in AAA reports [19] that discounts depreciation216

costs [20]. The travel cost to each site was calculated as the sum of round-trip217

distance in miles times per mile driving costs, plus the opportunity cost of travel218

time assuming an average driving speed of 45 miles per hour, plus the access fee,219

if any.220

Fishing quality at lakes was measured in terms of expected fish abundance.221

The wildlife department provided fish sampling data for select species and lakes.222

We focused on the abundance of black bass (largemouth and smallmouth bass),223

walleye, catfish and crappie, as these are considered important game fish in Ok-224

lahoma. Catfish, crappie and black bass are the most commonly targeted, with225

65%, 59% and 55% of anglers reporting catfish, crappie and black bass, respec-226

tively, as one of their top species (in the survey, anglers ranked the three species227

they most preferred to catch in the past year). Walleye are less popular but are228

10



still considered a key game fish in the state. Black bass abundance is measured229

by spring electrofishing counts while walleye, catfish and crappie abundance are230

measured by fall gillnetting counts. We expect these measures are highly corre-231

lated with catch rates. Expected abundance was calculated at individual lakes232

using an exponential regression model with covariates for water quality and land-233

scape features.5 The mean of expected abundance was used to fill in for lakes that234

lacked data. The abundance measures were then interacted with dummy variables235

for whether the angler reported a preference for the species in question. The in-236

teractions are interpretable as targeted abundance, and allow us to focus on the237

importance abundance with species preferences held fixed [21].238

We also collected data on water quality and shoreline conditions. To measure239

water quality, Secchi disk depth was obtained from the state Water Resources240

Board.6 Conditional on fish abundance, we expect anglers avoid lakes with high241

turbidity [22]. Shoreline length (in miles) was calculated from a GIS database.242

Following Train [23], we expect shoreline length to account for the fact that the243

number of fishable locations increases with the size of a lake. A dummy variable244

indicates whether a lake is associated with a Close to Home fishing agreement245

between the state wildlife department and municipalities to improve fishing op-246

portunities and facilities at metro lakes.7 Finally, the number of boat ramps at247

a site is included as a proxy for the number of access points at a lake [23]. To248

distinguish the effect of opening up access with one boat ramp and reducing con-249

gestion with additional ramps, we also include a dummy variable for whether there250

is at least one ramp at a lake. Table 1 provides descriptive statistics of the site251

characteristics used in the demand model.252
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4 Results and discussion253

We report the RUM model estimates in two parts. In the first part, we focus254

on the effects of the individual heterogeneous utility components (varying across255

sites and anglers), that can be estimated in the first stage with ASCs. In the256

second part, we report the effects of the common utility components (the site-257

specific characteristics), which must be estimated in the second stage when there258

are ASCs. Following this, we demonstrate the implications of these different models259

for welfare analysis with several hypothetical valuation scenarios.260

4.1 Effects varying across anglers estimated in the first stage261

In this section we focus on the RUM estimates for travelcost and the nine inter-262

action variables that vary across individuals and sites. Table 2 shows the results263

for the different RUM models. Note that the two-stage models estimated from the264

complete/dissaggregated choice set share the same first-stage, so their estimates265

at this point are identical (and, hence, not separately reported).266

The models at this stage are largely similar in parameter signs and magnitudes.267

All models agree that smaller travel costs and greater catch rates positively affect268

utility.8 For anglers who target black bass or walleye, the effect of fish abundance269

on site choice is statistically significant. For boat users, there is a clear preference270

for lakes with a boat ramp, and more ramps are preferred to fewer ramps. Bass271

anglers disproportionately prefer to fish at ponds, while trout anglers prefer rivers.272

Only a few parameters are affected by the addition of ASCs, which improve273

the overall fit of the model significantly. A likelihood ratio test of the hypothesis274

that all characteristics are observed is rejected at the 5% level.9 Most notably, the275
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effect of walleye declines from 1.220 without ASCs to 0.758 with ASCs (or 0.790 in276

the case of partial site aggregation), suggesting that there may be unobserved lake277

characteristics correlated with walleye abundance which also influence site choice.278

The effects of catfish and crappie increase with the ASCs, but remain statistically279

indistinguishable from zero. Partial site aggregation does an admirable job in this280

stage; with about one-third the number of observations, the estimates between281

the full choice set and the partially aggregated choice set are nearly identical.282

Importantly, the standard errors are all larger when the model includes ASCs.283

This result is consistent with the work of Murdock [4], who shows the standard284

errors of a conditional logit are biased downward when there are unobserved site285

characteristics.286

4.2 Site-specific effects estimated in the second stage287

Differences between estimation strategies are more apparent when comparing the288

site-specific effects. These results are reported in Table 3. All models predict289

that anglers prefer lakes with longer shorelines and are part of a Close to Home290

agreement, and that a significant share of anglers fish at rivers and ponds.10 Never-291

theless, between models there are important differences in the magnitudes of these292

effects and little agreement on the influence of Secchi depth.293

Compare the RUM model that uses a standard conditional logit with the model294

that applies a second-stage OLS estimator on the identified ASCs. Two-stage OLS295

estimation produces smaller parameters and larger standard errors relative to the296

standard conditional logit. The standard errors in the latter model are biased dow-297

nards, so larger standard errors in the second stage is not suprising. It is mostly298

due to attenuation in the parameter estimates, though, that the Secchidepth effect299
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is no longer statistically significant, and the ClosetoHome effect drops in signif-300

icance from the 5% to the 10% level. The shoreline parameter remains positive301

and highly significant but is about half as large as its counterpart in the standard302

conditional logit.303

Now consider the parameters in the model developed with partial site aggre-304

gation. The effect of Secchidepth is negative and statistically insignificant. The305

Shoreline and ClosetoHome effects are both smaller compared to the parameters306

in standard conditional logit, although still positive and statistically significant at307

the 5% level. The similarities between these parameters and those in the two-308

stage model estimated on visited sites is probably not a coincidence. In general,309

the impact of aggregating sites on the parameters is uncertain, but our strategy310

of aggregating the least-visited sites appears to have the same effect as removing311

the sites with no visits from the choice set. Actually, partial site aggregation may312

be worse in some sense, because it assumes the lake data used for the aggregated313

alternatives is fixed rather than averaged, which causes the standard errors to be314

biased downward.315

Applying median regression in the second stage produces curious estimates.316

All of the parameters are at least several times larger than their counterparts317

estimated from the other regressions. Why is this? Recall that median regression318

is necessay because arbitrarily small values were assigned to the unidentified ASCs,319

δ̃. Previous research states that median regression can consistently estimate site-320

specific effects in the presence of these assumed values as long as a majority of321

sites have a positive number of visitors [5], but our results show this is not true in322

general. In our application, 70 of 148 sites have zero visits, which is enough that the323

parameters are sensitive to the choice of δ̃, and in Appendix A we demonstrate that324
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the parameters change substantially with different assumptions about δ̃. However,325

quantile regression can still consistently estimate the effects in the upper portions326

of the distribution of δ (i.e. lakes with above-average visitation); Appendix A327

provides a quantile regression example in which the parameters are robust the328

values of δ̃ when estimated at the third quartile.329

Finally, consider the RUM model that uses censored Tobit regression in the330

second stage. This strategy accommodates the complete choice set by assuming331

the unidentified ASCs are censored at the value of the smallest estimable constant.332

Overall, the censored Tobit regression parameters are similar to those from the333

standard conditional logit and appear much more reliable, with positive and sig-334

nificant parameters estimated for shoreline, Secchidepth and ClosetoHome. The335

standard errors are also larger compared to the standard conditional logit. Inter-336

estingly, censored Tobit regression fits the ASC data better than any of the other337

regressions.338

An important caveat is that model misspecification in the second stage will339

affect the results. However, in our application none of the censored Tobit model340

assumptions are violated. In Appendix B, we show that the second-stage param-341

eters from the Tobit are nearly identical to those obtained from censored least342

absolute deviations (CLAD) regression, suggesting the Tobit estimates are largely343

robust to the distributional assumptions of that estimator.11 More importantly,344

we conducted a test of the normality and homoscedasticity assumptions by nest-345

ing the Tobit within a more general, Box-Cox specification, which could not be346

rejected at the 5% level.12 Thus, the usual Tobit model assumptions are satisfied.347

Although it may not be obvious, model misspecification is a problem in the348

model that applies OLS in the second stage using the identified ASCs. In general,349
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with data censoring OLS is an inconsistent estimator [13], and in our application350

we cannot apply OLS to the subsample of visited sites and expect to consistently351

estimate the site-specific effects. Applying the model to only visited sites intro-352

duces a new source of error inherently correlated with the site-specific observables353

(since these variables affect visitation and therefore the probability of a site going354

unvisited), creating a source of endogeneity. This induced endogeneity explains355

the differences observed between the OLS and Tobit estimates.356

Overall, we find that assuming the choice set includes only visited sites leads357

to selection bias. This is consistent with Parsons et al. [12], who found RUM358

model parameters were sensitive to excluding less popular lakes in the choice set.359

Parameter sensitivity to choice set definitions is also consistent with the results of360

Hicks and Strand [24]. Had we estimated the model on the restricted choice set to361

accommodate OLS estimation in the second stage, we would have falsely concluded362

turbidity and perhaps the Close to Home fishing program did not matter to anglers.363

Of course, some of the lakes without visits in the present model may be unknown364

to anglers, in which case excluding them from the choice set is appropriate [25],365

but we lack the data to determine which lakes anglers are aware of and which they366

are not. We expect the amount of bias from including unknown lakes is less than367

from excluding known but still unvisited lakes.368

4.3 Welfare estimates369

We consider five policy experiments involving elimination of the Close to Home370

fishing program, improvements in water clarity, and increases in fish populations371

at a popular lake in Oklahoma. We compare the per-trip benefits of increases in372

Secchi depth at lakes across the state versus those in the Grand River watershed373
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because state conservation organizations are currently working to implement best374

management practices in that watershed. Table 4 presents the welfare effects of375

these site quality changes. Our preferred set of results comes from the RUM376

model that uses censored Tobit regression in the second stage—first, because two-377

stage estimation greatly improves the fit of the model and, second, because Tobit378

regression correctly uses information on the full choice set in the second stage.379

We find that for anglers the value of improving water clarity in the Grand River380

watershed is worth more per trip, on average, than at other lakes in the state. This381

is due to the relatively low Secchi depth levels and greater demand for fishing in382

the Grand River watershed compared to other regions. In terms of per trip WTP383

for increases in fish abundance, our estimates are similar to those found for other384

freshwater sport fisheries [21, 26, 27].385

As one would expect based on the demand model results, two-stage estimation386

that omits unvisited sites undervalues the Close to Home fishing program and387

improvements in Secchi depth. Our preferred model predicts anglers have a WTP388

of $0.40 per trip to maintain the Close to Home fishing program and $7 per trip389

for a 50% increase (≈ 1 foot) in water clarity, holding fishing quality fixed, while390

two-stage estimation applied to the ASCs of visited sites implies a WTP of $0.16391

per trip for the Close to Home fishing program and about $2 per trip for the same392

increase in water clarity. Thus, the value of the Close to Home fishing program393

is about 2.5 times greater when one uses information on the full choice set versus394

näıve two-stage estimation. With 7,449,000 fishing trips taken in Oklahoma by395

residents in 2011 [28], our preferred model implies an annual benefit of $3 million396

from this program.397

The welfare estimates from median regression in the second stage are clearly398

17



biased. This model predicts essentially no welfare gains from improvements in399

fishing quality but huge gains from reductions in Secchi depth. This is because400

the unrealistically large site-specific effects estimated in the second stage dominate401

the contribution of the first stage parameters in the RUM model. Valid second402

stage estimates can be obtained by estimating the effects in the upper quantiles,403

although there is no guarantee that these estimates will reflect the relationship404

between sites at the center of the demand distribution and site characteristics.13405

Finally, we note that there is also an economically meaningful difference in406

the WTP associated with improvements in fish abundance between the models,407

particularly for walleye. WTP is several times higher when one uses a standard408

conditional logit rather than two-stage estimation. This suggests that controlling409

for endogenous site characteristics may be important in our application.410

5 Conclusion411

Two-stage estimation is an innovative and flexible technique to control for unob-412

served choice attributes in RUM models. Prior recreation demand applications413

have used OLS, 2SLS and median regression in the second stage. To these we add414

censored regression. Using a censored estimator for site-specific effects was impor-415

tant in our application, which contained a large number of sites with no visits that416

precluded estimating a complete set of ASCs. In general, though, the appropriate417

second-stage regression depends on the nature of the ASCs, and the regressions418

mentioned here (OLS, Tobit, etc.) may not be suitable for every application.419

In using two-stage estimation, a researcher may be tempted to restrict the420

chioce set to only the chosen alternatives in order to apply OLS in the second stage.421
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With ASCs, this restriction does not affect the first-stage parameters. However,422

the second-stage regression is then performed on a misspecified choice set, leading423

to incorrect parameter and welfare estimates. We found this to be true in our424

application to recreational fishing in Oklahoma. The technique proposed in this425

paper allows the researcher to use the original choice set in the presence of unvisited426

sites. Depending on the percentage of visited sites in the sample, the second-stage427

quantile regression strategy proposed by Timmins and Murdock [5] may also be428

valid.429

Dropping unvisited sites from RUM models of recreation demand should be430

done cautiously. Doing so discards potentially useful information about influential431

site characteristics, and can produce misleading parameter estimates. This does432

not mean that a choice set of only visited sites is uninformative. There are many433

applications were all relevant alternatives are chosen at least once in the sample.434

In general, proper choice set definition is an unresolved issue in recreation demand435

modeling [29, 30]. Depending on the application, including unvisited sites may436

add only a small amount of information about the influence of observable site437

characteristics and be unnecessary.438
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Table 2: Results of the recreational fishing RUM models – angler-varying effects

Variables Standard CL CL with ASCs
Full choice set

CL with ASCs
Partial aggregation

Travelcost -0.019**
(0.001)

-0.020**
(0.001)

-0.019**
(0.001)

Rampdum × boat user 1.733**
(0.263)

1.736**
(0.265)

1.808**
(0.270)

Rampnum × boat user 0.016**
(0.004)

0.017**
(0.006)

0.016**
(0.005)

Blackbass× bass angler 0.005**
(0.002)

0.007**
(0.002)

0.006**
(0.002)

Walleye×walleye angler 1.220**
(0.270)

0.758**
(0.377)

0.790**
(0.377)

Catfish×catfish angler 0.000
(0.027)

0.027
(0.047)

0.060
(0.054)

Crappie× crappie angler 0.041
(0.055)

0.105
(0.076)

0.129
(0.081)

River × trout angler 1.741**
(0.356)

1.641**
(0.361)

1.611**
(0.362)

Pond× bass angler 2.028**
(0.334)

2.093**
(0.341)

2.091**
(0.342)

Pond× catfish angler -0.240
(0.273)

-0.152
(0.283)

-0.107
(0.287)

ASCs No Yes Yes

Observations 79328 79328 28944

Log-likelihood -1492.102 -1378.340 -1337.671

Standard errors in parentheses below parameters. *Significant at the 10% level.
**Significant at the 5% level.
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Appendix A537

Median regression estimates under alternative values about the unidentified ASCs538

are shown Table A1. Third-quartile regression estimates under alternative values539

about the unidentified ASCs are shown Table A2.540

Table A1. Site-specific effects estimated from median regression under alternative
values of δ̃.

Variables

δ̃ = ln(10−1/536) δ̃ = ln(10−3/536) δ̃ = ln(10−5/536)

Shoreline 2.949
(0.206)

4.145
(0.291)

5.311
(0.425)

Secchidepth 1.079
(0.469)

1.496
(0.684)

2.159
(1.050)

ClosetoHome 12.241
(1.401)

18.072
(2.095)

23.987
(2.927)

River 19.042
(2.987)

26.553
(4.412)

35.141
(6.394)

Pond 18.418
(2.987)

25.930
(4.412)

34.518
(6.394)

Standard errors in parentheses below parameters.
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Table A2. Site-specific effects estimated from third-quartile regression under al-
ternative values of δ̃.

Variables

δ̃ = ln(10−1/536) δ̃ = ln(10−3/536) δ̃ = ln(10−5/536)

Shoreline 1.075
(0.355)

1.075
(0.355)

1.075
(0.355)

Secchidepth 0.563
(0.703)

0.563
(0.703)

0.563
(0.703)

ClosetoHome 3.184
(1.715)

3.184
(1.715)

3.184
(1.715)

River 7.134
(3.800)

7.134
(3.800)

7.134
(3.800)

Pond 6.510
(7.134)

6.510
(7.134)

6.510
(7.134)

Standard errors in parentheses below parameters.
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Appendix B541

The results of the second-stage censored least absolute deviations (CLAD) esti-542

mator are reported in Table B1. CLAD regression is generally considered more543

robust to distributional misspecification than the Tobit, which relies on the ho-544

moscedastic normal assumption. Estimation was implemented in Stata using the545

cqiv program [31].546

Table B1. Site-specific effects estimated from CLAD and censored Tobit regres-
sions.

Variables CLAD Tobit

Shoreline 1.042
(0.119)

0.985
(0.078)

Secchidepth 0.416
(0.136)

0.522
(0.147)

ClosetoHome 3.054
(1.704)

2.999
(0.355)

River 7.062
(0.768)

7.236
(0.670)

Pond 6.438
(0.785)

6.613
(0.670)

Standard errors in parentheses below parameters.
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Notes547

548
1Von Haefen and Phaneuf [32] demonstrate how to use stated preference data to avoid the549

identification problem brought on by the ASCs, circumventing the second regression.550

2We do not report estimates from a random parameters logit for two reasons. First, ap-551

plications of random parameter logits typically involve thousands of observations with several552

observations per individual, while in our data there are 536 trips with only one trip per angler.553

Random parameters have been shown to be poorly identified when estimated with limited cross554

section data [33], a fact born out in our trial applications. Second, as noted by Klaiber and555

von Haefen [34], the ASCs from random parameter logits may poorly reflect in-sample visitation556

patterns when the model is misspecified (e.g. due to misspecification of the parameter distribu-557

tions). In contrast, by including ASCs the conditional logit will predict visitation patterns that558

match the data perfectly. This is because the conditional logit is part of the linear exponential559

family of distributions, which guarantees consistent parameter estimates if the conditional mean560

is correctly specificied, regardless of higher order misspecification [35].561

3This point is discussed in the first part of section 5 in their paper [5].562

4These regions correspond to Oklahoma’s designated fisheries management zones.563

5The abundance of species s at site j was modeled as Asj = exp(qjαs + γsg) + ωsj where qj564

is a vector of lake characteristics, γsj is a vector of watershed-specific dummies to control for565

systematic differences in regional abundance and ωsj is the error. We found the models for black566

bass and walleye predicted relatively well—with R2s of 0.60 and 0.54, respectively—compared to567

catfish and crappie—which had R2s of 0.38 and 0.36, respectively.568

6The Oklahoma Water Resources Board rotates water quality sampling at lakes. When a lake569

is sampled, water quality measurements, including Secchi disk depth, are taken at stratified dates570

and locations. We used the lakewide average for the most recent available year. The observed571

group mean was used for a dozen lakes which lacked Secchi disk data.572

7The Close to Home program was set up in 2002 through cooperative agreements between the573

Oklahoma Department of Wildlife Conservation and Oklahoma municipalities to manage small,574

urban lakes for recreational fishing. Close to Home lakes support a variety of warm water species575

and are regularly stocked with channel catfish, and in the winter some are stocked with trout.576

Bag limits at these sites are more restrictive than regulations statewide.577

8Technically, parameter estimates are not comparable across logit models, so it is common578

practice to compare the implied marginal rates of substitution. However, given the similarity in579

the travel cost parameters between models, we opt not to report marginal rates of substitution580

because dividing the other effects by essentially equivalent travel cost parameters suggests the581

two sets of estimates are comparable. In any case, later in this section we compute the welfare582

effects of site quality changes, which converts the results into comparable units.583

9The χ2 statistic for this test is 228, compared to a critical value of 175 when there are 146584
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degrees of freedom.585

10Although the ODWC does not restrict the types of municipal lakes that can enroll, self-586

selection means the Close to Home fishing program may be endogenous. The most likely scenario587

is that municipalities enroll their less popular lakes to boost use, which would bias the Close to588

Home effect downward. Including a dummy variable for municipal lakes does not affect the589

magnitude and significance level of the parameter reported here.590

11This similarity suggests at a minimum that the distribution of the data is symmetric, which591

is of course required for normality.592

12The LM statistic for this test was 0.882, compared to a critical value of 6.483.593

13Nevertheless, in our application the parameter estimates from censored Tobit and third-594

quartile regressions are similar. Compare Tables A2 and B1 in the appendices.595
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