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Assessing Climate Vulnerability of Agricultural Systems Using High-order 

moments: A Case Study in the U.S. Pacific Northwest 

Abstract 

This paper evaluates the effects of climate variables on the winter wheat yield distribution by 

using a moment-based approach. Farm-level data from the Agricultural Census were used to 

estimate the effects of climate variables on the mean and high-order moments of the winter 

wheat yield distribution and to assess the impact of climate change on climate vulnerability of 

winter wheat systems in the U.S. Pacific Northwest. Growing degree-days and freezing degree-

days were shown to have a negative effect on winter wheat productivity, and precipitation and 

irrigation were found to improve winter wheat productivity. Growing degree-days, freezing 

degree-days, and precipitation were found to have a positive effect on the risk premium in the 

winter wheat yield model. Drought conditions were shown to have a large negative impact on the 

distribution of winter wheat yield. In the long run scenario (2066-2095), winter wheat farms in 

the U.S. Pacific Northwest on average are projected to experience a rise in expected losses from 

the winter wheat production due to climate change. Climate impacts on the farm-level winter 

wheat distribution are not uniformly distributed across farms; there are large uncertainties in the 

impacts of climate vulnerability on winter wheat systems in the U.S. Pacific Northwest due to 

substantial uncertainty in future climate projections. 

Key Words: Climate Change, Wheat, Vulnerability, Moment, Drought 

JEL Classification: C5, D8, Q1 
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1. Introduction 

Increased temperature and precipitation variability and frequent extreme weather events 

are likely to occur due to climate change and potentially threaten farming operations and 

agricultural communities. A growing body of research using statistical approaches to estimate 

the mean economic impacts of climate change on U.S. agriculture found inconclusive results on 

county-level economic outcomes, e.g., crop yield, farmland value, and net return (Adams 1989; 

Mendelson et al. 1994; Deschenes and Greenstone 2007; Lobell et al. 2007; Schlenker and 

Roberts 2009; Burke and Emerick 2013; Ortiz-Bobea and Just 2013).  

An understudied aspect of climate change impact assessment on agriculture is production 

risk associated with future climate scenarios. The mean indicators of economic impacts are 

important because policy makers and farmers could use this information to predict the aggregate 

effect of climate change on domestic agricultural market supply. However, these indicators 

neither represent the distributional impacts of climate change across individuals nor capture the 

climate vulnerabilities of individual farmers. To better model climate vulnerabilities on 

individual farmers, it is important for scientists to consider a research lens that focuses on less 

understood high-order impacts of climate change.  

This paper assesses the climate vulnerability of agricultural systems by modeling not only 

mean but high-order moments of climate impacts. The traditional stochastic production models 

with an additive, multiplicative-heteroscedastic error, e.g., the Just-Pope model, impose arbitrary 

restrictions among the high-order moments of the output distribution. Antle (1983) developed a 

flexible moment-based approach by estimating a system of central moment functions to allow for 

flexible representations of output distributions and extended the approach by estimating partial 

moment functions (Antle 2010). Moment-based approaches have been widely used in a variety 

of applications in modelling decision-making under uncertainty, e.g., the mean-variance 

framework (Cooper 2010; Schoengold et al. 2015), the mean-variance-skewness framework (Di 

Falco and Chavas. 2006; Huang et al. 2015), the mean-variance-skewness-kurtosis framework 

(Koundouri et al. 2006), and the risk-value model (Jia et al. 2001; Delquie and Cillo 2006). Tack 

et al. (2012) used raw moments (moments about zero) to study the impact of climate change on 

cotton yield distributions. Although raw moments and central moments are theoretically 

equivalent, however, central moments have direct economic interpretation compared with raw 

moments, and partial moments are better at measuring the asymmetry of distributions. More 
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importantly, the mean function is still needed to evaluate the overall effects of variables of 

interest, e.g., climate variables, on the output distribution. Accordingly, we follow the model 

proposed by Antle (2010) to use both central and partial moments to estimate the high-order 

impacts of climate variables on farm-level outcome distributions and evaluate the impacts of 

climate change on farm-level climate vulnerability in the future.     

This study contributes to the literature threefold. First, to the best our knowledge, we 

provide the first empirical analysis on the effects of climate variables on the distribution of crop 

yields. Tack et al. (2012) and Huang et al. (2015) estimated the high-order effects of weather 

variables on crop yields but not the impacts of climate variables. We emphasize that the ex-ante 

distributions of economic outcomes are dependent on climate variables rather than ex-post 

weather variables in agricultural production.  

Second, we model farm-level distributions of crop productivity rather than at an 

aggregate level such as county. The estimates of climate variables based on aggregate data are 

likely to suffer from aggregation biases due to interactions between climate variables (Fezzi and 

Bateman 2015) or non-linear effects of weather or climate variables on crop growth (Schlenker 

and Roberts 2009; Burke and Emerick 2013). Farm-level analysis can overcome aggregation 

biases and assess climate vulnerabilities of agricultural systems at the farm, local, or regional 

level.   

Third, we study the effects of climate variables on winter wheat systems. Most climate 

change impact assessment on the U.S. agricultural sector focuses on corn and soybeans. Winter 

wheat in temperate regions differs from corn and soybeans in that a typical timeline for winter 

wheat crops is stand seeding and emergence in the fall, dormancy in the winter, and maturity by 

the end of spring or early summer. Compared with corn and soybeans, the winter wheat 

production avoids extreme summer high temperatures but is exposed to extreme winter low 

temperatures. This implies that climate change may have different impacts on winter wheat 

systems than corn and soybeans systems.  

The remainder of this paper is organized as follows. The first section presents a 

conceptual framework to show how the mean and high-order moments can be used to assess the 

impact of climate change on the vulnerability of agricultural systems. The second section 

presents an economic model to study the effects of climate variables on winter wheat yield 

distribution. The third section provides an econometric strategy for estimating the effects of 
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climate variables on winter wheat yield distribution. The fourth section introduces the data 

sources and presents summary statistics. The fifth section presents and discusses the estimation 

results. The sixth section projects the impact of climate change on the vulnerability of 

agricultural systems in the future based on current biophysical and socio-economic conditions. 

The last section concludes.   

2. Conceptual Framework 

In this section, we present a conceptual framework to evaluate the impacts of climate 

change on the vulnerability of agricultural systems by using the moments of weather and 

outcome distributions following the model developed by Antle (2010). We then define the 

climate vulnerability of agricultural systems and show how the moments can be used to construct 

a threshold indicator of the climate vulnerability.      

Mean and High-order Impacts of Climate Change 

In this subsection, we explore the process that generates the output distribution and its 

relation to a micro-climate. The goal here is to show how the moments can be used to capture the 

impact of climate change on the output distribution and provide a foundation to build an 

economic model to analyze the impact on agricultural systems. We define a micro-climate as a 

stochastic process that generates a weather distribution at a specified place in a given period. 

Weather represents a vector of variables, e.g., temperature, precipitation, and their interactions, 

and is a realization of the micro-climate.      

Figure 1 illustrates the impact of climate change on the output distribution and the effects 

of adaptations to climate change. In this example, we assume farmers have access to a 

production technology, 𝑦 = 𝑓(𝑥, 𝑤), where y is output, w is weather, and x represents other 

inputs (weather and other inputs are treated as scalars for simplicity). The right horizontal axis 

represents the weather from a micro-climate at a farm, denoted by 𝜒(𝑤|𝜃), where 𝜃 is micro-

climate variables. The positive vertical axis measures output per unit, e.g. yield, revenue or net 

return with the upper bound 𝑦̅ defined as the maximum output per unit, which represents the 

production frontier. The left horizontal axis measures the probability density of the output 

distribution conditional on other inputs x, denoted by 𝜙(𝑦|𝑥). 

A micro-climate can be represented by the moments of the weather distribution. Assume 

a micro-climate at a farm is represented by a distribution 𝜒(𝑤|𝜃) before climate change. Climate 
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change at the farm then generates a new micro-climate represented by a distribution, 𝜒(𝑤|𝜃′), 

with a different location and shape characteristics. The output distribution under the climate 

change shifts from a distribution 𝜙(𝑦|𝑥, 𝜃) to 𝜙(𝑦|𝑥, 𝜃′) without any adaptation by fixing other 

input use at 𝑥. Climate change presented here pushes the output distribution toward the upper 

bound, resulting in an increase in the variance and the negative skewness.  

It is important to recognize that farmers can increase benefits or mitigate losses from 

climate change through adaptations: they can adjust input use and management practices in the 

short term, e.g., planting date, irrigation water application rate, seed varieties, and coverage of 

crop insurance; they can, additionally, adapt to climate change through long-term investments, 

e.g., changing farmland use or irrigation technologies. These adaptation strategies could shift the 

production function upward from 𝑦 = 𝑓(𝑥, 𝑤) to 𝑦 = 𝑓(𝑥′, 𝑤) and shift the output distribution 

to the right from 𝜙(𝑦|𝑥, 𝜃′) to 𝜙(𝑦|𝑥′, 𝜃′), and result in a higher certainty equivalent that would 

be expected to have a higher mean and different risk properties.   

To demonstrate the empirical evidence of the hypothetical distributions in figure 1, figure 

2 presents output distributions derived from the winter wheat yield data discussed in detail 

below. The data were stratified into groups by the levels of irrigation and climate variables: 

percentage of irrigated winter wheat acreage, growing season precipitation, or growing degree-

days. Figure 2 shows the kernel densities of winter wheat yield from each group by one of the 

three variables. The output distribution with the lower level of the variable is skewed to the right, 

with the mass of the distribution concentrated at the negative tail. An increase in the level of the 

variable pushes the distribution toward the production frontier and leads to a higher variance, a 

lower skewness, and a higher kurtosis.  

Climate Vulnerabity of Agricultural Systems   

In this subsection, we define the climate vulnerability of agricultural systems at an 

individual farm and show how the mean and high-order moments of the output distribution can 

be used to construct a threshold indicator of climate vulnerability at different spatial scales, 

according to the conceptual framework above.        

The impacts of climate change on agricultural systems are multi-dimensional, comprising 

of economic, social and environmental consequences. For example, reducing precipitation on 

non-irrigated farms can reduce crop yields and household nutrition consumption and thus 

increase poverty rates in the developing world, while economic losses and environment 
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degradations are main concerns for the farm household in the developed counties, e.g., wheat 

farms in the U.S. Pacific Northwest. We need indicators to represent these economic, social and 

environmental outcomes, and use them to evaluate the impacts of climate change and potential 

adaptation strategies from new technologies and polices.  

The focus of this paper is on measuring the economic vulnerability of agricultural 

systems from climate change. There are several ways that indicators of climate vulnerability can 

be defined at an individual farm level, i.e., in terms of absolute or relative impacts on the farm 

household’s well-being (Reardon and Vosti 1995; Moser 1998; Maxell et al. 1998; Alwang et al. 

2001; Ligon and Schechter 2003; Antle et al. 2004; Bourguignon et al. 2004; Chaudhuri et al. 

2004; Christiaensen and Subbarao 2004; Kamanou and Morduch 2004). Following the Foster-

Greer-Thorbecke (1978) poverty indicator concept, we define a threshold indicator of climate 

vulnerability as the absolute deviation below some reference level, i.e., the first-order lower 

partial moment of an outcome distribution, 𝐼 = ∫ |𝑞 − 𝑟|𝜙(𝑞|𝑥, 𝜃)𝑑𝑞
𝑟

−∞
, where 𝐼 is a threshold 

indicator of the climate vulnerability at an individual farm, 𝑞 is an economic outcome from the 

output production, and 𝑟 is the reference level. Note that 𝑞 and 𝑟 can be defined in absolute or 

relative terms.  

One advantage of this threshold indicator is, compared with the mean indicators, that it 

captures not only the mean impact of climate change on farm-level average yield but also the 

high-order impacts on yield variability and crop failure. More importantly, this threshold 

indicator measures the impact of climate change on the survival rather than the average welfare. 

This is particularly important for poor farmers in the developing world who struggle with 

meeting the basic living standard. In higher income settings, such as the PNW region studied 

here, this type of indicator can be related to the household’s current income. With suitable data 

on debt and assets, the income-based indicators used here could be related to financial 

vulnerability.      

The quadrant in the upper left of figure 1 shows the impact of climate change on the 

farm-level climate vulnerability. The shaded areas measure the climate vulnerability of an 

individual farm under two micro-climates before and after climate change without adaptation. In 

the case presented in figure 1, the climate change reduces the vulnerability on agricultural 

production. Note that this vulnerability indicator measures both the probability and the severity 

of expected losses below some reference level; both of which depend on the location and shape 
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characteristics of the output distribution. We can use the mean and high-order moments of the 

output distribution to construct the climate vulnerability indicator and assess the overall impacts 

of climate change on the output distribution.   

Moreover, we can generate a distribution of individual climate vulnerability across farms, 

and use this distribution to evaluate the climate vulnerability on agricultural systems at an 

aggregate level such as county. This farm-level vulnerability indicator provides a flexible way to 

compare the impacts of climate change on agricultural systems across regions, and to examine 

the distributional effects of climate change within a region. Policy makers can use this 

vulnerability indicator to target the most vulnerable farms under climate change and design 

policies to help them adapt to climate change. 

 This section provides a conceptual framework to assess the impacts of climate change 

and adaptations on the output distribution. We demonstrate how the mean and high-order 

moments of the output distribution can be used to measure the climate vulnerability of an 

individual farm through a threshold indicator. Before we quantify and examine the climate 

change impacts, we provide an economic model in the next section to guide the impact 

assessment on the behavior of a decision maker under uncertainty.     

3. Economic Model   

 In this section, we develop an economic model where a risk-averse farmer makes 

decisions about variable input use and capital service in the long run to maximize the expected 

utility. The goal of this section is to model the long-run impact of climate change on agricultural 

systems. Farmers in the long run can optimally adjust both variable input use and capital service 

to adapt to climate change, whereas in the short run capital service is fixed. We begin with the 

analysis by using the expected utility model and then discuss extending the model to the risk-

value model   

Model Setup 

We consider a farm that has a production technology where production is a single-period 

process for a single output. In the timeline, variable input and capital service are chosen, a 

weather shock occurs, and output is realized. Thus, production is determined by realized weather 

variables rather than expected climate variables. More specifically, the production function is 

defined as 
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(1) 𝑞 ≡ 𝑓(𝑥, 𝑤, 𝒆), 

where 𝑞 is output per unit, 𝑥 is input use including variable input use and capital service, 𝒆 is a 

vector of site characteristics such as soil quality and managerial skills, 𝑤 is weather variables 

(input use and weather variables are treated as scalars for simplicity). 

We assume that: i) the production function is strictly concave and twice differentiable in 

input use and weather variables; ii) weather, 𝑤, follows a distribution, 𝑤~𝜒(𝑤|𝜃), where 𝜃 is 

micro-climate parameters of an individual farm, and output follows a distribution, 

𝑞~𝜙(𝑞|𝑥, 𝜃, 𝒆); iii) the price of input use, 𝑣, is predetermined and nominalized by the output 

price; iv) farmers are risk-averse to production risk and downside risk. 

Define the net return function, 𝜋 ≡ 𝑞 − 𝑣𝑥, and then the goal of a risk-averse farmer is to 

maximize her expected utility by choosing 𝑞 and 𝑥,  

(2) max
𝑞,𝑥

𝐸[𝑈(𝜋)] 

            ≡ max
𝑞,𝑥

 ∫ 𝑈[𝑓(𝑥, 𝑤, 𝒆) − 𝑣𝑥] 𝜒(𝑤|𝜃)𝑑𝑤 

where 𝐸 is the expectation operator, 𝑈 is the von Neumann-Morgenstern utility function.  

Expected Utility Model 

To simplify the presentation, we define 𝜇1 as the expected output, and 𝜇𝑗 as the 𝑗th 

central moment of the output distribution, 𝑗 ≥ 2. As shown by Antle (1987), the expected utility 

function 𝐸[𝑈(𝜋)] can be specified as a function of all the moments of the net return distribution, 

so we let  𝐸[𝑈(𝜋)] = 𝑈(𝜇1 − 𝑣𝑥, 𝜇2, 𝜇3, … ) and define 𝑈𝑗 ≡
𝜕𝑗𝑈(𝜇1−𝑣𝑥)

𝜕𝜋𝑗 , 𝑗 ∈ ℕ. Then, using a 3rd 

order approximation to the expected utility function, the first-order condition of (2) is,  

(3) 
𝜕𝜇1

𝜕𝑥
− 𝑣 = − ∑

𝑈𝑗

𝑈1

𝜕𝜇𝑗

𝜕𝑥

2
𝑗=1 , 

We can write equation (3) in the elasticity form,  

(3’) 𝜇1
∗ − 𝑣𝑥 𝜇1⁄ = 𝑅2𝑠2𝜇2

∗ − 𝑅3𝑠3𝜇3
∗ ,   

where 𝜇𝑗
∗ ≡

𝜕𝑙𝑛𝜇𝑗

𝜕𝑙𝑛𝑥
, 𝑠𝑗 ≡

𝜇𝑗

𝜇1(𝜇1−𝑣𝑥)𝑗−1
, 𝑅𝑗 ≡ (−1)𝑗−1 𝑈𝑗

𝑈1
(𝜇1 − 𝑣𝑥)𝑗 , 𝑗 = 2,3. 𝑅2 is approximately 

equal to one-half of the Arrow-Pratt relative risk aversion coefficient; 𝑅3 is approximately equal 

to one-six of the relative downside risk aversion coefficient (Antle 1987). They represent the risk 

attitude and measure a decision-maker’s willingness to substitute a change in the expected net 

return for a change in production risk and downside risk.  
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Note that the expected utility function can be rewritten in terms of the certainty 

equivalent (CE), i.e., 𝐸[𝑈(𝜋)] = 𝑈(𝐶𝐸) = 𝑈(𝜇1 − 𝑣𝑥 − 𝑅), where 𝑅 is the risk premium. Since 

the utility function is positively increasing in the net return, the decision-making in (2) is 

equivalent to maximize the certainty equivalent, and the resultant first-order condition is, 

𝜕𝜇1 𝜕𝑥⁄ − 𝑣 = 𝜕𝑅 𝜕𝑥⁄ . In combination with equation (3), we have the marginal risk premium 

with respect to input use, 𝑥,  

(4) 
𝜕𝑅

𝜕𝑥
=

𝑅2

𝜇1−𝑣𝑥

𝜕𝜇2

𝜕𝑥
−

𝑅3

(𝜇1−𝑣𝑥)2

𝜕𝜇3

𝜕𝑥
. 

Now we can combine the effects of input choice on production risk and downside risk and 

measure its total effect on the risk premium according to equation (4). Following Chavas (2004), 

a risk-increasing input has a positive marginal risk premium; a risk-decreasing input has a 

negative marginal risk premium. The right-hand side of equation (4) can be interpreted as the 

marginal risk effect of input use that is equal to its marginal mean net return in equation (3). 

Farmers choose the input use to the point where the marginal net return of input use is equal to 

its marginal risk effect.  

 The solution of equation (3) takes the form,  

(5a) 𝑥∗ = 𝑥(𝑣, 𝒆, 𝜃), 

(5b) 𝑞∗ = 𝑞(𝑣, 𝒆, 𝜃). 

Substituting (5a) and (5b) into the objective function (2), we can obtain the certainty equivalent, 

𝐶𝐸∗,  

(6) 𝐶𝐸∗ = 𝐶𝐸(𝑣, 𝒆, 𝜃) 

                    ≡ 𝜇1(𝑥∗) − 𝑣𝑥∗ − 𝑅(𝑥∗). 

Note that (6) defines the reduced-form certainty equivalent which assumes that input use 

(including variable input use and capital service) is adjusted optimally according to equation (3) 

conditional on climates. We emphasize here that input choice, expected output, and certainty 

equivalent as shown in equations (5a), (5b) and (6) are dependent on micro-climate parameters, 

𝜃, rather than weather variables.  

Since the certainty equivalent and the risk premium have clear welfare implications, so 

we use them in analyzing the impacts of climate variables. We assume the decision maker’s risk 

preference is fixed, i.e., the Arrow-Pratt relative risk aversion coefficient and the relative 

downside risk aversion coefficient are constant. Consider the decision maker’s certainty 

equivalent responds to a change in the climate,  
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(7) 
𝜕𝐶𝐸∗

𝜕𝜃
=

𝜕[𝜇1(𝑥∗)−𝑣𝑥∗]

𝜕𝜃
−

𝜕𝑅(𝑥∗)

𝜕𝜃
 

                    =
𝜕[𝜇1(𝑥∗)−𝑣𝑥∗]

𝜕𝜃
− [

𝑅2

𝜇1(𝑥∗)−𝑣𝑥∗

𝜕𝜇2(𝑥∗)

𝜕𝜃
−

𝑅3

[𝜇1(𝑥∗)−𝑣𝑥∗]2

𝜕𝜇3(𝑥∗)

𝜕𝜃
]. 

Equation (7) shows that climate change affects the certainty equivalent of the decision-maker 

through the impacts on the mean and high-order moments of the output distribution. Without 

taking into account the high-order impacts, estimates of the impacts of climate change on the 

certainty equivalent are likely to be biased. Note that if input use is held constant at some 

specified level, then we obtain the impacts of climate change on the certainty equivalent without 

adjustment (or adaptation) of input use, i.e.,  

(7) 
𝜕𝐶𝐸𝑥

𝜕𝜃
=

𝜕[𝜇1(𝑥)−𝑣𝑥]

𝜕𝜃
−

𝜕𝑅(𝑥)

𝜕𝜃
 

                         =
𝜕[𝜇1(𝑥)−𝑣𝑥]

𝜕𝜃
− [

𝑅2

𝜇1(𝑥)−𝑣𝑥

𝜕𝜇2(𝑥)

𝜕𝜃
−

𝑅3

[𝜇1(𝑥)−𝑣𝑥]2

𝜕𝜇3(𝑥)

𝜕𝜃
]. 

Since input use in equation (7) is optimally adjusted, the marginal effects of climate variables on 

the certainty equivalent in equation (7) are smaller than in equation (7’). This implies that 

farmers can adapt to climate change by adjusting input use and technology. These changes will 

depend on how they affect the farmer’s mean returns as well as the high-order moments of net 

returns. 

Risk-Value Model 

Our analysis of the economic impacts of climate change on the output distribution so far 

assumes that the decision maker has the same risk aversion on economic gains and losses 

deviated from the expectation in the expected utility model. The expected utility model is known 

to impose a number of strong restrictions on risk behavior, and has found to be systematically 

violated in experimental studies (Kahneman and Tversky 1979; Machina 1989; Conlisk 1996; 

Starmer 2000).  

An alternative decision model that can be interpreted as a generalization of the expected 

utility model is the risk-value model (Jia et al. 2001; Antle 2010). In the risk-value model, the 

decision-make’s objective function depends on an “expected” or “anticipated” outcome, as in the 

certainty equivalent formulation of the expected utility model, but also depends on negative and 

positive deviations from this expected outcome, and attaches a negative value to deviations 

below and a positive value to deviations above this expected outcome. The risk-value model 
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provides a natural way to relate decisions to partial moments of outcome distributions, and also 

provides an intuitive link from the vulnerability concepts introduced in section 2 to the farmer’s 

decision making.  

To simplify the discussion and estimation below, we define the partial moments of the 

output distribution in absolute moments: the lower 𝑗th partial moment,  

𝜂𝑗 = ∫ |𝑞 − 𝑟|𝑗𝜙(𝑞|𝑥, 𝜃, 𝒆)Φ(𝑥, 𝜃, 𝒆, 𝑟)−1𝑑𝑞
𝑟

−∞
,  

and the upper 𝑗th partial moment, 

𝜑𝑗 = ∫ |𝑞 − 𝑟|𝑗𝜙(𝑞|𝑥, 𝜃, 𝒆)[1 − Φ(𝑥, 𝜃, 𝒆, 𝑟)]−1𝑑𝑞
+∞

𝑟
, 𝑗 ≥ 2,  

where 𝑟 is a reference level, Φ(𝑥, 𝜃, 𝒆, 𝑟) is the probability of the output below the reference 

level, Φ(𝑥, 𝜃, 𝒆, 𝑟)  = ∫ 𝜙(𝑞|𝑥, 𝜃, 𝒆)𝑑𝑞
𝑟

−∞
. In this study, the expected output is used as the 

reference level, and thus the central moments can be expressed as functions of partial moments, 

𝜇𝑗 = (−1)𝑗𝜂𝑗Φ(𝑥, 𝜃, 𝒆, 𝑟) + 𝜑𝑗[1 − Φ(𝑥, 𝜃, 𝒆, 𝑟)]. 

Let the objective function be 𝑈(𝜇1 − 𝑣𝑥, 𝜂2, 𝜑2, 𝜂3, 𝜑3), and define 𝑈𝑗𝜂 =
𝜕𝑈

𝜕𝜂𝑗
, 𝑈𝑗𝜑 =

𝜕𝑈

𝜕𝜑𝑗
. Then, 

the objective of a risk-averse farmer is to maximize, 

(8) max
𝑞,𝑥 

𝑈(𝜇1 − 𝑣𝑥, 𝜂2, 𝜑2, 𝜂3, 𝜑3). 

The first-order condition of (8) in the elasticity form is given by,  

(9) 𝜇1
∗ − 𝑣𝑥 𝜇1⁄ = 𝑠2 (𝑅2𝜂𝜂2

∗ − 𝑅2𝜑 𝜑2
∗) + 𝑠3(𝑅3𝜂𝜂3

∗ − 𝑅3𝜑𝜑3
∗),   

where 𝜂𝑗
∗ ≡

𝜕𝑙𝑛𝜂𝑗

𝜕𝑙𝑛𝑥
, 𝜑𝑗

∗ ≡
𝜕𝑙𝑛𝜑𝑗

𝜕𝑙𝑛𝑥
, 𝑅𝑗𝜂 ≡ −

𝑈𝑗𝜂

𝑈1

𝜂𝑗

𝜇𝑗
(𝜇1 − 𝑣𝑥)𝑗−1, 𝑅𝑗𝜑 ≡

𝑈𝑗𝜑

𝑈1

𝜑𝑗

𝜇𝑗
(𝜇1 − 𝑣𝑥)𝑗−1, 𝑗 = 2,3. 

𝑅𝑗𝜂 and 𝑅𝑗𝜑 represents the risk attitude to the negative and positive deviations from the 

expectation, and are interpreted as disappointment and elation in the risk value model. If input 

use has symmetric effects on the full moments of the output distribution, i.e., 𝜇2
∗ = 𝜂2

∗ = 𝜑2
∗ , 

𝜇3
∗ = 0, 𝜂3

∗ = 𝜑3
∗ , then let 𝑅2 = 𝑅2𝜂 − 𝑅2𝜑, and 𝑅3𝜂 = 𝑅3𝜑, so input use from equation (9) has 

the same risk implication as from equation (3’) and is then equivalent to the expected utility 

model (Antle 2010). If input use has asymmetric effects on the full moments, then the expected 

utility model and the risk-value model can provide different risk implications for input use, and 

also indicate different welfare effects of exogenous changes in the output distribution due to 

climate change.  
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The solution of equation (9) takes the form, 𝑥∗∗ = 𝑥(𝑣, 𝒆, 𝜃), 𝑞∗∗ = 𝑞(𝑣, 𝒆, 𝜃), and the 

optimized certainty equivalent is given by 𝐶𝐸∗∗ = 𝐶𝐸(𝑣, 𝒆, 𝜃). Then, we can quantify the 

impacts of climate change on the certainty equivalent using the risk value model,  

(10) 
𝜕𝐶𝐸∗∗

𝜕𝜃
=

𝜕[𝜇1(𝑥∗)−𝑣𝑥∗]

𝜕𝜃
−

𝜕𝑅(𝑥∗)

𝜕𝜃
 

                      =
𝜕[𝜇1(𝑥∗)−𝑣𝑥∗]

𝜕𝜃
− ∑ [

𝑅𝑗𝜂

[𝜇1(𝑥)−𝑣𝑥]𝑗−1

𝜕𝜂𝑗(𝑥∗∗)

𝜕𝜃

𝜇𝑗

𝜂𝑗
−

𝑅𝑗𝜑

[𝜇1(𝑥)−𝑣𝑥]𝑗−1

𝜕𝜑𝑗(𝑥∗∗)

𝜕𝜃

𝜇𝑗

𝜑𝑗
]3

𝑗=2 . 

Compared with the expected utility model, the risk-value model can be used to estimate the 

asymmetric impacts of climate change and adaptations on the negative and positive tails of the 

output distribution through equations (9) and (10).  

4. Econometric Strategy   

In this section, we present an econometric strategy for estimating the mean and high-

order impacts of climate variables on agricultural systems by using a heteroscedastic-consistent 

seemingly unrelated regression (SUR) model. The goal of this model is to specify the high-order 

moments of the output distribution without any arbitrary restrictions. The mean output function 

is specified as, 

(11)        𝑞𝑖𝑡 = 𝜇1(𝒎𝑖𝑡, 𝛽𝑖𝑡) + 𝜀𝑖𝑡 

where 𝑞𝑖𝑡 is the output at farm 𝑖 in year 𝑡, 𝒎𝑖𝑡 is a vector of site and farm characteristics, 𝛽𝑖𝑡 is a 

vector of climate variables, 𝜀𝑖𝑡 is an idiosyncratic term.  

Note that input and output prices are fixed across farms in all regression equations. There 

are two reasons: i) in the cross-sectional analysis there is a lack of variations in input and output 

prices; ii) agricultural output prices are set at the global level for the major field crops. Thus, 

input and output prices are dropped out of the regression equations.    

Then, the high-order central moments of the output distribution are specified as,  

(12) 𝜀𝑖𝑡
𝑗

= 𝜇𝑗(𝒎𝑖𝑡, 𝛽𝑖𝑡) + 𝑣𝑖𝑡 ,      𝑗 =  2, 3 

The partial moment functions of the output distribution are specified as, 

(13a) |𝜀𝑖𝑡|𝑗 = 𝜂𝑗(𝒎𝑖𝑡, 𝛽𝑖𝑡) + 𝑣𝑛𝑖𝑡 if 𝜀𝑖𝑡 < 0 

(13b) |𝜀𝑖𝑡|𝑗 = 𝜑𝑗(𝒎𝑖𝑡, 𝛽𝑖𝑡) + 𝑣𝑝𝑖𝑡 if 𝜀𝑖𝑡 > 0. 

  The specification of the mean output function is important for estimating the high-order 

moments functions. Equation (11) uses a flexible moment-based approach that relaxes the 

embedded restrictions of the high-order moments in the multiplicative error model and the 
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additive error model (for further critical discussion, see the study by Antle 1983). The consistent 

estimates of the mean function in equation (11) with a quadratic function form generate the 

residuals that are used to consistently estimate the high-order central moments functions in 

equations (12)-(13b). The error terms in (12), (13a) and (13b) are heteroscedastic and correlated 

across moments, and thus the simple equation-by-equation OLS estimators are not efficient. 

Antle (1983) showed that a joint feasible GLS can improve the estimation efficiency. To 

overcome the heteroscedasticity and the cross-equation correlations, we use the heteroscedastic-

consistent SUR model. Also, a combination of equations (13a) and (13b) can be used to test for 

the symmetry of the partial moment parameters by a Chow test.   

5. Data Sources and Summary Statistics    

 In this section we describe the sources of the data used in this analysis and report some 

summary statistics.  

Economic and Social Variables   

We compile farm-level agricultural data from the Agricultural Census in 2002, 2007 and 

2012 to construct economic and social variables. A farm in the Agricultural Census is defined as 

any operation with $1,000 or more of agriculture products produced or sold during each census 

year. The economic variables include winter wheat yield, farm size, percent of irrigated winter 

wheat acreage, and shares of farmland under CRP and WRP programs. The social variables 

include experience, land ownership, and off-farm employment. Because the primary goal of this 

analysis is to assess the impact of climate change on the vulnerability of winter wheat systems, 

we confine the study region to the U.S. Pacific Northwest (PNW) in our analysis. Zip codes are 

the finest geographical information available to locate farms and are used to link agricultural data 

to biophysical data.  

Panel A in table 1 reports summary statistics of economic and social variables from the 

Agricultural Census in 2002, 2007 and 2012. We exclude small farms with less than 50 acres of 

cropland because they could be hobby farms or exist only for tax purposes rather than 

maximizing farm profit. There are 4518 to 5487 winter wheat farms in the sample depending on 

the census year. Several features are noteworthy. First, winter wheat yield increased over time. 

This implies that there may be year fixed-effects common to all winter wheat farms due to 

technology innovations. Second, winter wheat yield is higher on irrigated farms than non-
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irrigated farms. This is intuitive because irrigation relaxes the water constraint and improves crop 

water use efficiency. Third, the proportion of large farms increased over time as the number of 

farming operations decreased. This may reflect a consolidation of the farming industry.    

Soil Variables  

We rely on the Gridded Soil Survey Geographic (gSSURGO) database to construct soil 

variables. The data in the gSSURGO database are derived from the Soil Survey Geographic 

database, which has the most detailed level of soil geographic data developed by the National 

Cooperative Soil Survey. Zip-code level soil variables are generated by overlaying a map of zip 

codes on the gSSURGO dataset for each polygon and taking the acreage-weighted average 

across all polygons within each zip-code area. Panel B in table 1 reports summary statistics of 

soil variables for winter wheat farms in the PNW.  

Weather and Climate Variables 

We obtain the downscaled historical weather data using the Multiplicative Adaptive 

Constructed Analogs (MACA) method (Abatzoglou and Brown, 2012). The MACA dataset 

downscales a large set of daily weather variables, e.g., precipitation, maximum temperature, 

minimum temperature and wind speed. The MACA dataset provides the historical daily weather 

data with a spatial resolution of 4-km for the entire coterminous U.S. The MACA model and data 

are used to develop daily measures of precipitation and temperature for agricultural land in each 

zip-code area from 1979-2013. This was accomplished by overlaying a land use map on the 

MACA dataset for each grid cell and then by taking the acreage-weighted average across all 

agricultural land grid cells within each zip-code area.  

We use daily-level weather data on precipitation and temperature to calculate total 

precipitation, growing degree-days, and freezing degree-days during the growing season from 

October 1 of the previous year to July 30 of the reported census year. We construct the daily 

growing and freezing degree-days variables as a step function of daily mean temperature 

following Deschenes and Greenstone (2007). A daily mean temperature below 0℃ generates 0 

daily growing degree-days; a daily mean temperature between 0℃ and 23℃ generates the 

number of daily growing degree-days above 0℃; a daily mean temperature above 23℃ generates 

23 daily growing degree-days. The growing degree-days variable is then calculated by summing 

the daily measures over the entire growing season. Similarly, a daily mean temperature above 
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0℃ generates 0 daily freezing degree-days; a daily mean temperature below 0℃ generates the 

number of daily freezing degree-days below 0℃ (in absolute values). The freezing degree-days 

variable is then calculated by summing the daily measures over the entire growing season.  

We construct climate variables of precipitation and temperature before the growing 

season by taking the means of total precipitation and growing degree-days for 22 years (our 

historical weather data started in 1978). Panel C in table 1 reports summary statistics of climate 

variables for all winter wheat farms in the PNW. Note that extreme high temperature events are 

not constructed or modeled in this study for two reasons: i) there is a lack of enough spatial 

variations in the PNW for extreme high temperatures; ii) for extreme high temperatures, the 

damaging threshold for winter wheat is 35℃, which rarely occurs within the winter wheat 

growing season in this region.   

6. Results  

 This section is divided into two subsections. The first subsection presents estimates of the 

effects of climate variables on the mean winter wheat yield. The second subsection presents 

estimates of the effects of climate variables on the high-order moments of the winter wheat yield 

distribution.  

Climate Responses on the Mean Winter Wheat Yield 

  We estimate climate responses on the mean winter wheat yield in equation (11). We 

report the estimates of the mean winter wheat yield function in table 2. The A, B, C, and D 

columns in table 2 correspond to four sets of control variables. In the A column, we include 

growing degree-days, precipitation, irrigation, and an interaction term of irrigation with 

precipitation as well as other non-climate covariates. The specification in the B column adds an 

interaction term of growing degree-days with irrigation to the specification in the A column. The 

specification in the C column adds an interaction term of growing degree-days with precipitation 

to the specification in the B column. The entries in the D column are adjusted for quadratic terms 

of climate and irrigation variables from the specification in the C column. We weight the 

regression equations by the square root of cropland acres, and use robust standard errors to 

control heteroscedasticity. 

 We find that two temperature variables have a negative effect on winter wheat yield in 

this region. All four elasticities of growing degree-days and freezing degree-days are negative 
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and statistically significant in table 2. This implies that a warming climate will reduce freezing 

degree-days and benefit winter wheat production, but this beneficial effect will be offset by a 

negative effect due to an increase in the growing degree-days, resulting in a negative net impact 

on winter wheat yield. We also find that growing degree-days and freezing degree-days have a 

non-linear effect on winter wheat yield in the D column, which is consistent with the study by 

Shelenker and Robert (2009). Note that, contrary to the finding by Fezzi and Bateman (2005), an 

interaction between precipitation and growing degree-days negatively affects winter wheat yield 

in the D column.  

Three of four precipitation elasticities of the mean winter wheat yield are statistically 

positive and stable across all four specifications, varying between 0.120 and 0.122. The 

coefficients of the interaction term of precipitation and irrigation are negative and statistically 

significant in each specification. This provides evidence that irrigation has a substitution effect 

on precipitation in winter wheat production. The coefficient of the quadratic term of precipitation 

in the D column is negative and statistically significant. This reflects the fact precipitation has a 

positive effect in the dry area but a negative effect in the wet area.    

All irrigation elasticities of the mean winter wheat yield are statistically positive and 

stable across four specifications in table 2. Doubling irrigated winter wheat acreage increases 

winter wheat yield by 11-17 bushels per acre, depending on the function form. This first reflects 

that irrigation increases crop productivities by improving crop water use efficiency. Also, in 

interpreting the irrigation effect, keep in mind that we estimated a reduced-form function for 

winter wheat production, so other input use are optimally adjusted by equation (5) when irrigated 

winter wheat acreage increases. This implies that a rise in irrigated winter wheat acreage shifts 

the production function outward by increasing input use like fertilizer as illustrated in figure 1.    

  The farm characteristics—experience, ownership and off-farm employment—have no 

effects on the mean winter wheat yield. There are interesting findings about two of the economic 

and social variables. First, farm size has a positive effect on winter wheat yield. This is intuitive 

because large farms have more financial capital to improve crop productivity by adopting new 

technologies. Second, the share of cropland in CRP and WRP programs shows a negative effect 

on winter wheat yield in all four specifications. This simply reflects that farmers with a larger 

percent of farmland under CRP and WRP programs are more likely to have poor biophysical 

conditions for winter wheat growth and low winter wheat yields.  
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The elasticities of mean winter wheat yield with respect to soil variables have expected 

signs: total sand has a negative effect on winter wheat yield; soil organic matter has a positive 

effect on winter wheat yield; and less erodible soils benefit crop growth. These findings are 

consistent with agronomic experiments.  

Overall, this subsection has produced a few important findings: i) precipitation and 

irrigation both positively affect winter wheat yield, and irrigation has a substitution effect on 

precipitation in winter wheat production; ii) temperature variables on average negatively affects 

winter wheat yield in this region but the effects are non-linear.   

Climate Responses on High-order Moments of Winter Wheat Yield Distributions 

 We now examine the effects of climate variables on the high-order moments of winter 

wheat yield distributions. We obtain consistent residuals from the mean winter wheat yield 

function with a quadratic function form and estimate equations (12) – (13b) by using the 

heteroscedastic-consistent SUR model. Table 3 presents elasticities of the high-order moment 

function estimates. The six columns in table 3 correspond to six regressions of the high-order 

moments of the winter wheat yield distribution on the same set of control variables, including 

growing degree-days, precipitation, irrigation and their interactions as well as other non-climate 

covariates. Note that the lower third partial moment is estimated as an absolute moment, so the 

elasticities show opposite effects on the third central moment. We weight the regression 

equations by the square root of cropland acres, and include state-by-year dummies to control 

state-level unobservable determinants of dependent variables. 

The F-statistics of a Chow test were calculated for the symmetry test for the equality of 

the partial moment parameters. Table 3 shows that the symmetry restrictions are rejected for the 

second moment. This implies that input choice and climate variables have asymmetric effects on 

the lower and upper semi-variances. Furthermore, the 𝑅2 statistics show that the partial moment 

functions fit the data better than the full moment functions. More importantly, the full third 

moment function is almost not statistically significant and has a poor fit, whereas the third partial 

moments are statistically significant and have better fit, consistent with the finding in the study 

by Antle (2010).       

The effects of precipitation and growing degree-days on the output distribution are likely 

to depend on the location of a farm. In the PNW, the majority of winter wheat farms are non-

irrigated and located in the east Cascade where the climate variation is low and soil moisture 



19 

 

deficit is a constraint for winter wheat production. Under these conditions, an increase in 

precipitation is expected to shift the winter wheat yield distribution toward the production 

frontier and increase the negative skewness, but its effect on the variance is unclear, as shown in 

figure 2. An increase in growing degree-days may shift the distribution to the right or the left in 

the long run depending on adaptation abilities, e.g., heat-resistant seed variety, and its effects on 

the variance and skewness are not clear. An increase in freezing degree-days damages winter 

wheat production and is expected to shift the distribution to the left and increase the positive 

skewness. Irrigation is expected to be risk-decreasing because irrigated farms can mitigate the 

risk of precipitation reduction by applying more irrigation water.  

With respect to the full moment functions, precipitation, growing degree-days, freezing 

degree-days, and irrigation positively affect the variance function. The third central moment 

function is statistically insignificant for climate variables, and none of the elasticities is 

statistically significant. These results suggest that irrigation is risk-increasing, contrary to 

expectations. The partial moment functions present different risk implications of precipitation, 

growing-degree days, freezing degree-days, and irrigation. On one hand, precipitation and 

growing degree-days have large and significant effects on both the positive and negative tails of 

the winter wheat yield distribution, resulting in a small reduction of the skewness. On the other 

hand, freezing degree-days has a large and significant effect on the lower third partial moment, 

resulting in a reduction in the positive skewness or a rise in the negative skewness. These effects 

are similar from those implied by the full moment functions except for precipitation. This 

provides more evidence that partial moments can better fit the data than full moments to capture 

asymmetric effects of input use on output distributions (Antle 2010). 

We find irrigation positively affects the variance of winter wheat yield distribution, 

implying that irrigation is risk-increasing. The partial third moments, however, show that 

irrigation strongly increases the negative skewness as shown in figure 2. This reflects that, on the 

one hand, irrigation relaxes the constraint of soil moisture deficit and reduces the mass of the 

negative tail of the distribution, resulting in a reduction in the positive skewness. On the other 

hand, irrigation increases crop productivity through other input use like a higher application rate 

of fertilizer, shifts the production frontier rightward and extends the positive tail of the 

distribution, resulting in an increase in the positive skewness. The total effect of irrigation on the 

skewness of the distribution depends on whether the former or the latter is a dominant effect. 
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Given the fact that a majority of winter wheat farms in this region are non-irrigated and 

constrained by soil moisture, an increase in irrigated winter wheat acreage shifts the output 

distribution rightward and reduces the positive skewness.  

There are several interesting findings about other non-climate variables. First, farm size 

negatively affects the variance function for winter wheat production by reducing the mass of the 

negative tail. Second, slope and total sand positively affect the variance function for winter 

wheat production, and soil organic matter negatively affects the variance. This can be interpreted 

by the fact that production risk is lower on high quality soils.   

To further investigate the risk implications of precipitation, growing degree-days, 

freezing degree-days, and irrigation for the winter wheat production, panel A in table 4 presents 

the marginal risk premiums of climate and irrigation variables as a percent of the net return from 

the winter wheat yield model. We set the Arrow-Pratt relative risk aversion coefficient to 1 and 

the downside risk aversion coefficient to 2 in the expected utility model as in Antle (2010), and 

𝑅2𝜂 = 1, 𝑅2𝜑 = 0.5, 𝑅3𝜂 = 1/3, 𝑅3𝜑 = 1/3 in the risk-value model. If climate and irrigation 

variables have symmetric effects on the partial moments, then these two models provide the 

same risk implications. Both the expected utility model and the risk-value model shows that 

precipitation, growing degree-days, freezing degree-days, and irrigation have positive effects on 

the risk premium in this region from the winter wheat yield model. Note that even though 

precipitation and irrigation variables are risk-increasing, their effects on the certainty equivalent 

are still positive due to increased mean winter wheat yields. The left panel in figure 3 shows that 

a rise in precipitation has a substantially large effect on the mean winter wheat yield and 

dominates its effect on the risk premium, resulting in a large positive effect on the certainty 

equivalent.            

7. Climate Vulnerability 

 In this section, we examine and project the impacts of climate change on farm-level 

winter wheat yield distribution and climate vulnerability by choosing 2012 as the base period. 

The goal of this analysis is to evaluate the long-run impact of climate change on the vulnerability 

of current agricultural systems, conditional on biophysical, socio-economic, technological 

conditions and policies, over the 2066-2095 period.  

Impacts of Climate Change on the Distribution of Winter Wheat Yield 
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 In this subsection, we examine the impacts of extreme climate events on the winter wheat 

yield distribution under two hypothetical extreme conditions. One condition is a combination of 

a reduction in growing season precipitation by 30% and an increase in growing degree-days by 

300 degree-days (an increase in daily mean temperature by about 1℃), referred to as “drought”; 

the other condition is a combination of an increase in growing season precipitation by 30% and a 

reduction in growing degree-days by 300 degree-days, referred to as “wet”.  

To simulate the ex-ante distribution of winter wheat yield, we first predict the full 

moments and partial moments of the distributions by using the estimates from the above section 

under two hypothetical conditions. We then use the Pearson system to simulate the distributions 

(Johnson et al. 1994). The Pearson system includes a variety of distributions in the exponential 

family and requires the first four moments—mean, standard deviation, skewness, and kurtosis—

to simulate a distribution. Compared with the entropy-based approach (Tack et al. 2012), we find 

the Pearson system is more robust and efficient to generate an outcome distribution.  

Figure 4 shows the effects of two extreme climate conditions on the winter wheat yield 

distribution at the sample means of non-irrigated and irrigated winter wheat farms. It is apparent 

that the drought condition has a substantial negative effect on non-irrigated farms in both the 

expected utility model and the risk value model. The drought condition adversely affects the 

winter wheat production on non-irrigated farms by pushing the winter wheat yield distribution 

leftward and substantially increasing the positive skewness, resulting in the large mass 

concentrated on the negative tail. However, the wet condition is beneficial for the winter wheat 

production on non-irrigated farms by shifting the winter wheat yield distribution rightward. 

These two extreme conditions imply that non-irrigated farms are sensitive to the drought 

condition and become significantly vulnerable under a warmer and drier climate.        

In interpreting the effects of two extreme climate conditions on irrigated farms, keep in 

mind that the percent of irrigated winter wheat acreage is fixed at the sample mean, so we 

implicitly assume that irrigation water is not limited under climate change. Thus, the effects of 

these two extreme climate conditions on irrigated farms are mainly due to the effect of 

temperature. On the one hand, the winter extreme low temperature is reduced under the drought 

condition and increased under the wet condition for the winter wheat production; and, on the 

other hand, the extreme heating days over the daily temperature threshold of 35℃ are still rare 

within the winter wheat growing season. This explains why the drought condition has a positive 
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effect on the winter wheat yield distribution by shifting the distribution rightward, while the wet 

condition shows a negative effect.  

Impacts of Climate Change on the Vulnerability of Agricultural Systems 

In this subsection, we predict the impacts of climate change on the vulnerability of winter 

wheat farms in the PNW over the 2066-2095 period. Our prediction relies on the Met Office 

Hadley Centre’s Second Hadley Global Environment Model with a carbon cycle process, which 

we refer to as HadGEM2-CC. The MACA method was used to statistically downscale daily 

weather variables from the HadGEM2-CC under two emission scenarios developed by the 

Representative Concentration Pathways (RCP), i.e., RCP 4.5 and 8.5 (RCP 8.5 represents a 

higher level of greenhouse gas concentration).   

Climate variables of growing degree-days, freezing degree-days, and precipitation are 

constructed over the 2065-2099 period under two emission scenarios by using the MACA data 

set. The Pearson system was used to simulate the winter wheat yield distribution for each 

individual farm at the base and future periods. As explained in section 2, We define a threshold 

indicator of climate vulnerability as the absolute deviation below some reference level, i.e., the 

first-order lower partial moment of an outcome distribution, 𝐼 = ∫ |𝑞 − 𝑟|𝜙(𝑤|𝛽)𝑑𝑤
𝑟

−∞
, 𝑞 =

𝑦, 𝜋, where 𝐼 is a threshold indicator of the climate vulnerability at an individual farm, 𝑟 is the 

reference. 𝑞 is an economic outcome from the output production including crop yield, 𝑦, and net 

return, 𝜋. 𝜙(𝑤|𝛽) is a weather distribution of 𝑤 determined by a micro-climate 𝛽. In this study, 

the expected winter wheat yield in 2012 were chosen as the reference levels to calculate farm-

level climate vulnerability to expected winter wheat yield losses under the current and future 

climates.  

Figure 5 presents the distributions of the changes in farm-level vulnerability indicators 

under the climate change. Climate change will be likely to damage the winter wheat production 

on average by increasing expected winter wheat yield losses in the PNW over the 2066-2095 

period under two greenhouse gas emission scenarios. In the expected utility model, 64% of 

winter wheat farms will experience an increase in expected yield losses under the low 

greenhouse gas emission scenario; in the risk-value model, 86% of winter wheat farms will 

experience an increase in expected yield losses under the low greenhouse gas emission scenario. 
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This implies that winter wheat farms in the PNW on average become more vulnerable under the 

future climate by the end of this century.  

The climate change impacts on the vulnerability to expected yield losses are not 

uniformly distributed among winter wheat farms in the PNW. Due to this heterogeneity, while a 

majority of winter wheat farms would tend to be more vulnerable to expected yield losses, some 

farms that would be less vulnerable to climate change. 36% of winter wheat farms in the 

expected utility model will experience a reduction in expected yield losses over the 2066-2095 

period under the low greenhouse gas emission scenario, and 14% projected in the risk-value 

model.  

There is substantial uncertainty in projections of future climates, including modelling 

uncertainty from more than 20 global climate models and input uncertainty from greenhouse gas 

emissions, and thus there are large uncertainties in the impacts on the vulnerabilities of winter 

wheat productivity. For example, as the greenhouse gas emission level goes up from RCP 4.5 to 

8.5, 7% of winter wheat farms become less vulnerable to expected yield losses according to the 

expected utility model with an increase in the magnitude of expected yield losses.     

8. Conclusions     

 Climate change is believed to have large impact on agricultural systems since 

temperature and precipitation are two direct inputs in the crops production. A large volume of 

research has been devoted to assess the impacts of climate change on agricultural production and 

agribusiness by using a variety of impact assessment approaches. The impacts of climate change 

on agricultural systems by the end of this century will be likely to vary substantially by region 

and crop. Research is needed to quantify the impacts of climate change on individual crop 

systems at a local or regional level.       

 Previous research has extensively examined the mean impacts of climate change on the 

U.S. agricultural sector with a focus on corn, soybean and cotton systems in the eastern U.S. This 

paper implemented a flexible moment-based approach to evaluate the high-order impacts of 

climate variables on farm-level winter wheat yield distribution in the U.S. Pacific Northwest. 

Farm-level economic data were compiled from the Agricultural Census in 2002, 2007 and 2012 

to estimate the effects of climate variables on the means and high-order moments of farm-level 

yield distribution.  



24 

 

We find that growing degree-days and freezing degree-days negatively affect winter 

wheat productivity, and precipitation and irrigation improve winter wheat productivity in the 

U.S. Pacific Northwest. We also find that growing degree-days, freezing degree-days, and 

irrigation increase the risk premium from the winter wheat yield model, and the net effect of 

irrigation on the certainty equivalent is positive. The partial moments are demonstrated to better 

capture the asymmetric effects of climate variables on farm-level yield distribution than the full 

moments, although they provide similar risk implications of climate and irrigation variables for 

the winter wheat production in the study region. 

We show that the drought condition has a large adverse effect on the winter wheat yield 

on non-irrigated winter wheat farms. The projections from the HadGEM2-CC model under two 

greenhouse gas emission scenarios show that winter wheat farms will be likely to become more 

vulnerable to expected yield losses, especially under the high greenhouse gas emission scenarios. 

However, the climate impacts on farm-level vulnerability are not uniformly distributed across 

farms, and due to this heterogeneity, there could be some winter wheat farms in the study region 

would still benefit from climate change.  

In interpreting these findings it is important to keep in mind that important factors such as 

CO2 fertilization effects are not accounted for in statistical approaches. Also, it is important to 

recognize that the projections presented here do not incorporate changes in biophysical, 

socioeconomic conditions, technologies, and policies in the future world accompanied with 

climate change. Future research need to combine statistical approaches with process-based 

approaches to examine the effects of rising CO2 levels on the winter wheat production , and to 

design scenarios with consistent climate, biophysical, socioeconomic conditions, technologies, 

and policies for projecting the impacts of climate change in the future. Moreover, the irrigation 

in the historical period was subsidized by the government in the western U.S., and irrigation 

water rights are regulated by the law, so the percent of irrigated winter wheat acreage is fixed in 

the projections. Future research need to address this issue and explicitly model the decision 

making on irrigation.    
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Figure 1. A Conceptual Framework of the Impacts of Climate Change on the Output Distribution  
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Figure 2. The Kernel Density of Winter Wheat Yields by Irrigation, Precipitation, and Growing Degree-

days in the U.S. Pacific Northwest (Unit: bushels/acre) 
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Figure 3. Marginal Effects of Growing Degree-days and Precipitation on the Mean Net Return, Risk 

Premium and Certainty Equivalent from the Yield Model based on the Expected Utility Model (Units: 

2012$) 
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Figure 4. Effects of Climate Variables on the Distribution of Winter Wheat Yield from the Expected 

Utility Model (left panel) and the Risk Value Model (right panel) 

(a) Non-irrigated Farms 

 

(b) Irrigated Farms 
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Figure 5. Impacts of Climate Change on the Vulnerability of Winter Wheat Systems in the U.S. Pacific 

Northwest based on the Expected Utility Model (top panel) and the Risk Value Model (bottom panel) 

from the Projections of the HadGEM2-CC over 2066-2095  
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Table 1. Summary Statistics of Winter Wheat Farms in the U.S. Pacific Northwest 

Variables 2002 2007 2012 Definition 

Mean Std. Mean Std. Mean Std. 

A. Economic and Social Variables        

Winter wheat yield 70.8 33.0 73.2 33.4 81.1 33.6 Winter wheat yield (bushel/acre) 

Farm sales 388.3 505.1 483.4 545.6 626.8 628.1 Farm sales over farmland acreage ($/acre) 

Farm expenditure 201.3 415.5 362.8 464.4 506.3 586.3 Farm expenditure over farmland acreage ($/acre) 

Farm net return 187.0 294.2 120.6 255.3 120.5 298.8 Farming net return over farmland acreage ($/acre) 

Large farm 0.4 0.5 0.6 0.5 0.7 0.5 Total farm revenue of over $250,000 (1 = yes, 0 = no) 

CRP and WRP programs 0.1 0.2 0.1 0.2 0.1 0.1 Share of cropland under CRP and WRP programs 

Experience 24.3 13.3 26.3 13.6 27.1 14.0 Farming experience (years) 

Ownership 0.8 0.4 0.8 0.4 0.8 0.4 Farm fully or partially owned by operator 

Farming occupation 0.9 0.3 0.9 0.3 0.9 0.3 Operator occupation (1 = farming, 0 = others) 

Irrigation 30.7 45.3 32.1 45.8 31.0 45.2 Percentage of irrigated winter wheat cropland 

        

B. Soil variables        

Slope 14.7 8.7 14.6 8.6 14.4 8.7 Percentage of slope in field  

Total sand 26.3 12.0 26.8 12.1 26.1 11.6 Percentage of soil less than 2 mm fraction  

SOC 8.2 4.5 7.9 4.3 8.3 4.6 Soil organic matter in 1 meter depth, (kg C/m2) 

Potential wetland 3.0 6.4 2.7 6.5 3.6 7.5 Percentage of wet soils  

T factor 3.7 0.7 3.7 0.7 3.7 0.7 Soil loss tolerance factor 

        

C. Climate variables        

Precipitation  16.9 9.5 15.1 8.1 17.3 10.8 Mean precipitation over years (inch) 

Growing degree-days 25.5 3.4 25.7 3.5 25.8 3.8 Mean growing degree-days over years (100 degree-days) 

Freezing degree-days 2.2 1.2 2.2 1.3 1.8 1.3 Mean freezing degree-days over years (100 degree-days)  

        

Observations 5487  4619  4518   

Note:  Farm sales and expenditure are both in 2012 dollars.     
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Table 2. Estimates of the Mean Winter Wheat Yield Function 

VARIABLES A B C D 

     

Precipitation (Pre.) 1.108*** 1.090*** 0.992** 4.741*** 
 (0.072) (0.073) (0.398) (0.644) 
Growing degree-days (GDD) -0.417*** -0.837*** -1.281*** -2.768*** 
 (0.155) (0.160) (0.383) (0.592) 
Freezing degree-days (FDD) -3.629*** -4.844*** -2.389** 5.198*** 
 (0.398) (0.469) (0.996) (1.895) 
Irrigation (Irr.) 0.939*** 0.080 0.066 0.000 
 (0.024) (0.131) (0.138) (0.156) 
Pre.*Irr. -0.027*** -0.026*** -0.026*** -0.025*** 
 (0.002) (0.002) (0.002) (0.002) 
GDD*Irr.  0.027*** 0.028*** 0.022*** 
  (0.004) (0.005) (0.005) 
FDD*Irr.  0.058*** 0.052*** 0.027*** 
  (0.009) (0.009) (0.010) 
Pre.*GDD   0.007 -0.053*** 
   (0.013) (0.017) 
Pre.*FDD   -0.216*** -0.662*** 
   (0.054) (0.091) 
Pre.*Pre.    -0.031*** 
    (0.006) 
GDD*GDD    0.048*** 
    (0.012) 
FDD*FDD    -0.142 
    (0.139) 
Irr.*Irr.    0.003*** 
    (0.001) 

Large farm 8.498*** 8.433*** 8.351*** 8.509*** 

 (0.503) (0.498) (0.500) (0.498) 

CRP and WRP programs -16.122*** -15.316*** -15.545*** -14.805*** 

 (1.922) (1.908) (1.920) (1.935) 

Experience -0.025 -0.025 -0.023 -0.021 

 (0.021) (0.021) (0.021) (0.020) 

Ownership -0.188 -0.098 -0.109 -0.174 

 (0.661) (0.655) (0.652) (0.650) 

Off-farm employment 0.767 0.800 0.702 0.847 

 (1.045) (1.046) (1.048) (1.053) 
Slope -0.007 0.004 0.114*** 0.052 
 (0.043) (0.043) (0.044) (0.048) 
Total sand -0.125*** -0.119*** -0.117*** -0.100*** 
 (0.032) (0.032) (0.032) (0.032) 
SOC 1.180*** 1.126*** 1.147*** 0.826*** 
 (0.137) (0.136) (0.137) (0.130) 
     

    (continued) 
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Table 2. Continued     
VARIABLES A B C D 

     

Potential wetland -0.101 -0.081 -0.090 -0.148** 
 (0.071) (0.071) (0.070) (0.069) 
T factor 1.745*** 1.785*** 2.917*** 3.097*** 
 (0.552) (0.560) (0.611) (0.597) 

Constant 32.485*** 45.327*** 52.034*** 32.906*** 

 (5.186) (5.222) (11.208) (12.352) 
     

Elasticities     

Precipitation  0.120*** 0.122*** 0.036 0.122*** 
 (0.017) (0.017) (0.022) (0.028) 
Growing degree-days  -0.160*** -0.105*** -0.231*** -0.247*** 
 (0.059) (0.058) (0.076) (0.084) 
Freezing degree-days -0.116*** -0.116*** -0.143*** -0.146*** 
 (0.013) (0.014) (0.016) (0.026) 
Irrigation  0.170*** 0.162*** 0.160*** 0.116*** 
 (0.004) (0.004) (0.004) (0.015) 
     

Observations 14,624 14,624 14,624 14,624 
R-squared  0.619 0.622 0.623 0.629 
State by Year FE Yes Yes Yes Yes 
Weighted  Yes Yes Yes Yes 

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 3. Estimates of the High-order Moment Functions for Winter Wheat Yield 

 A B C D E F 

VARIABLES Full 2nd Full 3rd Lower 2nd Upper 2nd Lower 3rd Upper 3rd 

       

Elasticities       

Precipitation  1.028*** 2.667 0.959*** 0.780*** 1.541*** 1.241* 

 (0.182) (5.160) (0.201) (0.290) (0.351) (0.668) 

Growing degree-days 2.743*** -1.904 2.789*** 2.743*** 4.913*** 3.402** 

 (0.552) (11.589) (0.621) (0.852) (1.200) (1.581) 

Freezing degree-days 0.472*** -1.694 0.443*** 0.457** 0.822*** 0.501 

 (0.117) (2.379) (0.123) (0.200) (0.219) (0.351) 

Irrigation  0.281*** -1.000 0.417*** 0.116** 0.707*** 0.203 

 (0.040) (1.328) (0.056) (0.055) (0.115) (0.156) 

       

Large farm -0.084** 2.656** -0.183*** 0.018 -0.297*** 0.136 

 (0.037) (1.346) (0.054) (0.052) (0.095) (0.093) 

CRP and WRP programs 0.009 0.005 0.026 0.006 0.041 0.021 

 (0.020) (0.449) (0.018) (0.028) (0.030) (0.057) 

Experience -0.072 -0.856 -0.072 -0.078 -0.077 -0.223 

 (0.055) (1.117) (0.062) (0.088) (0.097) (0.161) 

Ownership 0.093* 1.808* -0.008 0.177*** -0.035 0.348*** 

 (0.048) (0.987) (0.060) (0.066) (0.100) (0.103) 

Off-farm employment -0.195* -2.493 -0.041 -0.267 0.014 -0.514 

 (0.116) (3.000) (0.121) (0.194) (0.175) (0.461) 

       

Slope 0.154** -3.139 0.265*** 0.021 0.445** -0.074 

 (0.078) (2.698) (0.097) (0.123) (0.193) (0.280) 

Total sand 0.161* 1.956 0.055 0.224 0.119 0.283 

 (0.087) (1.725) (0.096) (0.140) (0.172) (0.235) 

SOC -0.224** -3.424* -0.051 -0.426*** -0.063 -0.872*** 

 (0.096) (2.071) (0.114) (0.158) (0.188) (0.313) 

Potential wetland 0.032* -0.416 0.032 0.040* 0.055 0.033 

 (0.019) (0.468) (0.027) (0.024) (0.047) (0.042) 

T factor 0.002 -0.500 0.155 0.121 0.232 0.267 

 (0.231) (4.678) (0.294) (0.361) (0.566) (0.642) 

       

Observations 14,624 14,624 6,838 7,786 6,838 7,786 

R-squared 0.062 0.022 0.130 0.059 0.110 0.052 

Symmetry (F-statistic)   5.758  0.152  

State by Year FE Yes Yes Yes Yes Yes Yes 

Weighted Yes Yes Yes Yes Yes Yes 

Notes: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Table 4. Elasticities of the Risk Premium with Respect to Climate and Irrigation Variables  

(Unit: Percent)  

VARIABLES Expected Utility Model Risk Value Model 

  
 Winter Wheat Yield Model 

  
Precipitation 10.2 10.9 

Growing degree-days 26.8 27.4 

Freezing degree-days 5.2 4.2 

Irrigation 3.1 7.0 

    
 


