000236211 001__ 236211
000236211 005__ 20210819131439.0
000236211 0247_ $$2doi$$a10.22004/ag.econ.236211
000236211 037__ $$a333-2016-14792
000236211 041__ $$aeng
000236211 245__ $$aVegetable Price Prediction Using Atypical Web-Search Data
000236211 260__ $$c2016-05-26T04:50:03Z
000236211 269__ $$a2016-05-26T04:50:03Z
000236211 300__ $$a20
000236211 336__ $$aConference Paper/ Presentation
000236211 490__ $$a9768
000236211 520__ $$aOur study focuses on 3 vegetables mainly purchased in Korea; onion, garlic, and dried red pepper. We develop atypical index reflecting consumers’ attention on those vegetables from social network service (SNS) websites and major portal sites such as Google. Specifically, using text mining program, we gather associate web-search data, making simple query data measuring frequency on websites and Term Frequency – Inverse Document Frequency (TF-IDF) considering weights of core keywords on websites. We introduce those asymptotic indexes into the Bayesian structural time series models with climate factors impacting vegetable prices. Results show that the introduction of atypical web-search data can improve vegetable price prediction power compared to pure time-series models without atypical indexes.
000236211 546__ $$aEnglish
000236211 650__ $$aDemand and Price Analysis
000236211 650__ $$aResearch Methods/ Statistical Methods
000236211 6531_ $$aAsymptotic data
000236211 6531_ $$aBayesian Structural Time Series Model
000236211 6531_ $$aPrice prediction
000236211 700__ $$aYoo, Do-il
000236211 773__ $$d2016
000236211 8564_ $$9b34dccf5-540c-4500-8481-d6d532960b77$$s423893$$uhttps://ageconsearch.umn.edu/record/236211/files/_yoo__AAEA__2016_Vegetable_Price_Prediction_Atypical_Web_Search_Data.pdf
000236211 887__ $$ahttp://purl.umn.edu/236211
000236211 909CO $$ooai:ageconsearch.tind.io:236211$$pGLOBAL_SET
000236211 912__ $$nSubmitted by Do-il Yoo (scydl8@gmail.com) on 2016-05-26T04:50:03Z
No. of bitstreams: 1
(yoo)(AAEA)(2016)Vegetable_Price_Prediction_Atypical_Web_Search_Data.pdf: 423893 bytes, checksum: 1b96370a379a5a35cbf8f73398327d36 (MD5)
000236211 912__ $$nMade available in DSpace on 2016-05-26T04:50:03Z (GMT). No. of bitstreams: 1
(yoo)(AAEA)(2016)Vegetable_Price_Prediction_Atypical_Web_Search_Data.pdf: 423893 bytes, checksum: 1b96370a379a5a35cbf8f73398327d36 (MD5)
000236211 980__ $$a333
000236211 982__ $$gAgricultural and Applied Economics Association>2016 Annual Meeting, July 31-August 2, Boston, Massachusetts