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1. Motivation and Research Questions 

Random parameter logit (RPL), latent class logit (LCL), and random parameter latent class logit 

(RPLCL) are three of the most widely used models in stated choice analysis.  However, how to 

select the most appropriate model among these three to study the underlying preference structure 

is still an ongoing discussion.  In this paper, we propose a model assessment strategy using data 

solely from stated choice survey to examine the prediction performances of the three competing 

models. 

The RPL model (or mixed logit) is considered the most dominant model in discrete choice 

analysis, known for its flexibility and ability to capture preference heterogeneity (Hensher and 

Greene, 2003; Hoyos, 2010).  RPL assumes that the marginal utilities of attributes, due to 

unobserved individual heterogeneity, have some continuous distributions such as normal, 

lognormal, triangle, or uniform.  Often, however, these specified distributions of marginal utilities 

could not represent the true underlying preference accurately.  For instance, if there is a 

multi-mode distribution of marginal utility or if attribute non-attendance (or attribute ignoring) is 

present, the assumption of continuously distributed marginal utility will fail.  Attribute 

non-attendance refers to respondents’ tendency to be unconcerned with certain attributes in the 

choice tasks.  That is, if a respondent is not paying attention to a particular attribute, her overall 

utility of a choice alternative will not be affected no matter how the level of that attribute is changed.  

Respondents who actually practice attribute non-attendance have a discontinuous preference for 

the ignored attributes, and the discontinuity of preference will cause problems to the models based 

on the assumption of continuous utility functions.  This issue can have serious impacts on the 

estimates of willingness-to-pay (Scarpa et al., 2009).   

The LCL incorporates the idea of latent class analysis, which is widely used in other disciplines 

such as Marketing and Psychology, and is another favorable approach currently being used to 
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analyze stated choice data.  Assuming the population falls into a finite number of classes, each 

class having homogenous preference, the LCL model uses discrete distributions to capture 

preference heterogeneity among individuals (Boxall and Adamowicz, 2002; Greene and Hensher, 

2003).  For each individual, belonging to a specific class is probabilistic, and determined by 

individual characteristics.  That is to say, individual characteristics indirectly determine the choice 

respondents make through their class membership.  Compared to RPL, while the assumption of 

homogenous preference within groups makes LCL less flexible, LCL is able to capture the variation 

when the marginal utility is discretely distributed.  A couple of studies have found that a significant 

portion of respondents ignore attributes (Scarpa et al., 2009; Campbell et al., 2012), and LCL is ideal 

for dealing with this issue by modeling respondents ignoring attributes as an attribute 

non-attendance class.  Additionally, computational simplicity is another advantage of LCL over RPL.  

Several studies have investigated and compared the performances of RPL and LCL using relative 

model fit measures such as AIC, BIC, and likelihood ratio, while the results are mixed (Hynes et al., 

2008; Shen, 2009; Yoo and Ready, 2014).   

Recently, several studies extended LCL to allow within-class heterogeneity by specifying the 

parameters associated with each class to be randomly distributed, which is usually called random 

parameter latent class logit model (RPLCL), and it has been shown that RPLCL outperforms RPL and 

LCL in terms of model fit (Greene and Hensher, 2013).  In addition, studies find that, by using 

RPLCL, the share of attribute non-attendance class drops significantly compared to the estimates by 

LCL (Hensher et al., 2013; Hess et al., 2013).  These results suggest that those respondents who 

were classified as practicing attributes non-attendance might not be truly ignoring some certain 

attributes, instead just have some very low utilities on certain attributes.  Therefore, simply 

applying a LCL to fit the data is likely to overestimate the portion of respondents practicing 

attribute non-attendance (Hess et al., 2013).  In sum, RPLCL not only provides an alternative 
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approach to accommodate the issue of attribute non-attendance, which RPL is unable to tackle with, 

but also allows more flexible specification than LCL does.  RPL and LCL indeed are two special 

cases of RPLCL, i.e., RPL is the case with only one class, while LCL is the case with all parameters as 

fixed.  As RPL and LCL are nested in RPLCL, theoretically RPLCL should outperform the two special 

cases in terms of model fit.  

Despite the fact that relative model fit measures can provide guidance for model selection, what 

researchers really care about is if a model can correctly identify the underlying preference structure, 

i.e., whether the estimates of marginal utility of attributes or willingness to pay are unbiased.  

Provencher and Bishop (2004) examined the out-of-sample forecasting performances of RPL and 

LCL using recreational fishing behavior data, and the results indicate that both models perform 

equally well.  Their results also emphasize a caution for heavily-parameterized models.  If a 

choice model is misspecified, the additional parameters for modeling the heterogeneity of 

preference would potentially ‘‘absorb’’ specification errors and generate models inferior, in terms of 

forecasts and welfare estimates, to those of a simpler model, despite the better model fit.  We 

argue that this prediction/forecasting based approach is more appealing to assess model 

performance than model fit measures, because we can tell which model is better in capturing the 

actually behavior or the underlying preference.  Based on our literature review, no study has 

evaluated the predictive performances of models in the context of stated choice methods.  One 

obstacle of this approach could be that no proper revealed preference data are available at the time 

when a state choice experiment being conducted.    

This study proposes a prediction-based model assessment strategy to examine the 

performances of the two most dominant models in stated choice methods, RPL and LCL, and their 

recent extension, RPLCL.  The strategy is applied to the data retrieved from a survey on the values 
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of non-hydrological landscape amenities accompanied with green infrastructure.  Prior to the 

choice questions, the survey describes the four attributes we are interested in, i.e., variety in plant 

species, presence of water, percentage of mowed area, and natural versus designed appearance of 

landscape.  The description of each attribute is followed by a question asking respondents to rank 

the levels of each attribute in their preferred order.  The candidate models are estimated with the 

stated choice data, and we evaluate how well these models predict the actual preference order at 

both the aggregate and individual levels.  We expect this study provides a convincing and 

easy-implemented approach for model selection in stated choice methods.    
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2. Methods  

2.1. Data 

The data was collected from a survey to measure the values of non-hydrological landscape 

amenities accompanied with GI.  The survey instrument demonstrates the choice scenarios with 

both computer-rendered 3D images and text description.  The background context of the choice 

scenarios is asking the respondents to imagine that they have decided to move to a new home and 

are choosing where to live.  Each choice question asks respondents to choose between a pair of 

neighborhoods that have varied attributes.  The attributes for the choice scenarios and their levels 

were identified with discussions with professors and graduate students of landscape architecture.  

The four attributes - variety in plant species, presence of water, percentage of mowed area, and 

natural vs. designed appearance of landscape (level of geometry) - are some of the core elements in 

designing green infrastructure.  The levels of attributes are listed in Table 1.  Cost is also included 

in the form of a home association fee.  Throughout the survey, we use a more general term “green 

spaces” to replace GI to avoid the perception that new development will occur.  The survey 

provides respondents with background information about green spaces and the four attributes.  

Following the information on each attributes, we ask respondents to rank the levels of each 

attribute in their preferred order.  We call information obtained from these questions as the 

“preference order data,” in contrast to the “choice data” retrieved from choice questions.  The 

research question is, then, how well do the different choice models predict the preference order 

data collected from the same respondents?   

Twelve choice questions are then presented.1   We offer three levels of housing density for 

respondents to choose from, so the images describing the choice scenarios can better meet the 

                                                       
1 We randomize the order of choice questions to reduce potential bias led by ordering effect and respondent fatigue. 
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expectation of respondents.  We leave the attribute, natural vs. designed appearance of landscape, 

to be explained by images solely, because it is unlikely to be clarified given the limited length of 

survey.  A confusing definition of the attribute and its level would invite a potential bias among the 

users in the survey in terms of choosing words instead of the landscape they find visually pleasing.  

The choice questions are followed by several questions about attitude toward green spaces, for 

instance, potential concern and general expectation.  The survey begins with questions regarding 

the place that the respondents currently live in and important characteristics for choosing a new 

neighborhood.   

Computer-rendered images are generated in a program called Visual Nature Studio (VNS).  

The terrain of the neighborhood is exported to VNS from GIS.   For each scenario, the images are 

chosen to represent the landscape from three different angles to give an idea of the place as a whole.  

The four attributes and building style can be controlled in the VNS interface and desired images are 

then rendered.  The rendered images from three different angles are composed into a single 

composite image used in the survey.  An example of choice task is shown below in Figure 1. 

The participants are recruited through the KnowledgePanel, a web-panel service provided by 

GfK Knowledge Networks,2 and a total of 170 complete samples are collected.  The participants 

are possible home buyers who live in suburban area of Chesapeake and Delaware Watersheds, and 

all survey candidates must be between the ages of 25-64 years old.  In order to ensure the survey 

setting to be familiar and understandable to respondents, we further filter the survey regions by 

population density in zip code level.  Only people live in the zip code regions with population 

                                                       
2 The households in KnowledgePanel are randomly chosen and the number of surveys they are allowed to 

participate in is limited.  In addition, KnowledgePanel provides computer and internet service for households 

without home internet access.  These features allows KnowledgePanel to cover more than 95% of US households, 

and thus the sample representativeness is comparable to that using random digit dialing with cellphone sample.  It 

can also provide detail demographic information 
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density per square miles from 500 to 5000 are targeted for recruiting.  In addition, we exclude 

regions in Washington D.C., the eastern shore area of Maryland, and with area smaller than 0.05 

square miles or less than 10 households.  In the case of some regions are partly inside the two 

watersheds, only regions with at least 50% land area inside any one of the two watersheds are 

selected.  In terms of the age selection criterion, residents younger than 25 years old are excluded 

because they are unlikely to soon purchase a home.  Residents older than 64 years old are 

excluded because they typically face a different household budget constraint.  Detail 

socio-demographic information of respondents, such as income, education, employment status, and 

marital status, are provided through the database of KnowledgePanel. 

 

 

2.2. Econometric and Model Performance Assessment Methods 

In this section, we summarize three candidate discrete choice models and propose a strategy to 

assess the performances of the three competing models based on their ability to predict preference 

orders in both population and individual level.  The individual level strategy exploits the 

estimation results of discrete choice models to predict preference orders of individual, while the 

population level strategy uses the same results to predict the portions of each preference order of 

entire sample.   

 

2.2.1. Discrete Choice Model Specifications 

The conceptual framework of state choice experiment is based on random utility maximization 

model (Holmes and Adamowicz, 2003).  In this model, people are assumed to assess the utility 

generated by each alternative in a given choice set as a function of attributes attached, and choose 

the alternative which gives the respondents the highest utility.  Under this setting, a person’s utility 
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for a certain scenario is a function of attributes and an unobserved random component.  The utility 

(U) from scenario q is given by: 

Uq = αAq + εq                  (1) 

where Aq is the vector of the attributes of scenario q, α is the vector of marginal utilities of each 

attributes, and εq is an unobserved, random component.  When cost is included as an attribute, the 

monetary value, or marginal willingness to pay, of other attributes can be calculated as the ratio of 

the marginal utility of a certain attribute t divided by the negative marginal utility of cost attribute, 

i.e., -(αt/αcost).    

In a random parameter logit model, if the random component in utility, ε, follows a Type I 

extreme value distribution, then the conditional (Liq) and unconditional probability (Piq) of an 

individual i choosing alternative q among all Q scenarios in a choice question can be shown 

respectively by: 

𝐿𝑖𝑞 =
exp(𝛽𝑖𝑥𝑖𝑞+𝛾𝑧𝑖𝑞)

∑ exp(𝛽𝑖𝑥𝑖𝑞′+𝛾𝑧𝑖𝑞′)
𝑄
𝑞′=1

 and 𝑃𝑖𝑞 = ∫𝐿𝑖𝑞𝑓(𝛽)𝑑𝛽         (2) 

where xiq is the vector of attributes of alternative q with random marginal utility, while ziq is the 

vector of attributes with fixed marginal utility.  βi and γ are the marginal utilities for corresponding 

attributes, and βi varies across individuals following some continuous distributions f(β).  The 

unconditional probability generally cannot be calculated because the integral does not have closed 

form but can be approximated using simulation.  The simulated probability over R draws from f(β) 

is given by: 

�̌�𝑖𝑞 =
1

𝑅
∑ 𝐿𝑖𝑞
𝑅
𝑟=1 (𝛽𝑟)               (3) 

where r represents the rth draw.  See Train (2009), Ch. 6, for more detail on estimation strategy. 
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On the other hand, the random utility maximization model gives the conditional probability 

(Liq|c) of an individual i, who belongs to class c, choosing alternative q among all Q scenarios in a 

choice question for a latent class logit model by: 

𝐿𝑖𝑞|𝑐 =
exp(𝛽𝑐𝑥𝑖𝑞)

∑ exp(𝛽𝑐𝑥𝑖𝑞′)
𝑄
𝑞′=1

               (1) 

where xiq is the vector of attributes of alternative q, βc is vector of the marginal utilities for 

associated attributes.  In contrast to RPL, βc varies across classes but not individuals, i.e., it is fixed 

given its class.  Given that the probability of individual i being in class c, Hic, is a function of 

individual characteristics (ki), the unconditional probability (Liq) can be denoted by  

𝐿𝑖𝑞 = ∑ 𝐿𝑖𝑞|𝑐𝐻𝑖𝑐
𝐶
𝑐=1  and 𝐻𝑖𝑐 =

exp(𝜃𝑐𝑘𝑖)

∑ exp(𝜃𝑐′𝑘𝑖)
𝐶
𝑐′=1

         (2) 

and thus the likelihood is followed by  

ℒ = ∑ [𝐻𝑖𝑐∏ 𝐿𝑖𝑞|𝑐
𝑄
𝑞=1 ]𝐶

𝑐=1               (3) 

In order to incorporate within-class heterogeneity, an individual specific random component, wi, 

is introduced, and the conditional probability of randon parameter latent class logit can be written 

as 

𝑃𝑖𝑞|𝑐 =
exp[(𝛽𝑐+𝑤𝑖)𝑥𝑖𝑞+𝛾𝑐𝑧𝑖𝑞]

∑ exp[(𝛽𝑐+𝑤𝑖)𝑥𝑖𝑞′+𝛾𝑐𝑧𝑖𝑞′]
𝑄
𝑞′=1

             (4) 

Similar to the specification of RPL denoted in section 1.2.2, xiq is the vector of attributes of 

alternative q with random marginal utility, while ziq is the vector of attributes with fixed 

marginal utility.  βc and γc are the marginal utilities for corresponding attributes following 

some discrete distributions given individual i being in class c, and wi varies across 
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individuals following some continuous distributions g(φ) with zero mean and standard 

deviation σw, which is independent from all exogenous data in the sample.  Accordingly, 

the probability of individual i making choices across all choice tasks can be given by  

𝑓[𝑦𝑖,𝑡|𝑐] =
exp{∑ 𝑦

𝑖𝑞′,𝑡
[(𝛽𝑐+𝑤𝑖)𝑥𝑖𝑞′,𝑡+𝛾𝑐𝑧𝑖𝑞′,𝑡

𝑄

𝑞′=1
]}

∑ exp[(𝛽𝑐+𝑤𝑖)𝑥𝑖𝑞′+𝛾𝑐𝑧𝑖𝑞′]
𝑄
𝑞′=1

          (5) 

where the subscript t stands for each choice task, and yiq’,t = 1 if individual i chooses alternative q’ for 

choice task t and 0 for all others.   This probability can be approximated using simulation, and the 

simulated likelihood function can be expressed as   

 ℒ = ∏ ∑ 𝐻𝑐(𝜃)
𝐶
𝑐=1

1

𝑅
∑ ∏ 𝑓[𝑦𝑖,𝑡|𝑐]

𝑇
𝑡=1

𝑅
𝑟=1

𝑁
𝑖=1            (6) 

Noted that R is the number of draws in simulating the likelihood on the domain of random variable 

wi. 

 

2.2.2. Prediction Strategy in Population Level 

The preference order data will give us the portions of population which have a specific order of 

each attribute.  Also, by estimating models with choice data, we will have the distributions of 

marginal utility for each attribute level.  Given the distributions of all levels of each attribute 

resulting from our three competing models, we calculate the percentages of population having a 

particular order of levels predicted by each model, and compare the predicted percentages to the 

percentages obtained from the preference order questions.  The derivation of the predicted 

portions of population of possible orders for LCL is trivial.  The estimation results of LCL will 

provide class prevalence and the coefficients of each class, and thus the percentage of respondents 

having a certain preference order over an attribute is simply the sum of prevalence of classes with 

that preference order.  



11 
 

For RPL, the predicted portions can also be calculated straightforwardly with some 

probabilistic computation.  Given the distributions of each level of an attribute, we are able to 

compute or simulate the probabilities of the marginal utility of a certain level that is greater than 

that of the other levels.  For instance, we can compute the probability of a draw from parameter 

β1~N(1,1) is greater than that from β2~N(0,1) and β3~N(-1,1).  Similarly, the predicted portions of 

respondents having a certain preference order resulting from RPLCL can be computed by the same 

procedure used for RPL with some additional work: one class at a time and then weighted by class 

prevalence.  

 

2.2.3. Prediction Strategy in Individual Level 

Revelt and Train (2000) proposed a maximum-likelihood-based “conditioning on individual 

tastes” (COIT) procedure to derive the distribution of preference in an individual level.  The 

parameters of the preference distributions of each respondent can be obtained conditional on the 

choices a respondent have made.  Given the context of RPL, the individual-specific parameters of 

individual i (�̅�𝑖) can be given by  

�̅�𝑖 =
∫𝛽𝑃(𝑦𝑖|𝑥𝑖,𝛽)𝑓(𝛽|𝜑)𝑑𝛽

𝑃(𝑦𝑖|𝑥𝑖,𝛽)
               (7) 

where yi is the sequence of choices individual made, xi is the vector of attributes of each choice 

scenario that individual experienced, and β is the vector of marginal utility with parameter φ.         

Revelt and Train (2000) estimated a RPL model using choice data obtained in all choice 

questions but the last one, and derived the preference distribution of each individual.3  The 

                                                       
3 This unpublished manuscript was later comprised in Train’s “Discrete Choice Methods with Simulation” as the 

Ch.11, Individual-Level Parameters.  See its section 11.2 for the complete procedure for deriving conditional 

distribution. 
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distributions of individual-specific preference are then utilized to predict the choice made in the last 

choice question.  While they explain the procedure in the context of a RPL model, it applies to any 

model that incorporates random parameters, for example, RPLCL.  The authors pointed out one 

caution for using this approach.  If the last choice situation includes trade-off which is fairly 

different from those in previous situation, even though the average predictions accuracy by their 

COIT procedure will be improved, the predictions for some individuals can be deteriorated 

comparing to the predictions made by point estimates of population parameters. 

In light of Revelt and Train’s caution, the strategy proposed for individual level prediction in 

this study renovates their approach by using all choice data to predict the preference order data.  

The premises of the potential strength of our strategy are, 1) preference order questions are 

cognitively easier to answer than choice questions are, because the former does not require 

respondents to evaluate multi-dimensional trade-offs; and 2) the choice made in the last choice 

question might be inconsistent due to fatigue effect, while preference order data does not suffer 

from the same problem.  Hence, we can derive the individual specific distributions for each level of 

each attribute following COIT procedure, and compare model performance by two criteria: first, the 

percentages that the preference orders generated by point estimates of individual parameters 

matches the actual orders in preference order data.  Another criterion can be obtained by a 

procedure similar to that proposed in population level, i.e., the probabilities that a certain individual 

specific distribution correctly predicts the stated order.  This COIT procedure only applies to RPL 

and RPLCL simply because of the within-class homogeneity assumption of LCL.  A Hierarchical 

Bayes analog to the COIT has also been commonly performed to achieve the same goal, and will 

provide essentially the same results with sufficiently large sample size4. 

                                                       
4 For detail on Bayesian procedures to derive individual level parameters, see Ch.12 in Train (2009). 
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Lastly, it is worthwhile to run a conditional logit model with interactions, which is essentially a 

special case of RPL where all parameters are fixed or an LCL with only one class, and assess its 

performance using this prediction-based approach.  This will allow us to examine if the lesson, a 

heavily-parameterized but misspecified model will actually be inferior to some sparse models, is 

true in a state choice context.     
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3. Results  

We ran a RPL model with following specification: 1) non-random cost attribute, 2) all others 

attributes being normally distributed, 3) no correlation between parameters, and 4) 200 Halton 

draws.  The estimation results are then used to simulate the percentages of population having a 

particular order of levels for each attribute.  The numbers are reported in the third column of 

Table 3.  The individual estimates of marginal utility are derived using COIT procedure, and the 

resulting percentages are shown in the sixth column.  Similarly, the predicted percentages from a 

3-class LCL model are reported in the fourth and the seventh column of Table 3, respectively.  Note 

that we do not specify any variable to be person specific, i.e., no variable is used for determining the 

class assignment of each respondent.  The regression results of the two discrete choice models are 

shown in Table 2. 

We calculated the differences between the predicted and stated percentages for each attribute 

level in absolute value.  The total and average differences are listed at the end of Table 3 as indices 

for comparing the prediction accuracy.  Despite the inferior model fit, the RPL model produces 

more accurate overall prediction than LCL does.  The COIT for RPL gives less heterogeneous 

prediction but somewhat surprisingly deteriorates the overall prediction performance, while the 

COIT for LCL slightly improves the prediction compared to that solely based model estimates.  

By demonstrating the prediction performances on stated preference orders in both population 

and individual levels, the results will provide new evidence on the abilities to capture the 

underlying preference heterogeneity of three competing models - random parameter logit, latent 

class logit, and random parameter latent class logit - serving state choice methods.  Thus 

researchers can be better informed when they come to the question of model selection: if they 

should go for the classic RPL, LCL for less computational burden, or RPLCL for its complete 
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flexibility.  Ambitiously, we expect that this prediction-based model assessment approach would 

become a standard in stated choice methods, given its minor cost for obtaining preference order 

data.  Researchers do not need extra data source other than the survey itself to assess the models 

in terms of their prediction performance.  We consider that there is no certain model that can fit all 

different underlying preference structure, so our goal is proposing a powerful tool for model 

selection, in addition to relative model fit measures.  
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Table 1: Attribute Levels 

Attributes 
Variety in  

Plant Species 
Presence of 

Water 
Percentage of 
Mowed Area 

Level of 
Geometry 

Cost  

Levels 

High 

Medium 

Low 

Always 

Sometimes 

Never 

100% 

70% 

30% 

0% 

High 

Medium 

Low 

$100 

$50 

$0 

 

 

Figure 1: Example of Choice Question 

 

 

 

  



 
 

Table 2: Discrete Choice Model Results 

 RPL LCL (3-class) 

Log-likelihood -923.84 -835.94 

Class Prevalence    37.57% 23.93% 38.5% 

 Means S.D.s 
Means  

of Class 1 
Means  

of Class 2 
Means  

of Class 3 

Geometry 

Low 
-0.077 

(0.113) 

0.046 

(0.178) 

-0.800 

(1.744) 

-0.642 

(0.406) 

0.176 

(0.145) 

High 
-0.028 

(0.139) 

0.136 

(0.157) 

1.486 

(3.115) 

-0.490 

(0.477) 

0.274 

(0.201) 

Variety in Plant Species 

Low 
-1.390 

(0.199) 

1.730 

(0.208) 

0.278 

(1.687) 

-0.171 

(0.379) 

-1.372 

(0.163) 

High 
0.175 

(0.141) 

0.386 

(0.322) 

2.137 

(4.732) 

-0.822 

(0.526) 

0.639 

(0.171) 

Presence of Water 

Never 
0.334 

(0.141) 

1.259 

(0.170) 

1.299 

(1.553) 

0.760 

(0.466) 

-0.575 

(0.168) 

Always 
-2.518 

(0.277) 

2.227 

(0.262) 

-4.487 

(3.428) 

-0.849 

(0.393) 

-0.866 

(0.169) 

Percentage of Area Mowed 

0% 
-0.356 

(0.153) 

0.839 

(0.201) 

1.181 

(3.142) 

-1.146 

(0.399) 

0.159 

(0.163) 

70% 
0.181 

(0.126) 

0.370 

(0.190) 

2.622 

(4.817) 

0.165 

(0.292) 

0.008 

(0.151) 

100% 
-0.462 

(0.181) 

0.270 

(0.298) 

-0.062 

(3.016) 

-0.268 

(0.328) 

-0.617 

(0.279) 

Cost 
-0.019 

(0.002) 
 

0.002 

(0.008) 

-0.043 

(0.007) 

0.00012 

(0.002) 

Note: Standard errors are in parenthesis.  

 

  



 
 

Table 3: Stated and Predicted Preference Orders 

 Stated Model Prediction COIT  

  RPL LCL RPLCL RPL LCL RPLCL 

Level of Geometry        

Low > Medium > High 27.98% 2.72% 0%  0% 0.00%  

Low > High > Medium 1.79% 0.24% 0%  0% 0.00%  

Medium > Low > High 16.07% 33.65% 0%  3.09% 0.00%  

Medium > High > Low 21.43% 21.77% 24.70%  80.25% 21.60%  

High > Low > Medium 0.60% 1.68% 38.50%  0% 35.19%  

High > Medium > Low 32.14% 39.95% 36.70%  16.67% 43.21%  

        

Variety in Plant Species        

Low > Medium > High 11.38% 6.91% 0%  3.70% 0.00%  

Low > High > Medium 0.60% 10.48% 0%  6.17% 0.00%  

Medium > Low > High 8.98% 1.51% 24.70%  0% 20.37%  

Medium > High > Low 21.56% 24.13% 0%  6.79% 4.94%  

High > Low > Medium 2.99% 3.71% 36.70%  2.47% 36.42%  

High > Medium > Low 54.49% 53.26% 38.50%  80.86% 38.27%  

        

Presence of Water        

Never > Sometimes > Always 41.42% 52.69% 61.50%  68.52% 62.96%  

Never > Always > Sometimes 2.96% 4.17% 0%  0.62% 0.00%  

Sometimes > Never > Always 26.63% 29.92% 38.50%  20.37% 37.04%  

Sometimes > Always > Never 10.65% 4.47% 0%  4.32% 0.00%  

Always > Never > Sometimes 1.18% 3.67% 0%  0.62% 0.00%  

Always > Sometimes > Never 17.16% 5.08% 0%  5.56% 0.00%  

 

  



 
 

Table 3. (Continued) 

 Stated Model Prediction COIT 

  RPL LCL RPLCL RPL LCL RPLCL 

Area Mowed        

0% > 30% > 70% > 100% 12.50% 8.01% 0%  5.56% 0.00%  

0% > 30% > 100% > 70% 0.60% 2.06% 0%  0% 0.00%  

0% > 70% > 30% > 100% 0.60% 13.43% 38.50%  4.94% 34.57%  

0% > 70% > 100% > 30% 0.00% 0.46% 0%  0% 0.00%  

0% > 100% > 30% > 70% 0.00% 0.39% 0%  0% 0.00%  

0% > 100% > 70% > 30% 0.00% 0% 0%  0% 0.00%  

30% > 0% > 70% > 100% 10.71% 1.97% 0%  0.62% 0.00%  

30% > 0% > 100% > 70% 0.00% 0.74% 0%  0% 0.00%  

30% > 70% > 0% > 100% 11.90% 3.95% 0%  2.47% 0.00%  

30% > 70% > 100% > 0% 14.88% 9.81% 0%  1.85% 0.00%  

30% > 100% > 0% > 70% 0.60% 0.52% 0%  0% 0.00%  

30% > 100% > 70% > 0% 0.60% 2.85% 0%  0% 0.00%  

70% > 0% > 30% > 100% 1.19% 8.69% 36.70%  6.17% 38.27%  

70% > 0% > 100% > 30% 0.00% 0.28% 0%  0% 0.00%  

70% > 30% > 0% > 100% 2.38% 14.70% 0%  47.53% 1.23%  

70% > 30% > 100% > 0% 13.69% 28.96% 24.70%  30.25% 25.93%  

70% > 100% > 0% > 30% 0.00% 0.09% 0%  0% 0.00%  

70% > 100% > 30% > 0% 10.71% 1.66% 0%  0% 0.00%  

100% > 0% > 30% > 70% 0.00% 0.06% 0%  0% 0.00%  

100% > 0% > 70% > 30% 0.00% 0.02% 0%  0% 0.00%  

100% > 30% > 0% > 70% 0.60% 0.15% 0%  0% 0.00%  

100% > 30% > 70% > 0% 1.79% 0.75% 0%  0% 0.00%  

100% > 70% > 0% > 30% 1.19% 0.02% 0%  0% 0.00%  

100% > 70% > 30% > 0% 16.07% 0.32% 0%  0.62% 0.00%  

        

Total Absolute Difference (%) 223.95 423.37  377.77 411.78  

Average Difference per Item (%) 5.33 10.08  8.99 9.80  

 


