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Impacts of Futures Markets Speculation and Rail Transportation Networks 
 on Commodity Basis Behavior 

 

Interactions between rail and transportation networks on commodity price behavior and grain 

flows remains an important issue in the agricultural sector, from both an industry and policy 

perspective (Casavant, 2015).  Market access, network effects, and local conditions all play an 

important role in determining land-use allocation, trade, and price behavior in agricultural 

markets.  While a large literature exists evaluating basis behavior and convergence from a price 

analysis perspective on local or partial scales, much less has been done on evaluating the impacts 

of rail and transport networks on basis behavior on larger scales, or incorporating hedging or 

speculative activities in related commodity future markets. 

 There has been much recent interest in evaluating the impacts of market access on 

agricultural valuations from a historical perspective (see e.g., Donaldson and Hornbeck, 

forthcoming), agricultural transport investments (Casavant, 2015), and impacts of rail 

infrastructure on economic activity in general (Donaldson, 2015).  Nevertheless, incorporating 

rail network effects in such models remains challenging, and thorough investigations of the 

impact of rail infrastructure and related regulatory issues on spatial price basis behavior remain 

largely unexplored in holistic contexts. 

 This study briefly explores the determinants of commodity price basis and basis 

convergence with a particular focus on the influence of futures market speculation in conjunction 

with rail rates and transportation networks.  This preliminary analysis sets out to replicate and 

explore some earlier approaches in the literature, incorporates for the first time to our knowledge 

futures markets position information, and also provides thoughts on future extensions. The Data 

Appendix to this paper also focuses on automation of data sourcing to enable real time analysis of 
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these types of disparate market information and models relying on the Ag-Analytics.Org open 

data platform (Woodard, 2016a, Woodard, 2016b).   

Data and Methods 

Data were collected from a variety of disparate sources for this analysis. The main source of rail 

transportation data were obtained from various unstructured spreadsheets which are updated by 

USDA-AMS weekly. See the Data Appendix to this paper for information on the data 

automation routines; the data are also available for flexible and scalable querying via web-based 

API's at Ag-Analytics.Org. The rail tariff data are collected from Grain Transportation Cost 

Index report, while railcar secondary market data are obtained collected from the Weekly railcar 

bids/offers for the secondary non-shuttle and shuttle railcar Market data. We consider only 

Shuttle car bids for this analysis. For rail tariff data, we only consider the Monthly rail tariff 

including fuel surcharge. For the shuttle car bids data, we averaged over the 12 months bid 

values for a particular ending week. 

 Total rail car data were collected from the Analysis of Association of American Railroads 

(AAR), Weekly Railroad Traffic Report.  Train Speed data were collected from AAR’s ‘Railroad 

Performance Measure’ table. Traffic Volume data we also collected from the Weekly Railroad 

Traffic as total carloads plus Intermodal units. Data were also collected from Surface 

Transportation Board’s (STB) Freight Commodity Statistics database. A report for each railroad 

company is published separately, and for each company, the dataset contains information for all 

the commodities transported. We focused on Corn for this analysis.  Grain stocks values are 

obtained from the National Agricultural Statistical Service. The Commodity Futures Trading 

Commission Commitment of Traders (COT) dataset provides weekly observations from April 

18th, 1995, to the present and provides information on positions of hedging (commercial) and 

https://www.ag-analytics.org/
https://www.ag-analytics.org/
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non-hedging (non-commercial) entities on publicly traded futures exchanges (in this case the 

Chicago Mercantile Exchange), published weekly, for reportable traders.  Position data are 

published for futures, as well as futures and options combined. Option open interest and traders' 

option positions are computed on a futures-equivalent basis using delta factors supplied by the 

exchanges. Long call and short put open interest is converted to long futures-equivalent open 

interest, and vice-versa in the combined report. Data are also reconciled for non-commercial 

spreaders, and investigated for non-reportable traders. 

Model 

Following OCE (2015) and Wilson and Dahl (2011), origin bases in the primary Midwest states 

are modeled as a function of destination basis, and other factors; the destination bases 

consolidated into two groups: Pacific North West (PNW) and Gulf of Mexico (GOM).  PNW 

consists of Oregon, Washington and California, while GOM consists of Texas and Louisiana. 

For these two groups, we considered the average monthly basis in these states, defined as the 

spot price minus the nearby futures price. We also included variables for Outstanding Sales, 

Tariff (Monthly rail tariff including Fuel surcharge), and futures speculation measures from the 

COT database. Outstanding Sales are weekly export sales contracts of commodities at U.S. ports 

that have not been shipped at a given time, and Tariff is the monthly rail tariff for shipments of 

commodities including fuel surcharge. From the CFTC COT database, we evaluate percent of 

open interest from non-commercial longs (OI_Noncommercial_Long_All), non-reportable longs 

(OI_Nonreportable_Long_Other), the change in non-commercial long positions 

(ChangeinNoncommercial_Long_All), as well as the net long concentration ratio as published by 

the CFTC (Concentration_NetLT4TDR_Long_All). We considered weekly data from June, 2010 

until middle of November 2015  (N= 1185).  
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Results 

Several models were investigated for robustness, including various setups for fixed effects on the 

Origin Basis states (Minnesota, South Dakota, Nebraska, Iowa, and Illinois). Several 

combinations were run to investigate the relative orthogonality of the factors under consideration 

and their sensitivity to alternative specifications in an intentionally terse exposition.  

 Table 1.1 presents regression results with Origin State fixed effects and differential effect 

variables for PNW and GOM regions. Consistent with earlier studies, the PNW and GOM basis 

variables are positive and significant, reflecting spatial arbitrage relationships in basis; PNW has 

a larger marginal effect than GOM, with magnitudes ranging from 0.59-0.61, and 0.14-0.15, 

respectively. Long speculative (non-commercial) positions and changes in long speculative 

position in the futures market are negatively and statistically significantly related to basis (i.e., 

spot - futures), indicating that greater long speculative pressure has a spatially persistent upward 

impact on futures prices relative to the spatial complex of spot prices. This is true for 

OI_Noncommercial_Long_All, ChangeinNoncommercial_Long_All, as well as for the 

concentration ratio measure, Concentration_GrossLT4TDR_Long_All. Note that futures are only 

deliverable against a single set of locations in the origin states during any given period, while 

spot prices vary across origin as well as destination locations. On the other hand, non-reportable 

long position are positively related to origin basis. The R-Sq is fairly high in all models (approx. 

0.89), with the vast majority of variance explained by the destination basis measures. 
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Table 1.1 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures 
  M1 M2 M3 M4 M5 

PNW 0.610095 *** 0.595254 *** 0.600186 *** 0.611352 ***       0.610744 ***        

GOM  0.159599 *** 0.149578 ***   0.156886 ***        0.157536 ***       

OI_Noncommercial_Long_All   -0.004935 ***       

OI_Nonreportable_Long_Other     0.004276 ***     

ChangeinNoncommercial_Long_All 
       -0.000001   **       

Concentration_GrossLT4TDR_Long_All         -0.002502 **        

Fixed Effect Origin State Yes Yes Yes Yes Yes 

N 2770 2770 2770 2770 2770 

Adj.R^2 0.8966 0.9008 0.8976 0.8970 0.8968 

Sigma^2 0.0204 0.0196 0.0202 0.0203 0.0204 
 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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Table 1.2 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures 
  M6 M7 M8 M9 M10 

PNW 0.610090 ***       0.568022 ***             

GOM  0.158685 *** 0.197077 ***              

OI_Noncommercial_Long_All_     -0.028956 ***     

OI_Nonreportable_Long_Other_       0.016625 ***           

ChangeinNoncommercial_Long_All_ 
         -0.000001 *       

Concentration_GrossLT4TDR_Long_All_ 
           

Concentration_NetLT4TDR_Long_All_ 
 -0.002112 *               

Outstanding Sales   -0.010213 ***       

Fixed Effect  Origin State Yes Yes Yes Yes Yes 

N 2770 2770 2770 2770 2770 
Adj.R^2 0.8968 0.9039 0.2144 0.0594 0.0441 
Sigma^2 0.0204 0.0190 0.1550 0.1856 0.1886 
 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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Turning to table 1.2, which includes Outstanding Sales, the results for PNW and GOM basis are 

quite consistent, as are the estimates for the futures speculation measures. M8-M10 also evaluate 

model specification stability to dropping PNW and GOM, with the result that the speculative 

measures are significant, although some of the effect is attenuated to those remaining variables in 

their absence as would be expected, and the R-Sq drops significantly as expected to about 0.21 in 

M8. Outstanding Sales are significantly negatively related to origin basis, which is presumably 

due to spot prices falling in destination locations as outstanding sales in those locations increase, 

and inventories build. 

 Inspecting tables 1.2-1.8, PNW has a consistently larger marginal effect than GOM basis, 

as in Table 1.1. All other results are also robust and stable with regard to the speculative 

measures, regardless of whether fixed effects are employed or not for the Origin States. Table 

1.6 includes the Tariff measure, which as expected is also negative, indicating that the imposition 

of rail tariffs places downward pressure on local spot prices relative to exchange traded futures 

prices. 
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Table 1.3 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures 
  M11 M12 M13 M14 M15 

PNW     0.562762   ***     0.567930  ***      0.569342  ***      

GOM      0.184835 *** 0.197242 ***       0.194911 *** 

OI_Noncommercial_Long_All     -0.003595   ***     

OI_Nonreportable_Long_Other       0.000093   

ChangeinNoncommercial_Long_All 
         -0.000001 *       

Concentration_GrossLT4TDR_Long_All 
 -0.008257  **              

Concentration_NetLT4TDR_Long_All 
   -0.008006 **       

Outstanding Sales     -0.008866 ***      -0.010183 *** -0.010082 ***      

Fixed Effect Origin State Yes Yes Yes Yes Yes 
N 2770 2770 2770 2770 2770 
Adj.R^2 0.0457 0.0460 0.9060 0.9039 0.9040 
Sigma^2 0.1883 0.1882 0.0185 0.0190 0.0189 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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Table 1.4 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures 
  M16 M17 M18 M19 M20 

PNW 0.567138  ***      0.566029 ***              

GOM  0.195246  ***      0.197149  ***            

x_ofOI_Noncommercial_Long_All_     -0.023975   ***        

x_ofOI_Nonreportable_Long_Other_       -0.0031   

ChangeinNoncommercial_Long_All_         -0.000001 
Concentration_GrossLT4TDR_Long_All_ -0.004409  ***              
Concentration_NetLT4TDR_Long_All_   -0.003916   ***           
Outstanding Sales -0.010705 ***      -0.010695 ***      -0.026307 *** -0.038259 ***      -0.037019  ***     

Fixed Effect Origin State Yes Yes Yes Yes Yes 
N 2770 2770 2770 2770 2770 
Adj.R^2 0.9047 0.9046 0.2685 0.1613 0.1611 
Sigma^2 0.0188 0.0188 0.1443 0.1655 0.1655 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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Table 1.5 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures 
  M21 M22 
Concentration_GrossLT4TDR_Long_All_ 
 -0.015846 ***         

Concentration_NetLT4TDR_Long_All_ 
   -0.014410  ***      

Outstanding Sales -0.038733  ***     -0.038560  ***      

Fixed Effect Origin State Yes Yes 

N 2770 2770 

Adj.R^2 0.1717 0.1713 

Sigma^2 0.1634 0.1635 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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Table 1.6 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures 
  M23 M24 M25 M26 

PNW 
0.678514 *** 0.680294 *** 

 
0.713883  *** 0.714775 *** 

GOM  0.106235  *** 0.112449  *** 0.075676  *** 0.080138  *** 

Outstanding Sales -0.007302  *** -0.007207 ***   

Tariff  
-0.370603  *** -0.503861 *** -0.415997 *** -0.505544 *** 

Fixed Effect Origin State Yes No Yes No 

N 1185 1185 1185 1185 

Adj.R^2 0.9296 0.9279 0.9267 0.9250 

Sigma^2 0.0215 0.0220 0.0224 0.0229 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
 
Table 1.7 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures 
  M27 M28 
PNW 0.568022  ***       0.568022  ***   

GOM  0.197077  ***        0.197077 *** 

Outstanding Sales -0.010213 *** -0.010213 *** 

Fixed Effect Origin State Yes No 

N 1185 1185 

Adj.R^2 0.9288 0.8840 

Sigma^2 0.0217 0.0354 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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Table 1.8 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures 
  M29 M30 M31 M32 

OI_Noncommercial_Long_All_ -0.057034 *** -0.070915 *** -0.075892 *** -0.099184 *** 

Outstanding Sales     

Tariff (not Tcost)   3.679642 *** -0.269846 *** 3.111209 *** -1.106460 * 

Interaction(OI_Noncommercial_Long_All_ and 
Tariff)  

  0.017854  0.026822  

FixedEffect Origin State Yes No Yes No 

N 1185 1185 1185 1185 

Adj R^2 0.4453 0.2785 0.4457 0.2801 

Sigma^2 0.1694 0.2203 0.1692 0.2198 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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Conclusions 
 
While a handful of studies exist exploring basis behavior, and exploring impacts of trading 

behavior on futures prices, we are unaware of any study that explicitly takes into account futures 

positions of market participants in conjunction with rail transpiration effects in a nationwide 

model such as this. As highlighted in a recent study by the United States Department of 

Agriculture Office of the Chief Economist and the Agricultural Marketing Service (OCE, 2015), 

interactions between rail & transportation networks on commodity price behavior and grain 

flows remains an important issue in the agricultural sector from both an industry and policy 

perspective. Market access, network effects, and local conditions all play an important role in 

determining land-use allocation, trade, and price behavior in agricultural markets.  

 The findings of this brief study corroborate those of earlier studies as it regards frictional 

impacts of rail network costs on origin bases. Additionally, this study finds that in addition to rail 

transport effects, that long speculative pressure in the futures market is contemporaneously 

related to widening basis. 

 Future studies could investigate basis behavior in such markets in spatially explicit 

frameworks, and explore inclusion of ethanol demand. Additionally, despite that most grain is 

produced in the Central Midwest (what we and other designate as "origin" states) and shipped or 

consumed predominantly elsewhere (through "destination" states) we would note that these 

designations are somewhat ad hoc, and thus future explorations could instead employ more 

formal and spatially explicit econometric approaches to investigating such network effects in 

these markets. 

 

 



15 
 

 
References 
 
Casavant, K.L, "Agricultural Grain Transportation: Are We Underinvesting and Why?" Choices, 

2015. 
Donaldson , D. and Hornbeck, R., "Railroads and American Economic Growth: A Market 

Access Approach," Quarterly Journal of Economics, forthcoming. 
Donaldson , D., "Railroads of the Raj: Estimating the Impact of Transportation Infrastructure," 

American Economic Review, 2015. 
National Research Council (NRC), 2012. Computing Research for Sustainability. Washington, 

DC: National Academies Press. 155 pp. 
OFFICE OF MANAGEMENT AND BUDGET (OMB), "MEMORANDUM FOR THE HEADS 

OF EXECUTIVE DEPARTMENTS AND AGENCIES: Guidance for Providing and Using 
Administrative Data for Statistical Purposes", February 14, 2014 

Office of the Chief Economist (OCE) - United States Department of Agriculture, "Rail Service 
Challenges in the Upper Midwest: Implications for Agricultural Sectors – Preliminary 
Analysis of the 2013 – 2014 Situation,, January 2015. 

Office of Science and Technology Policy (OSTP), 2013. Increasing Access to the Results of 
Federally Funded Scientific Research. OSTP Memorandum for the Heads of Executive 
Departments and Agencies, February 22, 2013. Washington, DC. 

President’s Council of Advisors on Science and Technology (PCAST), 2011. Sustaining 
Environmental Capital: Protecting Society and the Economy. Washington, D.C. 

Wilson, William W. and Bruce Dahl (2010) “Grain Pricing and Transportation: Dynamics and 
Changes in Markets,” Agribusiness and Applied Economics Report No. 674, North Dakota 
State University (December) 

Wilson, William W. and Bruce Dahl (2011), “Grain Pricing and Transportation: Dynamics and 
Changes in Markets” Agribusiness Journal, 27 (4) 420-434. 

United States Department of Agriculture-Agricultural Marketing Service, Grain Transportation 
Report Datasets (2016), Unstructured source data are available online at 
https://www.ams.usda.gov/services/transportation-analysis/gtr-datasets 

Woodard, J.D., "A Spatial Supply and Demand Analysis of United States Dairy Policy", 
Working Paper, Cornell University, 2015 

Woodard J.D. (2016), Data Science and Management for Large Scale Empirical Applications in 
Agricultural and Applied Economics Research,” Applied Economics Perspectives and Policy 

Woodard J.D. (2016), “Big Data and Ag-Analytics: An Open Source, Open Data Platform for 
Agricultural & Environmental Finance, Insurance, and Risk,” Agricultural Finance Review. 

 
 
 
 
 
 
 
 
 
 

https://www.ams.usda.gov/services/transportation-analysis/gtr-datasets


16 
 

 
Data Appendix 
 
This appendix highlights some key details of the data collection procedures employed and online 
resources developed in support of this study, including technical details of extraction, transform, 
load procedures (ETL) for automating data sourcing of unstructured data resources used in the 
pilot analysis. Difficulties we encountered during the process were recorded as well as 
suggestions for future opportunities for coordination improvements between the Federal 
Government and the research community in the realm of agricultural analytics.  
 Recent decades have seen an explosion in modeling capabilities and frameworks--
particularly at the intersections of markets, policy, and spatially dependent enviro-economic 
systems--and software to perform such specific modeling tasks. Marrying of these worlds, 
however, remains seriously lacking. This is of profound importance given that many of the new 
modeling frameworks in spatial econometrics and economic network modeling require 
integrating and structuring large and complicated datasets consistent with these approaches, 
which is a massive task in and of itself. In fact, separately, fields of data science have emerged in 
several disciplines focusing on the latter alone (in which economics has arguably been a laggard 
relative to other sciences such as physics, computer science, genetics, and meteorology). In the 
course of pursuing this specific research, we also build off of successful approaches developed 
to-date for enabling automated and scalable data warehousing approaches in order to enable 
these investigations. These efforts are of critical importance for not only establishing proof of 
concept generally, but also motivating adoption of such research in a form that does not exist to 
date.   
 Importantly, unlike other systems to date, on the Ag-Analytics.Org platform, these data 
are stored in modern databases which can be queried and integrated flexibly and processed at 
user desired scales, with industrial and flexible API's and tools to most broadly enable analytics 
to the deepest extant community of users. To move the effort forward, more funding and 
emphasis should be placed on these robust cloud based approaches to allow for wide use, 
adoption, and further development, and to fully leverage other database and data management 
techniques, efforts, and platforms. To that end, we have obtained a generous grant from 
Microsoft for server space on their Azure platform, and also continue to move this exploratory 
effort forward on limited internal funds.  A partnership between OCE and Cornell to further 
explore and develop within the context of Agency priority research questions under this study 
has also been of great value to the public, government agencies, and the associated research 
community to this end. 
 
Communicating Proof of Concept and Developing Use Cases and Tools 
 
While many advances have been made and successes realized to date in terms of fundamental 
technical and analytical challenges, a critically important and logical next step for advancements 
in this field will rely on meaningful interaction with interested agency stakeholders and 
leadership. In addition, meaningful articulation and demonstration of the business case for these 
innovations in practical and easily understood contexts is of great value. While it is understood 
that this working manuscript is a verbose working effort toward that, our hope is that inclusion 
and development of such resources will begin to spur interest within the community as the value 
and potential applications of such community resources. To this end, we have engaged the Office 
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of the Chief Economist of the USDA in identifying and generating such expositions and cases. 
This Data Appendix also serves as a tutorial based on the pilot analysis in the paper highlighting 
the use of the data system, with the ancillary benefit that the research will be replicable in a 
manner that virtually no economic studies are to date in terms of enabling a auto-updatable and 
on-demand data sourcing. 
 An overarching purpose of this project is to explore leveraging data integration systems 
to support agricultural policy research in cooperation with The Office of the Chief Economist 
(OCE) of the United States Department of Agriculture (USDA). By recreating the analysis of 
Rail Service Challenges in the Upper Midwest1 using a centralized and automated database, well 
documented ETL (Extract, Transform and Load) scripts, data modeling process and Metadata, 
the purpose of this effort is to further explore cooperation between the USDA OCE in order to 
set an example for future data integration projects leveraging community based open source/open 
data platforms such as Ag-Analytics.Org, where all of the data scripting routines, as well as a 
live-automated data warehouse are available for researchers to freely access. 
   Much of the data researchers routinely use in agricultural and environmental finance and 
related fields are often--strictly speaking--publicly available; however the form in which they are 
distributed leads to great inefficiencies in data sourcing and processing which can be greatly 
improved. This assessment has been widely supported even by the government for some time 
(OSTP, 2013; OMB, 2014). The goal of the Ag-Analytics open data/open source platform is to 
help researchers centralize, share, coordinate, and contribute in such efforts. Development of 
systems for disseminating, documenting, and automating the processing of such data can lead to 
more transparency in research, better routes for validation, and a more robust research 
community, and better expenditure of public funds. 
 The purpose of the remainder of this document is to provide an overview of the technical 
processes involved in extracting, curating, and housing various unstructured data for a set of use 
cases. Please refer to “Big Data and Ag-Analytics: An Open Source, Open Data Platform for 
Agricultural & Environmental Finance, Insurance, and Risk”, Agricultural Finance Review 
(2016, forthcoming), and “Data Science and Management for Large Scale Empirical 
Applications in Agricultural and Applied Economics Research, Applied Economics Perspectives 
and Policy (2016, forthcoming) for further detail on conceptual design. 
 

Metadata 
 
Initial Metadata are collected from source on at least two levels:  Table Meta data contain 
generic information about the dataset, such as title, description, author, source, format, license, 
coverage, update frequency, last revision date.  Each row is a record of the transformed dataset 
collected.  Fields Metadata contained detailed information of each field (column) inside the 
dataset. Table A.1 below provides a draft synopsis of those collected for this study. We would 
note that these data are used in a wide variety of contexts, but as of yet, the only available API to 
access these data are on the Ag-Analytics.org platform. 
 
 
 
                                                           
1 Rail Service Challenges in the Upper Midwest: Implications for Agricultural Sectors – Preliminary 
Analysis of the 2013 – 2014 Situation 
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Dataset Description Source Update 

ExportGrainTotals Federal Grain Inspection Services Yearly 
Export Grain Totals (data available from 1983 
to current year) 

USDA-
FGIS 

annual 

ExportSalesWeeklyData Weekly Export Grain Sales Data USDA Various 
Fertilizer Fertilizer records (in process) ERS Various 
FreightCommodityStatist
ics 

Quarterly and annual data for the seven major 
freight railroads. The major US railroad data 
used are {BNSF, CXWT,GTC, 
UP,SOO,NS,KCS} 

Surface 
Transportati
on Board 

annual 

GrainInspectionByPort Weekly inspections of grain for export in the 
Pacific NorthWest, Mississippi Gulf, Texas 
Gulf, Great Lakes and The Atlantic region. 

AMS-
USDA 

weekly 

GrainTransportByMode Amount (in 1000 Tons) of US grain moved by 
rail, barge, and truck from 1978 to 2013. The 
data is divided into export, domestic and total 
grain moved by the three modes of transport. 

USDA weekly 

GrainTransportCostIndex Weekly changes in truck, rail, barge, and ocean 
freight rates using diesel prices, nearby 
secondary rail market rates, Illinois barge rates, 
and ocean freight rates from U.S. Gulf and 
Pacific NorthWest to Japan as proxies. 

AMS-
USDA 

weekly 

NASSCrops NASS Crops database  USDA 
NASS 

daily 

RailTraffic Weekly U.S. rail traffic data of Carloads, 
Intermodal Units, and Total Traffic from 
March 2013 to present. 

Association 
of 
American 
Railroads 

weekly 

SecondaryRailcarBids Weekly railcar bids/offers for the secondary 
non-shuttle and shuttle railcar Market. 

AMS-
USDA 

weekly 

TrainSpeedByCompany This dataset is downloaded from Railroad 
Performance Measures website, where six 
major North American freight railroads have 
voluntarily reported three weekly performance 
measures. The weekly data shows the train 
speed (miles per hour) for intermodal, manifest, 
coal unit, and grain unit. 

Railroad 
Performanc
e Measures 
website 

annual 

WaybillSamples It is a stratified sample of carload waybills for 
all U.S. rail traffic submitted by those rail 
carriers terminating 4,500 or more revenue 

Surface 
Transportati
on Board 

annual 
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carloads annually. (2005-2014) 
Table 1.   Summary of Railroad Database.   A more detailed Table Meta data is attached 
separated as Excel file. 

ETL Process Overview 
 
In general, many ETL processes within our system involve four steps:   

1. Identify the source of raw data for tables and charts in the paper1 
2. Write Python scripts to clean, correct, compile raw data into two dimensional tabular 

format that’s ready for MS SQL server. 
3. Write SQL command to create table with correct data types and upload the processed 

data table to MS SQL database. 
4. Write Python scripts to update the data table and set SQL server job to periodically run 

the scripts. 
Due to the wide variety of data sources and forms, the raw data initially enter in a variety of 
formats and need to be assessed by qualified researchers for how to best store such data for 
cataloging. This is typically done with an eye toward scalability to generic applications.  Flat 
formats such as Excel, CSV and well formatted XML or JSON are usually the easiest to process.  
Despite that many public datasets are haphazardly published as PDFs, they typically require the 
most ad hoc and unreliable conversion, as the resulting text usually loses its tabular format, and 
hence can be fairly difficult to parse.  All agree that Agencies and data publication entities 
should avoid publishing (as a matter of unique record) data in this format more or less 
exclusively.  
 Most of our data sources are collections of multiple files.  For example, 
FreightCommodityStatistics combines reports from seven major railroad companies, each 
recorded data in a different format.  In some cases, such as with weather data, the number of files 
necessary to construct a usable dataset stretches into the thousands or tens of thousands, so basis 
scripting is necessary, and should be commoditized when possible. In some (but not most) cases, 
it is necessary with current technology to partition files. Yet, this is common even in very small 
datasets. Despite this obviousness, the practice of publishing data in this form is pervasive. 
While not difficult to overcome for the astute programmer with some time, the fact of the matter 
is that classic DBMS is a much preferred alternative usually, especially when such processing 
can be shared or centralized for ad hoc querying. For example, the RailTraffic table combines 
over 300 weekly reports for which it was necessary to write web-scrapping scripts to retrieve. A 
weekly update SQL job is set for it as a new report is posted every week. While feasible for 
every researcher to rewrite themselves (maybe), indeed many an analyst has either labored at 
great error to copy-paste ad-infinitum, re-script, or simply walk away from such data. To be sure, 
these data are widely underutilized relative to what they could be.  

Application for collection of Rail Traffic Databases 
 
The examples below present some very basic applications. Surely, the process of storing data in 
a cloud based open data platform for querying against a live DBMS is not new. 
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 Query Example 1:  
Query table GrainTransportCostIndex to get values for monthly average tariff including fuel 
surcharge for shuttle cars from the ag-analytics API (copy and paste the below into any web 
browser, or URL load program in any standard stat package):  

https://ag-analytics.org/AgRiskManagement/api/dataservice?sql= 
 
 
SELECT Date, MonAvgFuelTarrif_Shuttle FROM 
GrainTransportCostIndex WHERE Date > '1/1/2003' and Date < 
'11/25/2015'SELECT Date, MonAvgFuelTarrif_Shuttle 
FROM GrainTransportCostIndex 
WHERE Date > '1/1/2003' and Date < '11/25/2015' 

 
Below is a screenshot of MS SQL Server Management Studio. Left column is a list of tables and 
their columns in our database.  The user type in the above SQL query on top right section and 
results are displayed on the bottom right and can be saved to Excel. 
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Below is a Matlab command to run the above SQL query and get data from database where you 
save the SQL query in filename.sql and sqlweb is an in house Matlab command written by Prof. 
Joshua Woodard. See https://ag-analytics.org/AgDBForum/topic12-call-web-api-from-matlab-
using-sqlwebm.aspx 

       %MATLAB CODE-Ensure that SQLWEB.m function is in path 
 
 SQLSTRING1 = fileread('filename.sql'); 
    [resultMatrix,FieldNames] = sqlweb(SQLSTRING1); 

 
Though not everyone has access to MS SQL management studio, common users can type the 
above SQL query on our web interface and download the result: 
https://www.ag-analytics.org/AgRiskManagement/ResAgDataQuery 
Below is a screenshot of our web page. 

 
Researchers can also access our database via API call. The URL for the above query is: 

http://ag-analytics.org/AgRiskManagement/api/dataservice?sql=SELECT Date, 
MonAvgFuelTarrif_Shuttle FROM GrainTransportCostIndex WHERE Date > 
'1/1/2003' and Date < '11/25/2015' 

 
 
 
 
 
 

https://www.ag-analytics.org/AgRiskManagement/ResAgDataQuery
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Query Example 2:  
Query table NASSCrops for monthly average corn price (measured in dollar per Bushel) from 
2003 to 2016 in state of Illinois.  

http://ag-analytics.org/AgRiskManagement/api/dataservice?sql=SELECT 
StateFIPS, StateAlpha, FreqDesc, Year, Value 
FROM NassCrops 
WHERE Year > 2003 and Year < 2016 and FreqDesc = 'Monthly'  
and ShortDesc = 'CORN, GRAIN - PRICE RECEIVED, MEASURED IN $ / BU'  
and AggLevelDesc = 'STATE' 

 
Below is a screenshot of MS SQL Server Management Studio. Left column is a list of tables and 
their columns in our database.  The user type in the above SQL query on top right section and 
results are displayed on the bottom right and can be saved to Excel. 
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Below is a Matlab command to run the above SQL query and get data from database where you 
save the SQL query in filename.sql and sqlweb is an in house Matlab command written by Prof. 
Joshua Woodard and available at ag-analytics.org in the Forum and in API documentation 
examples. See https://ag-analytics.org/AgDBForum/topic12-call-web-api-from-matlab-using-
sqlwebm.aspx 

    %MATLAB CODE-Ensure that SQLWEB.m function is in path 
SQLSTRING1 = fileread('filename.sql'); 
    [resultMatrix,FieldNames] = sqlweb(SQLSTRING1); 

 
Though not everyone has access to MS SQL management studio, common users can type the 
above SQL query on our web interface and download the result: 
https://www.ag-analytics.org/AgRiskManagement/ResAgDataQuery 
Below is a screenshot of our web page. 

 
Researchers can also access our database via API call. The URL for the above query is: 

http://ag-analytics.org/AgRiskManagement/api/dataservice?sql=SELECT 
StateFIPS, StateAlpha, FreqDesc, Year, Value FROM NassCrops WHERE Year 
> 2003 and Year < 2016 and FreqDesc = 'Monthly'  and ShortDesc = 'CORN, 
GRAIN - PRICE RECEIVED, MEASURED IN $ / BU'  and AggLevelDesc = 
'STATE' 

 
 

https://www.ag-analytics.org/AgRiskManagement/ResAgDataQuery
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Technical Details by Dataset for this example study 

ExportGrainTotals 
 
The source data was a list of CSV files on this webpage from USDA-FGIS:  
https://www.gipsa.usda.gov/fgis/exportgrain/ 

• Export Grain Inspection 2016 (last updated 3/7/2016 4:20:58 PM) 
• Export Grain Inspection 2015 (last updated 2/16/2016 7:01:47 AM) 
• Export Grain Inspection 2014 (last updated 5/26/2015 4:34:21 PM) 
• Export Grain Inspection 2013 (last updated 6/20/2014 8:22:09 AM) 
• Export Grain Inspection 2012 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 2011 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 2010 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 2009 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 2008 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 2007 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 2006 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 2005 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 2004 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 2003 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 2002 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 2001 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 2000 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1999 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1998 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1997 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1996 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1995 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1994 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1993 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1992 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1991 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1990 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1989 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1988 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1987 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1986 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1985 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1984 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 1983 (last updated 4/8/2013 12:00:00 AM) 

 
 
 
 

https://www.gipsa.usda.gov/fgis/exportgrain/
https://www.gipsa.usda.gov/fgis/exportgrain/CY2016.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2015.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2014.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2013.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2012.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2011.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2010.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2009.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2008.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2007.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2006.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2005.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2004.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2003.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2002.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2001.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2000.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1999.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1998.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1997.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1996.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1995.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1994.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1993.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1992.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1991.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1990.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1989.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1988.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1987.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1986.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1985.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1984.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1983.csv
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Shown below is a small section of one CSV file. 

Thursday 
Serial 
No. 

Type 
Serv Cert Date Grain Pounds Destination 

Subl/Carr
s 

2016010
7 390469 IW 

2016010
2 WHEAT 

5887607
5 

PHILIPPINE
S 30 

2016010
7 390470 IW 

2016010
3 WHEAT 

2425060
0 

PHILIPPINE
S 13 

2016010
7 390471 IW 

2016010
2 CORN 

4515840
0 PERU 16 

2016010
7 390472 IW 

2016010
3 

SOYBEAN
S 

6139211
0 

CHINA 
MAIN 17 

2016010
7 390473 IW 

2016010
3 

SOYBEAN
S 

7777385
0 

CHINA 
MAIN 23 

2016010
7 390474 IW 

2016010
4 CORN 

5032003
0 MEXICO 18 

2016010
7 390475 IW 

2016010
4 WHEAT 

1212512
0 MEXICO 4 

2016010
7 390481 I 

2016010
2 CORN 

2420000
0 MEXICO 110 

 
The ETL process is as follows: 
# Step 1: Use YearlyExportGrainTotal.py to fetch links from USDA site, download all the csv 
files, append them one after another to form a larger csv and write into 11_processed.csv    
# Step 2: Use Upload_YearlyExportGrainTotal.py to create table in AgDB 
[dbo].[ExportGrainTotals] and bcp write to SQL server 
Shown below is the python script for Step 1. 

########################## 
######Date: 01-25-2016 
Copyright: Joshua D. Woodard, Ag-Analytics.org 
Contributors: Lin Xue, Tridib Dutta, Josh Woodard, with assistance from Alex 
Muchocki, Anthony Perello, and Ag-Analytics team. 
########################## 
######Summary: This script fetch links from usda site, download the csv files, 
append them one after another to form a larger csv 
########################### 
 
## packages needed 
import urllib2 
import re 
import os 
import pandas as pd 
import ssl 
 
## global variable 
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workingDir = 'E:\\DatabaseFiles\\UpdateDBFiles\\ExportGrainTotals\\' 
pathToFiles = 'https://www.gipsa.usda.gov/fgis/exportgrain/' 
ctx = ssl.create_default_context() 
ctx.check_hostname = False 
ctx.verify_mode = ssl.CERT_NONE 
## function to fetch the links to the required .csv files 
def fetchLinks(pathToFiles):     
    lines = urllib2.urlopen(pathToFiles, context = ctx).readlines() 
    lines = ''.join(lines) 
    links = re.findall('(\S+).csv', lines) 
    #print links 
    #create the links corresponding to each file and store it in a list 
    #the line below: creats a string out of the list links 
    #replace the unwanted "'" by re.sub() and then replace the 'href=' by the 
pathToFiles and split() into a list 
    csvLinks = re.sub('[\']','', ' '.join(links).replace('href=',pathToFiles)).split(' ') 
    for i in range(len(csvLinks)): 
        csvLinks[i] = csvLinks[i] +'.csv' 
    return csvLinks 
 
## function to download a file from given link 
def downloadfiles(link): 
    try: 
        fileName = url.split('/')[5] 
        #print fileName 
##        testFile = urllib.FancyURLopener() 
##        testFile.retrieve(url, workingDir + fileName) 
##        #csvFile.write(testFile.read()) 
##        testFile.close() 
        response = urllib2.urlopen(url, context=ctx) 
        #open the file for writing 
        fh= open(workingDir + fileName, "w") 
        #read from request while writing to file 
        fh.write(response.read()) 
        fh.close() 
    except IOError as e: 
        print e 
 
## main()         
## get the links (important variable, we will use it later as well) 
reqLinks = fetchLinks(pathToFiles) 
#read the files and dump those onto the working directory 
for url in reqLinks: 
    fileName = url.split('/')[5] 
    downloadfiles(url) 
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###reqLinks[len(reqLinks)-1] 
##reqLinks[::][0].split('/')[5] 
 
##To build a single dataset, read in the files and stack one on top of the other 
#First, build an empty dataframe 
df = pd.DataFrame() 
#cycle through the downloaded files and append one after the other 
for x in reqLinks[::]: 
    fileName = x.split('/')[5] 
    DF = pd.read_csv(workingDir + fileName,low_memory=False) 
    ##some of the cells in column 6 contain comma like " , ", remove the comma as 
we are writing csv 
    DF.iloc[:,6] = DF.iloc[:,6].str.replace(',',' ') 
    df = df.append(DF, ignore_index=True) 
 
## now that the dataset is build, dump it in the RailWay_database as 
11_processed.csv 
df.to_csv(workingDir + '11_processed.csv', index = False) 

 
Set up SQL Server Agent Job to update monthly. 
# SQL Job Name: OCE_ExportGrainTotals 
# Step 1: C:\python27\python 
E:\DatabaseFiles\UpdateDBFiles\ExportGrainTotals\YearlyExportGrainTotal.py 
  Step 2: C:\python27\python 
E:\DatabaseFiles\UpdateDBFiles\ExportGrainTotals\Upload_YearlyExportGrainTotal.py 
# Schedules: Monthly on day 1 
 

FreightCommodityStatistics ETL Procedure Example 
For this example, we scrape Freight Commodity Statistics dataset from Surface Transportation 
Board’s (STB) website (http://www.stb.dot.gov/econdata.nsf/FCStatistics?OpenView ). These 
are historical datasets which are available from the year 2012 onwards. The earlier years have 
datasets in scanned pdf formats making them virtually useless and incapable of scraping or 
using. There are altogether seven railroad companies whose commodity statistics data are 
provided in the STB’s website. They are Burlington Northern Santa Fe (BNSF), Union Pacific 
(UP), Grand Trunk Corporation (GTC), CSX Transportation (CXWT), Norfolk Southern (NS), 
Soo Line Railroad (SOO), and Kansas City Southern Careers (KCS).  
For each of these companies, the following information are collected. There are two major 
categories: Revenue Freight Originating on respondent's Road and Revenue Freight Received 
from connecting carriers. Within each of these two categories, there are two sub-category: 
Terminating on line and Delivered to Connecting Carriers. Within each of these sub-categories, 
there are two sets of numbers that are given: Number of Carloads and Number of Tons (2000 
LBS). The Total Revenue Freight Carried and Gross Freight Revenue Dollars are also provided. 
Each row of table contains the commodity the railway carried; full description and a 
corresponding numeric code is also provided. Most the companies refer to this numeric code to 
describe the commodity they carried.    
 

http://www.stb.dot.gov/econdata.nsf/FCStatistics?OpenView
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 The tables are not wholly consistent with each other, and contain numerous data entry 
errors. For each of the companies, we had to write a script to download the data (the excel file) 
and process that dataset into a usable format. Finally we combined those dataset into a single 
small data table before uploading to DBMS for querying via cloud platform. To identify which 
data belongs to which company and which year in the final table, we added two extra columns; 
one representing year of the statistics and the second represents the company whose statistics it 
is.  The following python scripts need to be run in order to build the processed flat file from the 
available excel files on the web. Note: We have noticed that some of the URLs may have 
changed within the timeframe of our project. So if one or more script doesn't return anything, 
then please check the URL first. 

##Step 1  
Run FrightComodityStatistics_{BNSF, GTC, CXWT, NS, SOO, UP, KCS}.py 
scripts 

These scripts will download raw data to a temporary subfolder 'tempDirFor_06' and then uses 
this raw data to build the processed table for each company (NS etc.). 
Step 1 above represents seven scripts, one for each company. Below is an example of a typical 
script. 
 

### This script gets the data for the company BNSF 
### The raw data is already there in the tempDir_06 subfolder 
 
import pandas as pd 
import urllib 
import chardet 

 
These modules were used in the script to scrape and process the data. 
 

 
#recode the CODE column for consistancy 
def recode(x): 
    #calc len of x (this would be like number of rows in your file 
    N=len(x) 
    #loop thorough and do checks then recode 
    currTree=0 #set current tree val at zero 
    currTreeLen=1 # 
    recodeV= [None] * N 
 
    for i in range(N): 
        #need to convert x[i] to integer first since codeing of 01 is not consistent, the 
convert backto string to strip lieading zeros 
        y=int(x[i]) 
        v=str(y) 
        chkTree=int(v[:currTreeLen]) 
        #check if equal to current tree num 
        if chkTree==currTree: 
            #if so recode by stripping of currTreeLen digits 
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            recodeV[i]=float(str(currTree)+'.'+v[currTreeLen:]) 
            #print str(currTree)+'.'+v[currTreeLen:] 
        else: 
            recodeV[i]=int(v) 
            currTree=int(v) 
            currTreeLen=len(v) 
 
    return recodeV 

 
The above code is needed to redo the code for each commodity. Due to the ambiguity present in 
the coding, we felt the need for recoding into a different format which is consistent and which 
can be used as a key in a database table.  
 

## A boolean function checks to see if it x is an integer 
def is_int(x): 
    try: 
        int(x) 
        return True 
    except: 
        return False 
 
## This function gets the row indices where there is not an integer 
## ‘a’ is a pandas data frame  
## colIndex is the column index which we want to test 
def findBadIndices(a,colIndex): 
    badIndices = [] 
    for i in range(len(a)): 
        x = a.iloc[i,colIndex] 
        if not is_int(x): 
            badIndices.append(i) 
    return badIndices 
 
## boolean: number or not (could be int, float etc) 
def is_number(x): 
    try: 
        float(x) 
        return True 
    except ValueError: 
        return False     
  
 
## Boolean: checks if a string is not emplty     
def isNotBlank (myString): 
    if myString and myString.strip(): 
        #myString is not None AND myString is not empty or blank 
        return True 
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    #myString is None OR myString is empty or blank 
    return False 
 
 
## these will clean up the cells of each table (there are lots of errors) 
 
## There are couple of datetime object burried deep inside the excel file  
## this function checks if an entry is a pandas datetime object 
def is_dateTimeObj(x): 
    if isinstance(x, pd.datetime): 
        return True 
    else: 
        return False 

 
The code snippet above has several custom functions which will help us in the function below. 
 

def clean_cell(some_string): 
    if not pd.isnull(some_string): 
        if is_dateTimeObj(some_string): 
            return None 
        if type(some_string) == unicode: 
            ## convert to ascii 
            some_string = some_string.encode('ascii','ignore') 
        if isinstance(some_string, str): 
            if chardet.detect(some_string)['encoding'] == 'ascii': 
                if is_number(some_string): 
                    if is_int(some_string): 
                        some_string = int(some_string) 
                        return some_string 
                    else:  
                        some_string = float(some_string) 
                        return some_string 
                else: 
                    if len(some_string.split('/')) > 1: 
                        some_string = None 
                        return some_string 
                    elif len(some_string.split('-')) > 1: 
                        some_string = None 
                        return some_string 
                    else: 
                        if isNotBlank(some_string): 
                            some_string = ''.join(c for c in some_string if c.isdigit()) 
                            if isNotBlank(some_string): 
                                return some_string 
                            else: 
                                return None 
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                        else: 
                            some_string = None 
                            return some_string 
            else:  
                #chardet.detect(some_string)['encoding'] != 'ascii': 
                some_string = None 
        else: 
            return some_string 
    return some_string 

The workhorse for our python script is the above function which cleans each cell with errors. 
The errors could be one of many. For example, a few of the entries were found to be a data-time 
object while many of the entries had special symbols ‘-‘ or ‘,’  or white space in between digits 
of a number, making them read in as character and not as a numeric value. Some even had 
encoding problems which we needed to get rid off or if possible convert to ascii.    
 

## The following function outputs a dictionary with data type groups for the 
columns of the dataFrame 
def dataTypeOutput(dataFrame): 
    g = dataFrame.columns.to_series().groupby(dataFrame.dtypes).groups 
    return g  

 
 
 

url = 
'http://www.stb.dot.gov/econdata.nsf/27dead93525f6773852578aa004bc24d/4a7f
061966ae7fcb85257dfd00572bbd/$FILE/BNSF.xlsx' 
testFile = urllib.URLopener() 
testFile.retrieve(url,'tempDirFor_06/06_BNSF_output_2014.xlsx') 

 
The above line of codes retrieve the data file from the provided URL.  
 
 

skip_rows = 9 
df_2014 = pd.DataFrame() 
for i in range(12): 
    if i != 11: 
        df = pd.read_excel('tempDirFor_06/06_BNSF_output_2014.xlsx', skiprows 
= skip_rows, header = None,sheetname=i) 
        df_2014 = pd.concat([df_2014, df], ignore_index=True) 
    else: 
        df = pd.read_excel('tempDirFor_06/06_BNSF_output_2014.xlsx', skiprows 
= 10, skipfooter = 14 ,header = None, sheetname = i) 
        df_2014 = pd.concat([df_2014,df], ignore_index = True) 

 
After examining the raw data, we needed to set the parameters of the pandas’ read_csv() function 
accordingly. Above code snippet does exactly that. 
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The first column (0th column) contains both the Code and their values(names) 
For consistency, we get rid off the code names and keep only the code 
For consistency, we split up the first (index 0) INTO TWO COLUMNS (containing the code and 
the name) as in below. 
 

newDF = pd.DataFrame(df_2014.iloc[:,0].str.split(' ',1).tolist(), columns = ['0','1']) 
 
Drop the first column and concatinate the newDF with it and then rename the columns 
This line of code get rid off the code names  

df_2014.drop(df_2014.columns[0],axis =1, inplace = True) 
 
Concatenate newDF and df_2014 

df_2014 = pd.concat([newDF[newDF.columns[0]], df_2014], axis = 1) 
 
Remove any row with 0 columns having NaN 

df_2014.drop(df_2014.index[findBadIndices(df_2014,0)], inplace = True) 
 

Re-index the rows (to be consistent) 
df_2014.index = list(range(len(df_2014))) 

 
Rename the columns (to be consistant) 

df_2014.columns = list(range(len(df_2014.columns))) 
Recode the first column (using the recode() function). 

df_2014.iloc[:,0] = recode(df_2014.iloc[:,0].values.tolist()) 
 
for i in range(1,12): 
    df_2014.iloc[:,i] = df_2014.iloc[:,i].apply(clean_cell) 
 
 

 
The other years, 2012 and 2013 are somewhat similar to 2014 in principle and we omit it from 
this report for the sake of clarity and brevity. 
 
 

## add a 'Year' column to the dataframes  
a = pd.Series([2014]*len(df_2014), dtype = 'int', name = 'Year') 
df_2014 = pd.concat([df_2014,a], axis = 1, ignore_index=True) 
 
## add a 'Year' column to the dataframes  
a = pd.Series([2013]*len(df_2013), dtype = 'int', name = 'Year') 
df_2013 = pd.concat([df_2013,a], axis = 1, ignore_index=True) 
 
## add a 'Year' column to the dataframes  
a = pd.Series([2012]*len(df_2012), dtype = 'int', name = 'Year') 
df_2012 = pd.concat([df_2012,a], axis = 1, ignore_index=True) 
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#stack the different data frames according to the year 
final_df = pd.concat([df_2012,df_2013,df_2014], ignore_index=True) 
 
 

 
 
The above code snippet compiles the different years into a final table.  
Once we process all the companies. We have seven datasets. We compile those seven into a 
single large table in Step 2 below. 
 

##Step 2  
Run FrightComodityStatistics_buildTable.py  

 
Note that this will create the final flatfile (.csv) by combining the cleaned up and processed files 
from Step 1 for each of the companies mentioned above. 
 

##Step 3  
##to upload the table to a SQL server 
Run FrightComodityStatistics_UPLOAD.py 

  
Note 1. You must change the following information according to your need: sql 

CREATE TABLE statement, sqlserverinstance, database schema, working director, filename 
containing the table, table name etc. 
 Note 2. We ran into problems with 'bcp' command (for bulk upload to SQL server). In 
most of the cases we were able to resolve the issue by setting appropriate flag in the 'bcp' 
command for end-of-line (EOF) charachter (it could be either {CR}{LF} or {CR} or {LF}. 
Check yours by opening it with, say, Notepad++ and enabling hidden symbol viewing capabiity). 
Here is a snapshot of the final dataset. 

Code 

Revenue Frieight 
Origin Terminating 

Online Carload 

Revenue Frieight 
Received 

Terminating Online 
Carload 

Total Revenue Frieight 
Carried Carload Year company 

1 657042 18158 780980 2012 BNSF 
1.1 613499 17513 733412 2012 BNSF 

1.12 10710 2 10712 2012 BNSF 
1.121 0 0 0 2012 BNSF 
 
We encountered the following issues we ran into while processing the files for each company. 
1.  The url for some of the excel raw data file seems to have changed very recently and 
URLopener() function from the `urllib` module no longer works. We needed to replace 
`URLopener(`) by `FancyURLopener()` to make them retrieve the target raw data file. 
2. Several of the excel files for companies including BNSF, GTC, etc. have multiple format 
error making them really hard to make a flat file (`.csv`) out of those file. 
All the scripts in Step 1 contain a function called `clean_cell()` which takes care of most of those 
formating abnormalities buried deep inside those excel raw data files. For example, in the raw 
data file for the year 2012 from the company BNSF, most of the entered numbers had space in 
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them (`2124 4` instead of 21244 ) making them read in as `string` in the database or python 
reader, resulting in obvious misinterpretation while performing analysis or any mathematical 
operations on these datasets. Couple of the cells seems to have accidentally encoded as a 
`datetime` object when they should be clearly numeric.  Our `clean_cell()` function is able to 
handle all these problems. However, there might be unexpected formating error in the file which 
`clean_cell()` may not be able to process.  
3. Another major issue we ran into is the encoding of different goods/Commodities that the 
railway companies transported. It seems that there is a industry-wide standard for encoding 
commodity goods the railway companies handle. They have assigned integer code to different 
goods. For example the number 1 (sometimes entered as 01, although not consistently) 
represents a broad category which is called 'Farm Products'. Under this category is 'Field Crops', 
which is assigned a value 11 (sometimes entered as 011, , although not consistently). Ironically, 
in the same document, the number 11 was assigned to 'Coal' which is a broad category 
representing coal based products such as Anthracite which was assigned a numeric value of 111. 
This we thought could create a lot of confusion especially if this coding is used as 'key' while 
downloading data from our database. To resolve the matter, we had to come up with our own 
recoding of these numeric values. We decided that it is fit that instead of using integer values, we 
would use float type numbers and 1 will be encoded as 1.000 while 11 (representing Field Crops, 
a sub category of Farm product) will be assigned the value 1.100 instead of 11 or 011. This way 
coal can be 11.000 and so on. We wrote a little function called `recode()` which can be found in 
each of the scripts mentioned in Step 1.   
 

GrainInspectionByPort 
This table contains data for the grain inspected and/or weighed for export by region and port 
region. The port regions are Pacific North West, Mississippi Gulf, Texas Gulf, Interior region, 
Greal Lakes region and the Atlantic region. The data shows insepction for Corn, Wheat and 
Soybean at these ports. The table contains data starting from 1/4/1996 to the present (as of the 
writing of this report). 
 

Copyright: Joshua D. Woodard, Ag-Analytics.org 
Contributors: Lin Xue, Tridib Dutta, Josh Woodard, with assistance from Alex 
Muchocki, Anthony Perello, and Ag-Analytics team. 
########################## 
######Summary: This script download the GTRTable16.xlsx from the USDA 
website: 
###### http://www.ams.usda.gov/services/transportation-analysis/gtr-datasets, 
###### read and process the table using pandas and save it to a CSV file. 
########################### 
import os 
import urllib 
import pandas as pd 

 
The above modules are used to scrape and process the file. 
 

#global variables 
workingDir = "E:\\DatabaseFiles\\UpdateDBFiles\\GrainInspectionByPort" 
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##retrieve the file from the link 
url = 'http://www.ams.usda.gov/sites/default/files/media/GTRTable16.xlsx' 
testFile = urllib.URLopener() 
testFile.retrieve(url, workingDir + '\\12_output.xlsx') 

 
 
The above code snippet retrieves the original raw data file (GTRTable16.xlsx) from the USDA 
website and saves it as 12_output.xlsx in our local folder. 
 
 

## takes a datetime.datetime obj and converts into this specific format 
def dateTimeToNormal(date): 
    return date.strftime('%m/%d/%Y') 

 
This is a utility function which will be used later while processing data. 
 
The set of codes below read in the saved file (12_output.xlsx) into a pandas data frame and 
change the names of the columns to a more readable names. 
 

usecols = 
['Date','Wheat','Corn','Soybean','Wheat.1','Corn.1','Soybean.1','Wheat.2','Corn.2','S
oybean.2', 
'Wheat.3','Corn.3','Soybean.3','Wheat.4','Corn.4','Soybean.4','Wheat.5','Corn.5','So
ybean.5'] 
 
##read in the excel file into a pandas data frame DF 
DF = pd.read_excel('12_output.xlsx', sheetname = 'Data',skiprows = 
20,skip_footer = 50, usecols = usecols) 
 
##change the column names to the following 
newColNames = 
['Date','pac_Wheat','pac_Corn','pac_Soybean','MS_Wheat','MS_Corn','MS_Soybe
an','TX_Wheat','TX_Corn','TX_Soybean','GL_Wheat','GL_Corn','GL_Soybean','
Atl_Wheat','Atl_Corn','Atl_Soybean','Int_Wheat','Int_Corn','Int_Soybean'] 
 
##change the colnames 
for i in range(len(newColNames)): 
    DF.columns.values[i] = newColNames[i] 

 
 
As is typical of these raw datasets, there were seveal formating errors in the saved .xlsx file. The 
functions below will find objects with unicode encoding among the datetime objects and return a 
cleaned datetime object if possible. 
 

## There seems to be unicode objects buried in this column as seen above. 
## Need to clean those and convert to datetime.datetime object 



36 
 

## First need to find the indices of those unicode values 
def returnBadIndices(DF): 
    bad_vals = [] 
    for i in range(DF.shape[0]): 
        if type(DF.Date[i]) is unicode: 
            bad_vals.append(i) 
            #print i 
    return bad_vals 
 
bad_indices = returnBadIndices(DF) 
 
## return cleaned datetime.datetime objects 
 
def returnCleanedDateTimeObjs(bad_vals, DF): 
    import re 
    from datetime import datetime 
    cleanedVals = [] 
    dateList = [] 
    for i in range(len(bad_vals)): 
        a = DF.ix[bad_vals[i],'Date'].split('/') 
        a[2] = re.sub('[^0-9]','', a[2]) 
        a = a[2]+'-'+a[0]+'-'+a[1] 
         
        dta = datetime.strptime(a,'%Y-%m-%d') ## necessary to make it uniform 
with the rest of the column vals 
        cleanedVals.append(dta) 
    return cleanedVals 
     
## Fix the errors here 
goodVals = returnCleanedDateTimeObjs(bad_indices,DF) 
for i in range(len(bad_indices)): 
    DF.ix[bad_indices[i],'Date'] = goodVals[i] ## assigned the cleanedup values to 
the appropriate places 

 
 
 

#convert to the required format using dateTimeToNormal() function 
DF.Date = DF.Date.map(lambda x: dateTimeToNormal(x)) 

 
Once the date objects are cleaned and properly formated, we write it back to our local folder as 
‘12_processed.csv’ file for the next step, which is to upload it to SQL server.  
 
 

##write to a .csv file in preparation for upload to the SQL database 
DF.to_csv(workingDir +'\\12_processed.csv',index = False) 
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############ Remove the temporary file 
os.remove(workingDir+'\\12_output.xlsx') 

 
A snapshot of the data is presented below. 

Date 
pac_Whe
at 

pac_Soybea
n 

MS_Whe
at 

MS_Cor
n 

MS_Soybe
an 

TX_Whe
at 

TX_Cor
n 

1/4/1996 11540 3592 1827 26476 14510 6900 0 
1/11/199

6 13881 2532 4188 32064 21989 3819 2586 
1/18/199

6 17181 2410 3519 31917 21851 6182 2190 
1/25/199

6 13129 1030 4871 41552 17118 3320 1819 
2/1/1996 10798 1656 5371 37731 13637 5068 1100 
2/8/1996 4377 391 4472 28466 12685 4013 2399 
 
The next step is to upload it to our SQL datawarehouse. This is done by running the following 
script. 

Run 12_upload.py  
The code for upload script is same as in all other cases (with the only exception being the file 
name and the structure of the tables to be uploaded which needs to be changed each time a new 
table is uploaded) and therefor left out from this description for brevity.  
 

GrainTransportByMode Table ETL Example 
This table represents data for mode of transport (by Truck, Burge or Railroad) of different crops 
(Corn, Wheat, Soybean, Sorghum, and Barley) in the US, starting from the year 1978. It also 
segment the data for domestic and export movement.  
The following script was used to download the appropriate data file and processed it accordingly.  
########################## 
######Date: 01-18-2016 

Copyright: Joshua D. Woodard, Ag-Analytics.org 
Contributors: Lin Xue, Tridib Dutta, Josh Woodard, with assistance from Alex 
Muchocki, Anthony Perello, and Ag-Analytics team. 

########################## 
######Summary: This script batch read all the fixed width text files into CSV 
########################### 
 
 

import pandas as pd 
import urllib 

 
 
As before, the following modules were used for our purpose. 
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Below code snippet retrieves the file from the appropriate URL and saves it in the local folder as 
`01_output.xlsx’.  
 

##retrieve the excel file (put in the code here) 
url = 
"http://www.ams.usda.gov/sites/default/files/media/DATA%20FOR%20MODAL
%20SHARE%20STUDY%202013.xlsx" 
testFile = urllib.URLopener() 
testFile.retrieve(url, "01_output.xlsx") 

 
 
Data for different crops were provided in separate tab in the downloaded excel file. So we had to 
get the excel sheet tab names to automate the process. 
 

# these names are retrieved from 01_output.xlsx file above 
xls = pd.ExcelFile("01_output.xlsx") 
allSheetNames = xls.sheet_names 
 
ExcelSheetName = allSheetNames[1:7] 
#ExcelSheetName = ['ALL GRAINS BY MODE ', 'CORN BY MODE','WHEAT 
BY MODE','SOYBEANS BY MODE','SORGHUM BY MODE','BARLEY BY 
MODE'] 

 
 
The following function reads the excel file tab by tab, drop certain unnecessary columns and then 
combine all the crop information into a single table and saves it as ‘GrainTransportByMode.csv’ 
in our local folder for the next step, which is uploading it to our SQL datawarehouse. 
 
For the sake of completeness, we renamed some or all of the columns for the ease of 
understanding what the columns represent when downloaded by someone who is interested in 
performing some analysis with these tables.  
 
   

def buildTable(SheetName, inputFileName = "01_output.xlsx"): 
 
    ## if 'ALL GRAINS BY MODE ' is little bit different from the Grain 
worksheets themselves 
    if SheetName == 'ALL GRAINS BY MODE ': 
        DF = pd.read_excel('01_output.xlsx', sheetname = SheetName, skiprows=3) 
    else: 
        DF = pd.read_excel('01_output.xlsx', sheetname = SheetName, skiprows= 2) 
 
    ## drop the columns 2,4,6 
    dropcols = [2,4,6] 
    DF.drop(DF.columns[[dropcols]], axis = 1, inplace = True) 
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    ## drop the oth row. not needed 
    DF.drop(DF.index[[0]], inplace = True) 
    DF.index = range(DF.shape[0]) #change the row index 
    DF.head() 
 
 
    Total = DF[:36] 
    Export = DF[37: 67] 
    Domestic = DF[68:] 
 
    # reset the index (Total's index is already from 0) 
    Export.index = range(Export.shape[0]) 
    Domestic.index = range(Domestic.shape[0]) 
 
    # rename the columns 
    Total.columns = 
['Year','Rail_Total_1000tons','Barge_Total_1000tons','Truck_Total_1000tons'] 
    Export.columns = 
['Year','Rail_Export_1000tons','Barge_Export_1000tons','Truck_Export_1000tons
'] 
    Domestic.columns = 
['Year','Rail_Domestic_1000tons','Barge_Domestic_1000tons','Truck_Domestic_
1000tons'] 
 
    ## merge the two columnwise to get one table (colnames indicates Export or 
Domestic or total) 
    tempDF = pd.concat([Domestic,Export[[1,2,3]]], axis = 1) 
 
    newDF = pd.merge(tempDF, Total, on= 'Year', how = 'outer', left_index = 
True) 
    newDF = newDF.sort_index() 
    fieldName = pd.Series(SheetName.split(" ")[0], index = 
range(newDF.shape[0]) ) 
    newDF = pd.concat([newDF, fieldName], axis = 1) 
 
    return(newDF) 
 
for i in range(len(ExcelSheetName)): 
    if i == 0: 
        tempDF = buildTable(ExcelSheetName[i]) 
    else: 
        temp = buildTable(ExcelSheetName[i]) 
        tempDF = pd.concat([tempDF, temp]) 
 
tempDF.columns.values[len(tempDF.columns)-1] = 'GrainName' 
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tempDF.to_csv("GrainTransportByMode.csv", index = False) 
 
Here is a snapshot of the final table. 

Year 
Rail_Domestic_1000
tons 

Truck_Domestic_100
0tons 

Barge_Export_1000
tons 

Rail_Total_1000t
ons 

1978 NULL NULL NULL 117087 
1979 NULL NULL NULL 127177 
1980 NULL NULL NULL 143402 
1981 NULL NULL NULL 127581 
1982 NULL NULL NULL 121188 
1983 NULL NULL NULL 130457 
1984 66737 86163 60194 124984 
1985 64620 103200 51554 105086 
1986 80202 102419 45108 115094 
1987 93492 117268 56990 139667 
1988 94941 121868 58480 151145 
1989 92011 89748 62745 143893 
1990 92698 111194 62501 134999 
1991 85703 128526 63477 126245 
1992 94854 115477 68424 135681 
1993 91598 136873 60595 134717 
1994 96767 124416 57966 124489 
1995 101417 139851 67631 152033 
1996 84695.756 143425.0132 66920.956 131998.955 

 
Next we upload the document using the script ‘upload2DB_GrainTransportByMode.py’. Since 
this is similar to the upload procedure for the other tables, we leave it out from this report.  
 
 

GrainTransportCostIndex 
 
Grain Transportation Cost Index table contains data for T & M Grain Transport Cost Index 
Calculation data. The historical record goes back to 08/21/2002 and contains weekly updates. 
There are data for Diesel prices, Secondary Unit, Secondary Shuttle, Illinoise River, Ocean Gulf, 
and Pacific North West (PNW). The cost index is calculated for Trucks ( =diesel price, 
($/gallon)), for Rail (= near-month secondary rail market bid and monthly tariff rate with fuel 
surcharge ($/car), for barge (= Illinoise River barge rate), and for Ocean frieght (=Routes to 
Japan ($/metric ton)). Cost index is calculated taking Year 2000 as the base value.  
The script ‘GrainTransportCostIndex.py’ downloads the data from the USDA website as 
‘output.xlsx’, process it appropriately using pandas data frame and then writes it back to a local 
folder as ‘08_processed.csv’ file. Then uploads it into the SQL datawarehouse. The procedure is 
pretty simple as can be seen from below code. The codes are self-explanatory.  

########################## 
Copyright: Joshua D. Woodard, Ag-Analytics.org 
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Contributors: Lin Xue, Tridib Dutta, Josh Woodard, with assistance from Alex 
Muchocki, Anthony Perello, and Ag-Analytics team. 

########################## 
######Summary: This script download the GTRTable1.xlsx from the 
USDA website, 
######read and process the table using pandas and upload to SQL server 
using bcp(bulk copy). 
import os, sys 
import pyodbc 
import subprocess 
import urllib 
import pandas as pd 

 
 
Above python modules were used for this processing job. 
 
Since we process the data and upload the processed table into a SQL server using a single script, 
we have the relevant SQL command and the upload command in the script. 
   

#global variables 
workingDir = "E:\\DatabaseFiles\\UpdateDBFiles\\GrainTransportCostIndex\\" 
sqlServerInstance = ".\MSSQLSVRAG" #this way when it is a SQL Server 
named instance) 
schema="dbo" #schema for processed data 
# db="TestDB" #database name 
db="AgDB" #database name 
 
#retrieve the file from the link 
url = 'http://www.ams.usda.gov/sites/default/files/media/GTRTable1.xlsx' 
testFile = urllib.FancyURLopener() 
testFile.retrieve(url, workingDir + "output.xlsx") 
 
DF = pd.read_excel(workingDir +'output.xlsx', sheetname = 'Data', 
skiprows=range(6),na_values=['nq','n/a','One Week Lag  '] ,parse_dates = True) 
 
 
##drop the following columns 8,9,15,22,23 
dropcols = [7,8,15,22,23] 
DF.drop(DF.columns[[dropcols]], axis = 1, inplace = True) 
 
##change the names of the columns 
for i in range(7,13): 
    DF.columns.values[i] = 'Weekly_Ind' + DF.columns.values[i].split('.')[0] 
 
for i in range(13,19): 
    DF.columns.values[i] = 'Base_' + DF.columns.values[i].split('.')[0] 
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for i in range(19,21): 
    DF.columns.values[i] = 'MonAvgFuelTarrif' + DF.columns.values[i].split('.')[0] 
 
## Extract the date from the Timestamp object 
DF.Date = DF.Date.map(pd.Timestamp.date) 
DF.to_csv(workingDir + 'processedGTRTable1.csv', index = False) 

 
 
After we process the file, we write the processed file ‘processedGTRTable1.csv’ into our local 
folder. The next part of our code actually uploads the file in to the SQL server using bulk copy 
tool (bcp). 
 
 

#### try creating the database if it is already not there 
try: 
    conn = pyodbc.connect("DRIVER={SQL Server}; 
SERVER="+sqlServerInstance+"; DATABASE=Master; Trusted connection= 
Yes", autocommit = True) 
    #Note, default pyodbc connect is autocommit = false. For creating a new 
database, must have autocommit = True 
##    conn = pyodbc.connect("DRIVER={SQL Server}; 
SERVER="+sqlServerInstance+"; DATABASE=Master; UID=sa; 
PWD=Voshln14!", autocommit = True) 
    cursor = conn.cursor() 
    query = "CREATE DATABASE " + db 
    cursor.execute(query) 
    cursor.commit() 
    conn.close() 
    print "Initial create of ",db," is complete." 
except Exception as e: 
    print db," DB already exists" 
    print e 
 
# ## Creating database is done 
# ######################### 
conn = pyodbc.connect("DRIVER={SQL 
Server};SERVER="+sqlServerInstance+";DATABASE="+db+";Trusted 
connection= Yes") 
##conn = pyodbc.connect("DRIVER={SQL 
Server};SERVER="+sqlServerInstance+";DATABASE="+db+";UID=sa; 
PWD=Voshln14!") 
cursor = conn.cursor() 
 
try: 
 #create table if it does not already exist 
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 sqlcmd="""CREATE TABLE [dbo].[GrainTransportCostIndex] ( 
 [Date] date, 
 [Ind_Price] float, 
 [IndUnit] float, 
 [IndShuttle] float, 
 [IndRiver] float, 
 [IndGulf] varchar(36), 
 [IndPNW] float, 
 [Truck] float, 
 [Unit 1] float, 
 [Shuttle 1] float, 
 [Barge] float, 
 [Gulf 1] float, 
 [Pacific] float, 
 [Truck 1] float, 
 [Unit 2] float, 
 [Shuttle 2] float, 
 [Barge 1] bigint, 
 [Gulf 2] float, 
 [PNW 1] float, 
 [MonAvgFuelTarrif_Unit] float, 
 [MonAvgFuelTarrif_Shuttle] float 
 )""" 
    cursor.execute(sqlcmd) 
    cursor.commit() 
    conn.close() 
    print 'Initial create of [GrainTransportCostIndex] Complete.' 
except Exception as e: 
    #print '[GrainTransportCostIndex] already exists.' 
    sqlcmd="""TRUNCATE TABLE [dbo].[GrainTransportCostIndex]""" 
    cursor.execute(sqlcmd) 
    cursor.commit() 
    conn.close() 
    print e 
 
############ use bulk copy (bcp) to load the data into the CommodityFutures 
table 
theproc = subprocess.call('bcp '+db+'.'+schema+'.GrainTransportCostIndex' + ' in 
' + workingDir + 'processedGTRTable1.csv' + ' -c -t, -T -S' + sqlServerInstance) 
##print theproc 
############ Remove the temporary file 
os.remove(workingDir+'output.xlsx') 
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 Below is a snapshot of the processed data table.  
Date Price Unit Shuttle River Gulf PNW 

8/21/2002 1.333 -21.5 NULL 128 20.13 11.05 
8/28/2002 1.37 -11.5 NULL 128 20.83 11.03 
9/4/2002 1.388 -13 NULL 139 22.06 11.21 

9/11/2002 1.396 -15 NULL 145 22.7 12.16 
 

RailTraffic table 
 
The source data is over 300 PDF reports we downloaded from website of Association of 
American Railroads: 
https://www.aar.org/newsandevents/Freight-Rail-Traffic/Documents/Forms/CM%20View.aspx 
 
Shown below is a small section of the PDF report. 

 
The PDF convertor we use is Xpdf:  http://www.foolabs.com/xpdf/home.html 
In particular, we used the pdftotext.exe binary file for Windows system, which is part of the 
Xpdf. 
After Xpdf is installed or binary files of pdftotext.exe is downloaded, the command to convert 
PDF to text files is:  

pdftotext –table file.pdf 
It will create a file.txt file in the same directory. 
The ETL process: 

https://www.aar.org/newsandevents/Freight-Rail-Traffic/Documents/Forms/CM%20View.aspx
http://www.foolabs.com/xpdf/home.html
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# Step 0: Run InitLoad_PDFstoCSV.py to batch convert all the PDF files to txt files using 
Xpdf’s pdftotext.exe then read the text files into one csv file.  Run Upload_RailTraffic.py to 
upload the data table dbo.RailTraffic to SQL server. 
This step only needs to be done once to create the 04_railtraffic.csv for initial load.  All future 
updates will append newer records to existing dataset. 
# Step 1: Run Update_railtraffic.py to download the newest PDF file from source URL, convert 
it to text file using using Xpdf’s pdftotext.exe, read it and append the data to 04_railtraffic.csv.  
# Step 2: Run Upload_RailTraffic.py to update the data table dbo.RailTraffic 
Shown below is the python script to update RailTraffic dataset. 

########################## 
######Date: 01-21-2016 
Copyright: Joshua D. Woodard, Ag-Analytics.org 
Contributors: Lin Xue, Tridib Dutta, Josh Woodard, with assistance from Alex 
Muchocki, Anthony Perello, and Ag-Analytics team. 
########################## 
######Summary: This script download the newest PDF from https URL, convert 
it to text file, read it and append the data to railtraffic.csv 
########################### 
import os, sys 
import os.path 
import urllib2 
import ssl, socket 
import itertools 
import re 
 
#global variables 
workingDir = "E:\\DatabaseFiles\\UpdateDBFiles\\RailTraffic" 
mypath = 'https://www.aar.org/newsandevents/Freight-Rail-
Traffic/Documents/Forms/CM%20View.aspx' 
#note: it's https 
# ssl.create_default_context module only available after python2.7.9 
ctx = ssl.create_default_context() 
 
# define function to fetch the newest PDF link from a webpage 
def fetchPDFlink(url): 
    try: 
        mylines = urllib2.urlopen(url, context=ctx).readlines() # note: context 
parameter has to be passed for https 
        k = re.search('href="(\S+).pdf"', ''.join(mylines)) 
        pdflink = k.group(0) 
        pdflink = pdflink.replace('href="', 'https://www.aar.org') 
        pdflink = pdflink.replace('"', '') 
        return pdflink 
    except Exception as e: 
        print "NOT found plz check url" 
        print e 
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# define function to download the PDF from the link and convert it to text file 
def downloadPDF(pdflink, filename): 
    try: 
        webFile = urllib2.urlopen(pdflink, context = ctx) 
        pdfFile = open(workingDir + "\\" + filename, 'wb') 
        pdfFile.write(webFile.read()) 
        webFile.close() 
        pdfFile.close() 
        # base = os.path.splitext(fname)[0] 
        # os.rename(fname, base+ ".pdf") 
    except IOError as e: 
         print e 
    #convert PDF to txt 
    os.system( workingDir + "\\pdftotext -table " + workingDir + "\\" + filename) 
 
 
# function to check if a string can be represented as a number 
def is_number(s): 
    try: 
        float(s) 
        return True 
    except ValueError: 
        return False 
 
# function to read a text file and append a new line in output csv 
def read_txt(filename): 
    # grab the date from the text file name 
    date = filename[:10] 
    # open the input file with read only permit 
    with open (workingDir + "\\"+ filename) as inF: 
        outF.write(date + ",") 
        linestr = "" 
        for line in itertools.islice(inF, 8, 33): 
            #strip the newline character 
            line = line.rstrip() 
            #check to see if the line is empty 
            if line: 
                #remove all comma in the line 
                line = line.replace(",", "") 
                arr = re.split("\s+", line) 
                for ii in arr: 
                    # call function to check if ii is a number 
                    if is_number(ii): 
                        linestr += ii + "," 
                        break 
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        linestr = linestr.rstrip(",") 
        outF.write(linestr + "\n") 
############## 
# main() 
############## 
# open an output file to append 
outF = open(workingDir + "\\04_railtraffic.csv", "a") 
# call function to fetch the newest PDF link from a webpage 
newlink = fetchPDFlink(mypath) 
#get filename from the pdflink 
fname = newlink.split('/')[-1] 
#textfile name 
textfile = fname.replace(".pdf", ".txt") 
#check to see if file exists in current workingDir 
if not os.path.isfile(fname): 
    # call function to download the PDF and convert it to text file 
    downloadPDF(newlink, fname) 
    # call function read_txt to read the text file and append new line to 
04_railtraffic.csv 
    read_txt(textfile) 
outF.close() 

 
Shown below is a small section of the final data table.  The rows of carloads types in the raw 
PDF file are transposed to be the columns of the final table.  Each row in the final table represent 
data from one raw PDF file.  Data from the PDF files are appended one after another to form a 
time series.  

 
 
Set up SQL Server Agent Job to update this dataset weekly. 
# Step 1: C:\python27\python E:\DatabaseFiles\UpdateDBFiles\RailTraffic\Update_railtraffic.py 
Step 2: C:\python27\python E:\DatabaseFiles\UpdateDBFiles\RailTraffic\Upload_RailTraffic.py 
# Schedule:  Weekly on Friday at 1 am 

Date 
Total 
Carloads Chemicals Coal 

Farm 
and 
Food 
Products 

Forest 
Products Grain 

Metallic 
Ores 
and 
Metals 

Motor 
Vehicles 
and 
Parts 

Nonmetallic 
Minerals 
and 
Products 

 
 

 
 

 
 

 
 

3/7/2013 283819 31360 114155 16456 10963 17289 25177 17803 28501    
3/14/2013 276698 29196 112000 16862 10769 17625 21106 18182 29936    
3/21/2013 280624 30143 111302 16110 10585 17379 23030 19430 31343    
3/28/2014 278738 30460 110013 16415 11171 17034 23517 17561 32279    
4/4/2013 281367 30557 109700 15899 11742 15388 28041 16906 31684    

4/11/2013 280748 30475 111153 16365 11039 16888 22918 16502 33911    
4/18/2013 275675 29609 104028 16449 11198 17150 23323 17913 34959    
4/25/2013 276662 29598 106728 16331 10600 15670 25071 17430 34261    
5/2/2013 275638 29891 104807 16000 10791 15672 25599 17294 34163    
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Every time the update happens, the newest PDF report is downloaded and its data is parsed and 
extracted to form one new record to be appended to the data table. 
 
 
 
 
 

SecondaryRailcarBids 
Secondary Rail Car Bids 
Data for the rail car bids in the secondary market is available for two US railroad companies: 
Burlington Northern Sante Fe (BNSF) and Union Pacific (UP). The weekly data is available 
from 5/3/1997 until now.  
The script ‘SecondaryRailCarbids.py’ downloads the raw data file into a local folder, process it, 
writes the processed file into local folder as ‘07_processed.csv’ and then uploads it to a SQL 
datawarehouse using bulk copy tools (bcp). 
Below is a snapshot of the code for the processing job. 
 

########################## 
###### Date: 01-22-2016 
Copyright: Joshua D. Woodard, Ag-Analytics.org 
Contributors: Lin Xue, Tridib Dutta, Josh Woodard, with assistance from Alex 
Muchocki, Anthony Perello, and Ag-Analytics team. 
########################## 
###### Summary: This script download the GTRFigure4-6.xlsx from the ams 
website: 
###### http://www.ams.usda.gov/services/transportation-analysis/gtr-datasets, 
###### read and process the table using pandas and upload to SQL server using 
bcp(bulk copy). 
########################### 
import os, sys 
import pyodbc 
import subprocess 
import urllib 
import pandas as pd 
 
#global variables 
workingDir = "E:\\DatabaseFiles\\UpdateDBFiles\\SecondaryRailcarBids\\" 
#workingDir = 
"C:\Users\lx58\Dropbox\AgDB_Admin\OCE\data_summaries\Railway_Database
" 
sqlServerInstance = ".\MSSQLSVRAG" #this way when it is a SQL Server 
named instance) 
#sqlServerInstance = "AG-AEM-1M9RBY1" #this way when it is not a SQL 
Server named instance) 
#sqlServerInstance = "AG-AEM-6656V12\MSSQLAGDEV1" ## mine is sql 
named server instance 
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schema="dbo" #schema for processed data 
#db="TestDB" #database name 
db="AgDB" #database name 
 
#retrieve the file from the link 
url = 'http://www.ams.usda.gov/sites/default/files/media/GTRFigure4-6.xlsx' 
testFile = urllib.FancyURLopener() 
testFile.retrieve(url, workingDir + "07_output.xlsx") 
 
DF = pd.read_excel(workingDir + '07_output.xlsx', sheetname = 'Secondary') 
DF.to_csv(workingDir + '07_processed.csv', index = False) 

The below script updates the processed file into a SQL server. 
 

####################### 
#### try creating the database if it is already not there 
try: 
    conn = pyodbc.connect("DRIVER={SQL Server}; 
SERVER="+sqlServerInstance+"; DATABASE=Master; Trusted connection= 
Yes", autocommit = True) 
    #Note, default pyodbc connect is autocommit = false. For creating a new 
database, must have autocommit = True 
    cursor = conn.cursor() 
    query = "CREATE DATABASE " + db 
    cursor.execute(query) 
    cursor.commit() 
    conn.close() 
    print "Initial create of ",db," is complete." 
except Exception as e: 
    print db," DB already exists" 
    print e 
 
# ## Creating database is done 
# ######################### 
conn = pyodbc.connect("DRIVER={SQL 
Server};SERVER="+sqlServerInstance+";DATABASE="+db+";Trusted 
connection= Yes") 
cursor = conn.cursor() 
 
try: 
 #create table if it does not already exist 
    sqlcmd="""CREATE TABLE [dbo].[SecondaryRailcarBids] ( 
[Week Ending] date, 
[Bid Month] varchar(10), 
[Month Number] bigint, 
[Bid Year] bigint, 
[Company] varchar(8), 



50 
 

[For Search] varchar(16), 
[Non-Shuttle] float, 
[Shuttle] float 
)""" 
    cursor.execute(sqlcmd) 
    cursor.commit() 
    conn.close() 
    print 'Initial create of [SecondaryRailcarBids] Complete.' 
except Exception as e: 
    #print '[GrainTransportCostIndex] already exists.' 
    sqlcmd="""TRUNCATE TABLE [dbo].[SecondaryRailcarBids]""" 
    cursor.execute(sqlcmd) 
    cursor.commit() 
    conn.close() 
    print e 
 
############ use bulk copy (bcp) to load the data into the CommodityFutures 
table 
theproc = subprocess.call('bcp '+db+'.'+schema+'.SecondaryRailcarBids' + ' in ' + 
workingDir + '07_processed.csv' + ' -c -t, -T -S' + sqlServerInstance) 
##print theproc 
############ Remove the temporary file 
os.remove(workingDir+'07_output.xlsx') 

 
A snapshot of the processed data table is provided below.  
Week 
Ending 

Bid 
Month 

Month 
Number 

Bid 
Year Company For Search 

Non-
Shuttle Shuttle 

5/3/1997 January 1 1998 
BNSF-
GF 

355531BNSF-
GF 

NULL NULL 

5/3/1997 January 1 1998 UP-Pool 
355531UP-
Pool 

NULL NULL 

5/3/1997 February 2 1998 
BNSF-
GF 

355532BNSF-
GF 

NULL NULL 

5/3/1997 February 2 1998 UP-Pool 
355532UP-
Pool 

NULL NULL 

5/3/1997 March 3 1998 
BNSF-
GF 

355533BNSF-
GF 

NULL NULL 

5/3/1997 March 3 1998 UP-Pool 
355533UP-
Pool 

NULL NULL 

5/3/1997 April 4 1998 
BNSF-
GF 

355534BNSF-
GF 

NULL NULL 

5/3/1997 April 4 1998 UP-Pool 
355534UP-
Pool 

NULL NULL 

5/3/1997 May 5 1997 
BNSF-
GF 

355535BNSF-
GF -95 

NULL 

5/3/1997 May 5 1997 UP-Pool 355535UP- -28 NULL 



51 
 

Pool 
 
 

TrainSpeedByCompany 
 
Train speed data is available from American Association of Railroads (AAR) website. The 
publicly available data is for 2015 only. The historical data is hidden behind paywall.  
The weekly data is reported by the six major U.S. railroad companies and contains train speed 
data among other performance measures. We collected the train speed data for our data 
warehouse.  
Note that the data couldn’t be programmatically downloaded from AAR’s website. Instead, we 
downloaded it manually and then processed it using the following python script.  
 
 

## the url of the file is hidden and cannot be retrieved. So I guess we have to 
download the file manually 
## The manually downloaded file is saved as 05_TrainSpeed.csv in the Railway 
Database under AgDB folder in dropbox 
import csv 

 
The above python module is used to process the data.  
Below is a utility function which we will use later. 
 

## define is_number() function 
def is_number(s): 
    try: 
        float(s) 
        return True 
    except ValueError: 
        return False 

 
 
Below is the code snippet to process the data. 

 
#get the dates 
with open('05_TrainSpeed.csv', 'rb') as f: 
    reader = csv.reader( (line.replace('\0','') for line in f) ) 
    count = 0 
    for row in reader: 
        my_string = ' '.join(row) 
        if count ==1: 
            break 
        elif 'Railroad Measure Category' in my_string: 
            a = my_string 
            a = a.strip().split() 
            #print a 
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            tr = [] 
            date = [] 
            for item in a: 
                if item.isalpha(): 
                    tr.append(item) 
                elif is_number(re.sub('[^a-zA-Z0-9 ]','',item)): 
                    date.append(item) 
            tr = [' '.join(tr)] 
            #print tr + ['4Q14']+ date 
            count = count + 1 
 
f.close() 
 
 
A = [] 
#add the date information to the first line of A 
A.append(tr + ['4Q14']+ ['Dec'+ date[0]] + date[1:]) 
 
# retrieve the rest of the data 
companyTrainCarType = ['BNSF','CN','CSX','Kansas','Norfolk','Union'] 
 
with open('05_TrainSpeed.csv', 'rb') as mycsv: 
        reader = csv.reader( (line.replace('\0','') for line in mycsv) ) 
        for row in reader: 
            new_string = ' '.join(row) 
 
            new_string = re.sub('[^a-zA-Z0-9\n\. ]','', new_string) ## clean up the bad 
characters 
 
            if not re.sub('[^a-zA-Z0-9]','',new_string).isalpha(): 
                if re.search("Train Speed MPH", new_string): 
                    for name in companyTrainCarType: 
                        if name == 'Kansas': 
                            new_string = re.sub('S.A. de C.V.','',new_string) 
                        if re.search(name, new_string): 
                            #new_list = re.sub('[^0-9\n\. ]','',new_string).strip().split() 
                            b = [] 
                            num = [] 
                            for term in new_string.strip().split(): 
                                #print term 
                                if is_number(term): 
                                    num.append(term) 
                                elif term.isalpha(): 
                                    b.append(term) 
                            b = ' '.join(b) 
                            b = re.sub('Train Speed MPH','', ''.join(b)) 
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                            b = [b] 
                            A.append(b + num) 
 
 
mycsv.close() 
 
##now write the transpose of this A to a .csv file 
import csv 
B = zip(*A) #transpose the matrix 
with open("05_processed.csv", "wb") as correct: 
    writer = csv.writer(correct) 
    writer.writerows(B) 
correct.close() 

   Below is a snapshot of the processed data set.  
Railroad Measure 
Category BNSF Intermodal BNSF  Manifest BNSF Coal Unit 

1/9/2015 35.3 22.3 17.6 
1/16/2015 34.6 21.8 18.8 
1/23/2015 34.5 21.7 19.4 
1/30/2015 33.3 21.6 19.3 
2/6/2015 32.8 20.6 17.6 

2/13/2015 34.2 21.1 18.4 
 
The upload proceedure is similar to the other datasets and left out from this report for brevity.  
 

2.12 WaybillSamples 
The Public Use Waybill Sample (PUWS) is a non-proprietary version of the STB Carload 
Waybill Sample. The STB collects the data under the requirements that all US railroads that 
terminate more than 4,500 revenue carloads must submit a yearly sample of terminated waybills.  
Samples are available annually from 2000 to 2014.  The source is: 
http://www.stb.dot.gov/STB/industry/econ_waybill.html 

Revised 2014 Public Use Waybill Sample 

2013 Public Use Waybill Sample 

2012 Public Use Waybill Sample 

2011 Public Use Waybill Sample 

2010 Public Use Waybill Sample 

2009 Public Use Waybill Sample 

2008 Public Use Waybill Sample 
2007 Public Use Waybill Sample 
2006 Public Use Waybill Sample 
2005 Public Use Waybill Sample 
2004 Public Use Waybill Sample 

http://www.stb.dot.gov/STB/industry/econ_waybill.html
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/PublicUseWaybillSample2014.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/PublicUseWaybillSample2013.zip
http://www.stb.dot.gov/STB/docs/Waybill/PublicUseWaybillSample2012.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/PublicUseWaybillSample2011.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2010%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2009%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2009%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2009%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2008%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2008%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2008%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2007%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2007%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2007%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2006%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2006%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2006%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2005%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2005%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2005%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2004%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2004%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2004%20Public%20Use.zip


54 
 

2003 Public Use Waybill Sample 
2002 Public Use Waybill Sample 
2001 Public Use Waybill Sample 
2000 Public Use Waybill Sample 

Each Waybill Sample is a text file that is unable to read without parsing the data first.  See 
below: 

 
The Surface Transportation Board provides a Reference Guide to help understand the raw data. 
http://www.stb.dot.gov/STB/docs/Waybill/2014%20STB%20Waybill%20Reference%20Guide.p
df 
Page 99-100 of this Reference Guide contains Table 4-6. 247-Byte STB Public Use Waybill File 
Record Layout.  Basically, each row is a record.  Each record contains fixed-width data.  1–6 
byte is Waybill Date, 7-10 byte is Accounting Period, and 11-14 byte is Number of Carloads, so 
on and so forth till 247 byte.  
By reading the PDF Reference Guide comes with the sample and writing Python scripts to parse 
the data and assign them to separate fields, we are able to decipher the raw code into readable 
data in CSV format. (We can get data such as commodity code, carloads, Tons) 

 
Below is the python script snippet we wrote to parse the raw data.  We used python module 
pandas to read the fixed width text file into CSV format.  

import sys, os 
import numpy 
import pandas as pd 
 
fwidths = 
[6,4,4,1,4,4,2,3,4,1,1,1,5,7,7,9,9,9,1,1,1,1,1,1,1,4,1,1,5,3,1,3,1,2,2,2,2,2,2,2,2,2,3,
1,1,5,3,4,5,4,4,4,1,1,2,1,4,46,1,6,9,11,6] 
dateparse = lambda x: pd.datetime.strptime(x, '%m%d%y') 
# define function to read file using pandas 
def readfiles(filename): 

http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2003%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2003%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2003%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2002%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2002%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2002%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2001%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2001%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2001%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2000%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2000%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2000%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/2014%20STB%20Waybill%20Reference%20Guide.pdf
http://www.stb.dot.gov/STB/docs/Waybill/2014%20STB%20Waybill%20Reference%20Guide.pdf
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    df = pd.read_fwf(filename, widths = fwidths, names = colnames, 
parse_dates=['Waybill Date'], date_parser =dateparse, converters={'Accounting 
Period': str}) 
    #define name of the processed csv 
    csvname = filename.split(".")[0]+ ".csv" 
    #write to csv file 
    df.to_csv(csvname, index = False) 
 

 
 
The ETL process: 
# Step 0: Use ReadWaybill.py to parse the raw text files into readable CSV and add header line 
for the fields. 
# Step 1: Clean up raw data using cleanFields.py 
# Step 2: Combine all cleaned csv files into 02_processed.csv using buildTable.py 
# Step 3: upload data into SQL server using upload2DB.py  
(note: If Step 1 indicate columns that have different data type than what SQL import wizard 
suggested, manually change those to varchar when creating the CREATE TABLE statement.)   
 
Step 1 Details: 
The Waybill samples contain many columns of mixed type data (string mixed with numbers).  
Each year, the mixed type columns vary. So each CSV file has to be examined separately before 
creating the final "02_processed.csv". 
Three kinds of actions are performed:   

- If the column contains both string and number, we assign it varchar type when uploading 
to SQL server, thus nothing needs to be done during preprocessing. 

- If the column contains a mistake (e.g. a '10' (str) among 10 (int)), we wrote script to force 
convert the string type to number.   

- If the column contains meaningless special symbols (such as '*****'), we wrote script to 
replace them with blank cells (NULL). 

# PU2005 
[Col-14: Actual Weight In Tons]: replace "*******" with NULL and force 
convert to int type. 
[Col-36,37,38, 53: Interchange State #4, #5, #6, Num of Axles]: varchar 
 
# PUB06A 
[14: Actual Weight In Tons]: replace "*******" with NULL and force convert to 
int type. 
[33, 34, 35, 36, 37, 53: Interchange State #1, #2, #3, #4, #5, #6, Num of Axles] : 
varchar  
 
# PUB07A 
[35,36,53]: varchar 
 
# PUB08A 
[35,36,37,53]: varchar 
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#PUB09A 
[28: Exact Expansion Factor]: replace "*****" with NULL and force convert to 
int type. 
 [Row-60443:Col-28]: "*****" 
 [Row-60447:Col-28]: "*****" 
 [Row-60448:Col-28]: "*****" 
[33,34,35,36,37,53]: varchar 
 
# PUB10A 
[11:Hazardous/Bulk Material In Boxcar]: varchar 
[35,36,53]: varchar 
 
# PUB11A 
[35, 36, 37, 38]: varchar 
 
# PUB12A 
[7: TOFC/COFC Service Code]: varchar 
[9: Trailer/Container Ownership Code]: varchar 
[10: Trailer/Container Type Code]: varchar 
[13: Builled Weight in Tons]:  int 
[11, 33, 34, 35, 36, 37, 53]: varchar 
 
# PUB13A 
[35,36,37,53]: varchar 
 
# PUB14A 
[35,36,37]: varchar 

 
 
 

DIFFICULTIES AND RECOMMENDATIONS 

OBSERVATIONS DURING THE ETL PROCESS 
Several observations were made during the ETL process of processing these datasets for use. 
First, among the various raw data formats, CSV and XLSX (Excel) are in general the easiest to 
parse, followed by XML and fixed width text.  While PDF is a nice format for displaying, it is 
well accepted that it is not recommend for data storage.  More often than not, the table layout is 
lost during the conversion from PDF to text file and the resulting data cannot be parsed easily.  
Data that is not in a format of delimited or fixed width cannot be parsed by programming 
language easily, hence make data automation difficulty unnecessarily by the government and 
other data publishing entities. Second, for web scrapping purpose, it is much easier to scrape files 
that follow common naming convention and if the URL is persistent both in form and naming 
convention. Despite the obviousness of this statement, it is only occasionally followed, and 
disingenuous responses from data publication agencies (or no response) is not uncommon when 
this is suggested, requested, or pointed out.   
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 A good example though is the ExportGrainTotals dataset.  A new annual CSV data file 
named CYyyyy.csv (ie. CY2016.csv) is posted under the same URL consistently: 
https://www.gipsa.usda.gov/fgis/exportgrain/ 

• Export Grain Inspection 2016 (last updated 3/7/2016 4:20:58 PM) 
• Export Grain Inspection 2015 (last updated 2/16/2016 7:01:47 AM) 
• Export Grain Inspection 2014 (last updated 5/26/2015 4:34:21 PM) 
• Export Grain Inspection 2013 (last updated 6/20/2014 8:22:09 AM) 
• Export Grain Inspection 2012 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 2011 (last updated 4/8/2013 12:00:00 AM) 
• Export Grain Inspection 2010 (last updated 4/8/2013 12:00:00 AM) 

Third, when data entry is done by different railroad companies, they come up with their own data 
forms and making it difficult to combine and summarize the data later.  It would contribute to 
taxpayer value if the government agent were to provide the companies with a template.  Fourth, 
we noticed many human errors during the process converting the raw data.  The most common 
issue is that columns of Excel files have mixed data type.  For example, it is not uncommon to 
find a column of float data type, but then one cell among a million or so that randomly contains 
special characters such as “*****”.  It is then necessarily to programmatically detect these 
outliers and manually clean up those cells before uploading.  It is recommended that some data 
validation control being implemented during data entry to minimize human errors at source. 
 
FreightCommodityStatistics: A Short Case 
During the ETL process of the FreightCommodityStatistics, we encountered the following issues: 
1.  The url for some of the excel raw data file seems to have changed very recently and 
URLopener() function from the `urllib` module no longer works. We needed to replace 
`URLopener(`) by `FancyURLopener()` to handle the redirect. There was no announcement or 
tracking of this issue. Thus, centralization and standardization is likely beneficial here. 
2. Several of the excel files for companies including BNSF, GTC, etc. have multiple format 
errors rendering them overly burdensome to convert to flat files (`.csv`). All the scripts above in 
Step 1, contain a function called `clean_cell()` which addresses many of those formatting 
abnormalities buried deep inside those excel raw data files, but not all. For example, in the raw 
data file for the year 2012 from the company BNSF, most of the entered numbers had space in 
them (`2124 4` instead of 21244 ) making them read in as `string` in the database or python 
reader, resulting in obvious misinterpretation while performing analysis or any mathematical 
operations on these datasets. Some of the cells seems to have accidentally encoded as a 
`datetime` object when they should be clearly numeric.  Our `clean_cell()` is able to handle all 
most of these problems, but again had to be implemented and developed by us internally, and the 
next team will surely unnecessarily run up to the same issues. This is wasteful, and the solution 
is likely some basic standardization. And note still that there could likely be unexpected 
formatting errors in the file which `clean_cell()` in the future if formats again change 
unnecessarily from source.  
3. Another major issue we ran into is the encoding of different goods/Commodities that the 
railway companies transported. It seems that there is a industry-wide standard for encoding 
commodity goods the railway companies handle. They have assigned integer code to different 
goods. For example the number 1 (sometimes entered as 01, although not consistently) 
represents a broad category which is called 'Farm Products'. Under this category is 'Field Crops', 

https://www.gipsa.usda.gov/fgis/exportgrain/
https://www.gipsa.usda.gov/fgis/exportgrain/CY2016.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2015.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2014.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2013.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2012.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2011.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2010.csv
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which is assigned a value 11 (sometimes entered as 011, , although not consistently). Ironically, 
in the same document, the number 11 was assigned to 'Coal' which is a broad category 
representing coal based products such as Anthracite which was assigned a numeric value of 111. 
This we thought could create a lot of confusion especially if this coding is used as 'key' while 
downloading data from our database. To resolve the matter, we had to come up with our own 
recoding of these numeric values which necessitated explicitly encoding a sequential record 
recognition routine. We decided that instead of using integer values, we would use float type 
numbers and 1 will be encoded as 1.000 while 11 (representing Field Crops, a sub category of 
Farm product) will be assigned the value 1.100 instead of 11 or 011. This way coal can be 
11.000 and so on. We wrote a function called `recode()` which can be found in each of the 
scripts mentioned in Step 1. 
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