

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

1

Impacts of Futures Markets Speculation and Rail Transportation Networks
 on Commodity Basis Behavior

Joshua D. Woodard, Cornell University (jdw277@cornell.edu)
Tridib Dutta, Cornell University

Lin Xue, Cornell University

Selected Paper prepared for presentation at the 2016 Agricultural & Applied Economics
Association Annual Meeting, Boston, Massachusetts, July 31-August 2

Copyright 2016 by Joshua D. Woodard. All rights reserved. Readers may make verbatim copies
of this document for non-commercial purposes by any means, provided that this copyright notice
appears on all such copies. I would like to thank the Ag-Analytics.Org team members for their
assistance and support. Thanks also to USDA Chief Economist Robert Johansson and Peter
Feather of the USDA Office of the Chief Economist for their insight and support. Parts of this
work were supported by USDA Cooperative Agreement "Leveraging Data Integration Systems to
Support Agricultural Policy Research: An Application to Rail & Transport Network Impacts on
Agricultural Commodities".

https://www.ag-analytics.org/

2

Impacts of Futures Markets Speculation and Rail Transportation Networks
 on Commodity Basis Behavior

Interactions between rail and transportation networks on commodity price behavior and grain

flows remains an important issue in the agricultural sector, from both an industry and policy

perspective (Casavant, 2015). Market access, network effects, and local conditions all play an

important role in determining land-use allocation, trade, and price behavior in agricultural

markets. While a large literature exists evaluating basis behavior and convergence from a price

analysis perspective on local or partial scales, much less has been done on evaluating the impacts

of rail and transport networks on basis behavior on larger scales, or incorporating hedging or

speculative activities in related commodity future markets.

 There has been much recent interest in evaluating the impacts of market access on

agricultural valuations from a historical perspective (see e.g., Donaldson and Hornbeck,

forthcoming), agricultural transport investments (Casavant, 2015), and impacts of rail

infrastructure on economic activity in general (Donaldson, 2015). Nevertheless, incorporating

rail network effects in such models remains challenging, and thorough investigations of the

impact of rail infrastructure and related regulatory issues on spatial price basis behavior remain

largely unexplored in holistic contexts.

 This study briefly explores the determinants of commodity price basis and basis

convergence with a particular focus on the influence of futures market speculation in conjunction

with rail rates and transportation networks. This preliminary analysis sets out to replicate and

explore some earlier approaches in the literature, incorporates for the first time to our knowledge

futures markets position information, and also provides thoughts on future extensions. The Data

Appendix to this paper also focuses on automation of data sourcing to enable real time analysis of

3

these types of disparate market information and models relying on the Ag-Analytics.Org open

data platform (Woodard, 2016a, Woodard, 2016b).

Data and Methods

Data were collected from a variety of disparate sources for this analysis. The main source of rail

transportation data were obtained from various unstructured spreadsheets which are updated by

USDA-AMS weekly. See the Data Appendix to this paper for information on the data

automation routines; the data are also available for flexible and scalable querying via web-based

API's at Ag-Analytics.Org. The rail tariff data are collected from Grain Transportation Cost

Index report, while railcar secondary market data are obtained collected from the Weekly railcar

bids/offers for the secondary non-shuttle and shuttle railcar Market data. We consider only

Shuttle car bids for this analysis. For rail tariff data, we only consider the Monthly rail tariff

including fuel surcharge. For the shuttle car bids data, we averaged over the 12 months bid

values for a particular ending week.

 Total rail car data were collected from the Analysis of Association of American Railroads

(AAR), Weekly Railroad Traffic Report. Train Speed data were collected from AAR’s ‘Railroad

Performance Measure’ table. Traffic Volume data we also collected from the Weekly Railroad

Traffic as total carloads plus Intermodal units. Data were also collected from Surface

Transportation Board’s (STB) Freight Commodity Statistics database. A report for each railroad

company is published separately, and for each company, the dataset contains information for all

the commodities transported. We focused on Corn for this analysis. Grain stocks values are

obtained from the National Agricultural Statistical Service. The Commodity Futures Trading

Commission Commitment of Traders (COT) dataset provides weekly observations from April

18th, 1995, to the present and provides information on positions of hedging (commercial) and

https://www.ag-analytics.org/
https://www.ag-analytics.org/

4

non-hedging (non-commercial) entities on publicly traded futures exchanges (in this case the

Chicago Mercantile Exchange), published weekly, for reportable traders. Position data are

published for futures, as well as futures and options combined. Option open interest and traders'

option positions are computed on a futures-equivalent basis using delta factors supplied by the

exchanges. Long call and short put open interest is converted to long futures-equivalent open

interest, and vice-versa in the combined report. Data are also reconciled for non-commercial

spreaders, and investigated for non-reportable traders.

Model

Following OCE (2015) and Wilson and Dahl (2011), origin bases in the primary Midwest states

are modeled as a function of destination basis, and other factors; the destination bases

consolidated into two groups: Pacific North West (PNW) and Gulf of Mexico (GOM). PNW

consists of Oregon, Washington and California, while GOM consists of Texas and Louisiana.

For these two groups, we considered the average monthly basis in these states, defined as the

spot price minus the nearby futures price. We also included variables for Outstanding Sales,

Tariff (Monthly rail tariff including Fuel surcharge), and futures speculation measures from the

COT database. Outstanding Sales are weekly export sales contracts of commodities at U.S. ports

that have not been shipped at a given time, and Tariff is the monthly rail tariff for shipments of

commodities including fuel surcharge. From the CFTC COT database, we evaluate percent of

open interest from non-commercial longs (OI_Noncommercial_Long_All), non-reportable longs

(OI_Nonreportable_Long_Other), the change in non-commercial long positions

(ChangeinNoncommercial_Long_All), as well as the net long concentration ratio as published by

the CFTC (Concentration_NetLT4TDR_Long_All). We considered weekly data from June, 2010

until middle of November 2015 (N= 1185).

5

Results

Several models were investigated for robustness, including various setups for fixed effects on the

Origin Basis states (Minnesota, South Dakota, Nebraska, Iowa, and Illinois). Several

combinations were run to investigate the relative orthogonality of the factors under consideration

and their sensitivity to alternative specifications in an intentionally terse exposition.

 Table 1.1 presents regression results with Origin State fixed effects and differential effect

variables for PNW and GOM regions. Consistent with earlier studies, the PNW and GOM basis

variables are positive and significant, reflecting spatial arbitrage relationships in basis; PNW has

a larger marginal effect than GOM, with magnitudes ranging from 0.59-0.61, and 0.14-0.15,

respectively. Long speculative (non-commercial) positions and changes in long speculative

position in the futures market are negatively and statistically significantly related to basis (i.e.,

spot - futures), indicating that greater long speculative pressure has a spatially persistent upward

impact on futures prices relative to the spatial complex of spot prices. This is true for

OI_Noncommercial_Long_All, ChangeinNoncommercial_Long_All, as well as for the

concentration ratio measure, Concentration_GrossLT4TDR_Long_All. Note that futures are only

deliverable against a single set of locations in the origin states during any given period, while

spot prices vary across origin as well as destination locations. On the other hand, non-reportable

long position are positively related to origin basis. The R-Sq is fairly high in all models (approx.

0.89), with the vast majority of variance explained by the destination basis measures.

6

Table 1.1 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures
 M1 M2 M3 M4 M5

PNW 0.610095 *** 0.595254 *** 0.600186 *** 0.611352 *** 0.610744 ***

GOM 0.159599 *** 0.149578 *** 0.156886 *** 0.157536 ***

OI_Noncommercial_Long_All -0.004935 ***

OI_Nonreportable_Long_Other 0.004276 ***

ChangeinNoncommercial_Long_All
 -0.000001 **

Concentration_GrossLT4TDR_Long_All -0.002502 **

Fixed Effect Origin State Yes Yes Yes Yes Yes

N 2770 2770 2770 2770 2770

Adj.R^2 0.8966 0.9008 0.8976 0.8970 0.8968

Sigma^2 0.0204 0.0196 0.0202 0.0203 0.0204

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

7

Table 1.2 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures
 M6 M7 M8 M9 M10

PNW 0.610090 *** 0.568022 ***

GOM 0.158685 *** 0.197077 ***

OI_Noncommercial_Long_All_ -0.028956 ***

OI_Nonreportable_Long_Other_ 0.016625 ***

ChangeinNoncommercial_Long_All_
 -0.000001 *

Concentration_GrossLT4TDR_Long_All_

Concentration_NetLT4TDR_Long_All_
 -0.002112 *

Outstanding Sales -0.010213 ***

Fixed Effect Origin State Yes Yes Yes Yes Yes

N 2770 2770 2770 2770 2770
Adj.R^2 0.8968 0.9039 0.2144 0.0594 0.0441
Sigma^2 0.0204 0.0190 0.1550 0.1856 0.1886

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

8

Turning to table 1.2, which includes Outstanding Sales, the results for PNW and GOM basis are

quite consistent, as are the estimates for the futures speculation measures. M8-M10 also evaluate

model specification stability to dropping PNW and GOM, with the result that the speculative

measures are significant, although some of the effect is attenuated to those remaining variables in

their absence as would be expected, and the R-Sq drops significantly as expected to about 0.21 in

M8. Outstanding Sales are significantly negatively related to origin basis, which is presumably

due to spot prices falling in destination locations as outstanding sales in those locations increase,

and inventories build.

 Inspecting tables 1.2-1.8, PNW has a consistently larger marginal effect than GOM basis,

as in Table 1.1. All other results are also robust and stable with regard to the speculative

measures, regardless of whether fixed effects are employed or not for the Origin States. Table

1.6 includes the Tariff measure, which as expected is also negative, indicating that the imposition

of rail tariffs places downward pressure on local spot prices relative to exchange traded futures

prices.

9

Table 1.3 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures
 M11 M12 M13 M14 M15

PNW 0.562762 *** 0.567930 *** 0.569342 ***

GOM 0.184835 *** 0.197242 *** 0.194911 ***

OI_Noncommercial_Long_All -0.003595 ***

OI_Nonreportable_Long_Other 0.000093

ChangeinNoncommercial_Long_All
 -0.000001 *

Concentration_GrossLT4TDR_Long_All
 -0.008257 **

Concentration_NetLT4TDR_Long_All
 -0.008006 **

Outstanding Sales -0.008866 *** -0.010183 *** -0.010082 ***

Fixed Effect Origin State Yes Yes Yes Yes Yes
N 2770 2770 2770 2770 2770
Adj.R^2 0.0457 0.0460 0.9060 0.9039 0.9040
Sigma^2 0.1883 0.1882 0.0185 0.0190 0.0189
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

10

Table 1.4 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures
 M16 M17 M18 M19 M20

PNW 0.567138 *** 0.566029 ***

GOM 0.195246 *** 0.197149 ***

x_ofOI_Noncommercial_Long_All_ -0.023975 ***

x_ofOI_Nonreportable_Long_Other_ -0.0031

ChangeinNoncommercial_Long_All_ -0.000001
Concentration_GrossLT4TDR_Long_All_ -0.004409 ***
Concentration_NetLT4TDR_Long_All_ -0.003916 ***
Outstanding Sales -0.010705 *** -0.010695 *** -0.026307 *** -0.038259 *** -0.037019 ***

Fixed Effect Origin State Yes Yes Yes Yes Yes
N 2770 2770 2770 2770 2770
Adj.R^2 0.9047 0.9046 0.2685 0.1613 0.1611
Sigma^2 0.0188 0.0188 0.1443 0.1655 0.1655
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

11

Table 1.5 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures
 M21 M22
Concentration_GrossLT4TDR_Long_All_
 -0.015846 ***

Concentration_NetLT4TDR_Long_All_
 -0.014410 ***

Outstanding Sales -0.038733 *** -0.038560 ***

Fixed Effect Origin State Yes Yes

N 2770 2770

Adj.R^2 0.1717 0.1713

Sigma^2 0.1634 0.1635
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

12

Table 1.6 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures
 M23 M24 M25 M26

PNW
0.678514 *** 0.680294 ***

0.713883 *** 0.714775 ***

GOM 0.106235 *** 0.112449 *** 0.075676 *** 0.080138 ***

Outstanding Sales -0.007302 *** -0.007207 ***

Tariff
-0.370603 *** -0.503861 *** -0.415997 *** -0.505544 ***

Fixed Effect Origin State Yes No Yes No

N 1185 1185 1185 1185

Adj.R^2 0.9296 0.9279 0.9267 0.9250

Sigma^2 0.0215 0.0220 0.0224 0.0229

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Table 1.7 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures
 M27 M28
PNW 0.568022 *** 0.568022 ***

GOM 0.197077 *** 0.197077 ***

Outstanding Sales -0.010213 *** -0.010213 ***

Fixed Effect Origin State Yes No

N 1185 1185

Adj.R^2 0.9288 0.8840

Sigma^2 0.0217 0.0354

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

13

Table 1.8 - Regression Results of Origin Basis on Destination Basis, Rail Transport and Futures Speculation Measures
 M29 M30 M31 M32

OI_Noncommercial_Long_All_ -0.057034 *** -0.070915 *** -0.075892 *** -0.099184 ***

Outstanding Sales

Tariff (not Tcost) 3.679642 *** -0.269846 *** 3.111209 *** -1.106460 *

Interaction(OI_Noncommercial_Long_All_ and
Tariff)

 0.017854 0.026822

FixedEffect Origin State Yes No Yes No

N 1185 1185 1185 1185

Adj R^2 0.4453 0.2785 0.4457 0.2801

Sigma^2 0.1694 0.2203 0.1692 0.2198

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

14

Conclusions

While a handful of studies exist exploring basis behavior, and exploring impacts of trading

behavior on futures prices, we are unaware of any study that explicitly takes into account futures

positions of market participants in conjunction with rail transpiration effects in a nationwide

model such as this. As highlighted in a recent study by the United States Department of

Agriculture Office of the Chief Economist and the Agricultural Marketing Service (OCE, 2015),

interactions between rail & transportation networks on commodity price behavior and grain

flows remains an important issue in the agricultural sector from both an industry and policy

perspective. Market access, network effects, and local conditions all play an important role in

determining land-use allocation, trade, and price behavior in agricultural markets.

 The findings of this brief study corroborate those of earlier studies as it regards frictional

impacts of rail network costs on origin bases. Additionally, this study finds that in addition to rail

transport effects, that long speculative pressure in the futures market is contemporaneously

related to widening basis.

 Future studies could investigate basis behavior in such markets in spatially explicit

frameworks, and explore inclusion of ethanol demand. Additionally, despite that most grain is

produced in the Central Midwest (what we and other designate as "origin" states) and shipped or

consumed predominantly elsewhere (through "destination" states) we would note that these

designations are somewhat ad hoc, and thus future explorations could instead employ more

formal and spatially explicit econometric approaches to investigating such network effects in

these markets.

15

References

Casavant, K.L, "Agricultural Grain Transportation: Are We Underinvesting and Why?" Choices,

2015.
Donaldson , D. and Hornbeck, R., "Railroads and American Economic Growth: A Market

Access Approach," Quarterly Journal of Economics, forthcoming.
Donaldson , D., "Railroads of the Raj: Estimating the Impact of Transportation Infrastructure,"

American Economic Review, 2015.
National Research Council (NRC), 2012. Computing Research for Sustainability. Washington,

DC: National Academies Press. 155 pp.
OFFICE OF MANAGEMENT AND BUDGET (OMB), "MEMORANDUM FOR THE HEADS

OF EXECUTIVE DEPARTMENTS AND AGENCIES: Guidance for Providing and Using
Administrative Data for Statistical Purposes", February 14, 2014

Office of the Chief Economist (OCE) - United States Department of Agriculture, "Rail Service
Challenges in the Upper Midwest: Implications for Agricultural Sectors – Preliminary
Analysis of the 2013 – 2014 Situation,, January 2015.

Office of Science and Technology Policy (OSTP), 2013. Increasing Access to the Results of
Federally Funded Scientific Research. OSTP Memorandum for the Heads of Executive
Departments and Agencies, February 22, 2013. Washington, DC.

President’s Council of Advisors on Science and Technology (PCAST), 2011. Sustaining
Environmental Capital: Protecting Society and the Economy. Washington, D.C.

Wilson, William W. and Bruce Dahl (2010) “Grain Pricing and Transportation: Dynamics and
Changes in Markets,” Agribusiness and Applied Economics Report No. 674, North Dakota
State University (December)

Wilson, William W. and Bruce Dahl (2011), “Grain Pricing and Transportation: Dynamics and
Changes in Markets” Agribusiness Journal, 27 (4) 420-434.

United States Department of Agriculture-Agricultural Marketing Service, Grain Transportation
Report Datasets (2016), Unstructured source data are available online at
https://www.ams.usda.gov/services/transportation-analysis/gtr-datasets

Woodard, J.D., "A Spatial Supply and Demand Analysis of United States Dairy Policy",
Working Paper, Cornell University, 2015

Woodard J.D. (2016), Data Science and Management for Large Scale Empirical Applications in
Agricultural and Applied Economics Research,” Applied Economics Perspectives and Policy

Woodard J.D. (2016), “Big Data and Ag-Analytics: An Open Source, Open Data Platform for
Agricultural & Environmental Finance, Insurance, and Risk,” Agricultural Finance Review.

https://www.ams.usda.gov/services/transportation-analysis/gtr-datasets

16

Data Appendix

This appendix highlights some key details of the data collection procedures employed and online
resources developed in support of this study, including technical details of extraction, transform,
load procedures (ETL) for automating data sourcing of unstructured data resources used in the
pilot analysis. Difficulties we encountered during the process were recorded as well as
suggestions for future opportunities for coordination improvements between the Federal
Government and the research community in the realm of agricultural analytics.
 Recent decades have seen an explosion in modeling capabilities and frameworks--
particularly at the intersections of markets, policy, and spatially dependent enviro-economic
systems--and software to perform such specific modeling tasks. Marrying of these worlds,
however, remains seriously lacking. This is of profound importance given that many of the new
modeling frameworks in spatial econometrics and economic network modeling require
integrating and structuring large and complicated datasets consistent with these approaches,
which is a massive task in and of itself. In fact, separately, fields of data science have emerged in
several disciplines focusing on the latter alone (in which economics has arguably been a laggard
relative to other sciences such as physics, computer science, genetics, and meteorology). In the
course of pursuing this specific research, we also build off of successful approaches developed
to-date for enabling automated and scalable data warehousing approaches in order to enable
these investigations. These efforts are of critical importance for not only establishing proof of
concept generally, but also motivating adoption of such research in a form that does not exist to
date.
 Importantly, unlike other systems to date, on the Ag-Analytics.Org platform, these data
are stored in modern databases which can be queried and integrated flexibly and processed at
user desired scales, with industrial and flexible API's and tools to most broadly enable analytics
to the deepest extant community of users. To move the effort forward, more funding and
emphasis should be placed on these robust cloud based approaches to allow for wide use,
adoption, and further development, and to fully leverage other database and data management
techniques, efforts, and platforms. To that end, we have obtained a generous grant from
Microsoft for server space on their Azure platform, and also continue to move this exploratory
effort forward on limited internal funds. A partnership between OCE and Cornell to further
explore and develop within the context of Agency priority research questions under this study
has also been of great value to the public, government agencies, and the associated research
community to this end.

Communicating Proof of Concept and Developing Use Cases and Tools

While many advances have been made and successes realized to date in terms of fundamental
technical and analytical challenges, a critically important and logical next step for advancements
in this field will rely on meaningful interaction with interested agency stakeholders and
leadership. In addition, meaningful articulation and demonstration of the business case for these
innovations in practical and easily understood contexts is of great value. While it is understood
that this working manuscript is a verbose working effort toward that, our hope is that inclusion
and development of such resources will begin to spur interest within the community as the value
and potential applications of such community resources. To this end, we have engaged the Office

17

of the Chief Economist of the USDA in identifying and generating such expositions and cases.
This Data Appendix also serves as a tutorial based on the pilot analysis in the paper highlighting
the use of the data system, with the ancillary benefit that the research will be replicable in a
manner that virtually no economic studies are to date in terms of enabling a auto-updatable and
on-demand data sourcing.
 An overarching purpose of this project is to explore leveraging data integration systems
to support agricultural policy research in cooperation with The Office of the Chief Economist
(OCE) of the United States Department of Agriculture (USDA). By recreating the analysis of
Rail Service Challenges in the Upper Midwest1 using a centralized and automated database, well
documented ETL (Extract, Transform and Load) scripts, data modeling process and Metadata,
the purpose of this effort is to further explore cooperation between the USDA OCE in order to
set an example for future data integration projects leveraging community based open source/open
data platforms such as Ag-Analytics.Org, where all of the data scripting routines, as well as a
live-automated data warehouse are available for researchers to freely access.
 Much of the data researchers routinely use in agricultural and environmental finance and
related fields are often--strictly speaking--publicly available; however the form in which they are
distributed leads to great inefficiencies in data sourcing and processing which can be greatly
improved. This assessment has been widely supported even by the government for some time
(OSTP, 2013; OMB, 2014). The goal of the Ag-Analytics open data/open source platform is to
help researchers centralize, share, coordinate, and contribute in such efforts. Development of
systems for disseminating, documenting, and automating the processing of such data can lead to
more transparency in research, better routes for validation, and a more robust research
community, and better expenditure of public funds.
 The purpose of the remainder of this document is to provide an overview of the technical
processes involved in extracting, curating, and housing various unstructured data for a set of use
cases. Please refer to “Big Data and Ag-Analytics: An Open Source, Open Data Platform for
Agricultural & Environmental Finance, Insurance, and Risk”, Agricultural Finance Review
(2016, forthcoming), and “Data Science and Management for Large Scale Empirical
Applications in Agricultural and Applied Economics Research, Applied Economics Perspectives
and Policy (2016, forthcoming) for further detail on conceptual design.

Metadata

Initial Metadata are collected from source on at least two levels: Table Meta data contain
generic information about the dataset, such as title, description, author, source, format, license,
coverage, update frequency, last revision date. Each row is a record of the transformed dataset
collected. Fields Metadata contained detailed information of each field (column) inside the
dataset. Table A.1 below provides a draft synopsis of those collected for this study. We would
note that these data are used in a wide variety of contexts, but as of yet, the only available API to
access these data are on the Ag-Analytics.org platform.

1 Rail Service Challenges in the Upper Midwest: Implications for Agricultural Sectors – Preliminary
Analysis of the 2013 – 2014 Situation

18

Dataset Description Source Update

ExportGrainTotals Federal Grain Inspection Services Yearly
Export Grain Totals (data available from 1983
to current year)

USDA-
FGIS

annual

ExportSalesWeeklyData Weekly Export Grain Sales Data USDA Various
Fertilizer Fertilizer records (in process) ERS Various
FreightCommodityStatist
ics

Quarterly and annual data for the seven major
freight railroads. The major US railroad data
used are {BNSF, CXWT,GTC,
UP,SOO,NS,KCS}

Surface
Transportati
on Board

annual

GrainInspectionByPort Weekly inspections of grain for export in the
Pacific NorthWest, Mississippi Gulf, Texas
Gulf, Great Lakes and The Atlantic region.

AMS-
USDA

weekly

GrainTransportByMode Amount (in 1000 Tons) of US grain moved by
rail, barge, and truck from 1978 to 2013. The
data is divided into export, domestic and total
grain moved by the three modes of transport.

USDA weekly

GrainTransportCostIndex Weekly changes in truck, rail, barge, and ocean
freight rates using diesel prices, nearby
secondary rail market rates, Illinois barge rates,
and ocean freight rates from U.S. Gulf and
Pacific NorthWest to Japan as proxies.

AMS-
USDA

weekly

NASSCrops NASS Crops database USDA
NASS

daily

RailTraffic Weekly U.S. rail traffic data of Carloads,
Intermodal Units, and Total Traffic from
March 2013 to present.

Association
of
American
Railroads

weekly

SecondaryRailcarBids Weekly railcar bids/offers for the secondary
non-shuttle and shuttle railcar Market.

AMS-
USDA

weekly

TrainSpeedByCompany This dataset is downloaded from Railroad
Performance Measures website, where six
major North American freight railroads have
voluntarily reported three weekly performance
measures. The weekly data shows the train
speed (miles per hour) for intermodal, manifest,
coal unit, and grain unit.

Railroad
Performanc
e Measures
website

annual

WaybillSamples It is a stratified sample of carload waybills for
all U.S. rail traffic submitted by those rail
carriers terminating 4,500 or more revenue

Surface
Transportati
on Board

annual

19

carloads annually. (2005-2014)
Table 1. Summary of Railroad Database. A more detailed Table Meta data is attached
separated as Excel file.

ETL Process Overview

In general, many ETL processes within our system involve four steps:

1. Identify the source of raw data for tables and charts in the paper1
2. Write Python scripts to clean, correct, compile raw data into two dimensional tabular

format that’s ready for MS SQL server.
3. Write SQL command to create table with correct data types and upload the processed

data table to MS SQL database.
4. Write Python scripts to update the data table and set SQL server job to periodically run

the scripts.
Due to the wide variety of data sources and forms, the raw data initially enter in a variety of
formats and need to be assessed by qualified researchers for how to best store such data for
cataloging. This is typically done with an eye toward scalability to generic applications. Flat
formats such as Excel, CSV and well formatted XML or JSON are usually the easiest to process.
Despite that many public datasets are haphazardly published as PDFs, they typically require the
most ad hoc and unreliable conversion, as the resulting text usually loses its tabular format, and
hence can be fairly difficult to parse. All agree that Agencies and data publication entities
should avoid publishing (as a matter of unique record) data in this format more or less
exclusively.
 Most of our data sources are collections of multiple files. For example,
FreightCommodityStatistics combines reports from seven major railroad companies, each
recorded data in a different format. In some cases, such as with weather data, the number of files
necessary to construct a usable dataset stretches into the thousands or tens of thousands, so basis
scripting is necessary, and should be commoditized when possible. In some (but not most) cases,
it is necessary with current technology to partition files. Yet, this is common even in very small
datasets. Despite this obviousness, the practice of publishing data in this form is pervasive.
While not difficult to overcome for the astute programmer with some time, the fact of the matter
is that classic DBMS is a much preferred alternative usually, especially when such processing
can be shared or centralized for ad hoc querying. For example, the RailTraffic table combines
over 300 weekly reports for which it was necessary to write web-scrapping scripts to retrieve. A
weekly update SQL job is set for it as a new report is posted every week. While feasible for
every researcher to rewrite themselves (maybe), indeed many an analyst has either labored at
great error to copy-paste ad-infinitum, re-script, or simply walk away from such data. To be sure,
these data are widely underutilized relative to what they could be.

Application for collection of Rail Traffic Databases

The examples below present some very basic applications. Surely, the process of storing data in
a cloud based open data platform for querying against a live DBMS is not new.

20

 Query Example 1:
Query table GrainTransportCostIndex to get values for monthly average tariff including fuel
surcharge for shuttle cars from the ag-analytics API (copy and paste the below into any web
browser, or URL load program in any standard stat package):

https://ag-analytics.org/AgRiskManagement/api/dataservice?sql=

SELECT Date, MonAvgFuelTarrif_Shuttle FROM
GrainTransportCostIndex WHERE Date > '1/1/2003' and Date <
'11/25/2015'SELECT Date, MonAvgFuelTarrif_Shuttle
FROM GrainTransportCostIndex
WHERE Date > '1/1/2003' and Date < '11/25/2015'

Below is a screenshot of MS SQL Server Management Studio. Left column is a list of tables and
their columns in our database. The user type in the above SQL query on top right section and
results are displayed on the bottom right and can be saved to Excel.

21

Below is a Matlab command to run the above SQL query and get data from database where you
save the SQL query in filename.sql and sqlweb is an in house Matlab command written by Prof.
Joshua Woodard. See https://ag-analytics.org/AgDBForum/topic12-call-web-api-from-matlab-
using-sqlwebm.aspx

 %MATLAB CODE-Ensure that SQLWEB.m function is in path

 SQLSTRING1 = fileread('filename.sql');
 [resultMatrix,FieldNames] = sqlweb(SQLSTRING1);

Though not everyone has access to MS SQL management studio, common users can type the
above SQL query on our web interface and download the result:
https://www.ag-analytics.org/AgRiskManagement/ResAgDataQuery
Below is a screenshot of our web page.

Researchers can also access our database via API call. The URL for the above query is:

http://ag-analytics.org/AgRiskManagement/api/dataservice?sql=SELECT Date,
MonAvgFuelTarrif_Shuttle FROM GrainTransportCostIndex WHERE Date >
'1/1/2003' and Date < '11/25/2015'

https://www.ag-analytics.org/AgRiskManagement/ResAgDataQuery

22

Query Example 2:
Query table NASSCrops for monthly average corn price (measured in dollar per Bushel) from
2003 to 2016 in state of Illinois.

http://ag-analytics.org/AgRiskManagement/api/dataservice?sql=SELECT
StateFIPS, StateAlpha, FreqDesc, Year, Value
FROM NassCrops
WHERE Year > 2003 and Year < 2016 and FreqDesc = 'Monthly'
and ShortDesc = 'CORN, GRAIN - PRICE RECEIVED, MEASURED IN $ / BU'
and AggLevelDesc = 'STATE'

Below is a screenshot of MS SQL Server Management Studio. Left column is a list of tables and
their columns in our database. The user type in the above SQL query on top right section and
results are displayed on the bottom right and can be saved to Excel.

23

Below is a Matlab command to run the above SQL query and get data from database where you
save the SQL query in filename.sql and sqlweb is an in house Matlab command written by Prof.
Joshua Woodard and available at ag-analytics.org in the Forum and in API documentation
examples. See https://ag-analytics.org/AgDBForum/topic12-call-web-api-from-matlab-using-
sqlwebm.aspx

 %MATLAB CODE-Ensure that SQLWEB.m function is in path
SQLSTRING1 = fileread('filename.sql');
 [resultMatrix,FieldNames] = sqlweb(SQLSTRING1);

Though not everyone has access to MS SQL management studio, common users can type the
above SQL query on our web interface and download the result:
https://www.ag-analytics.org/AgRiskManagement/ResAgDataQuery
Below is a screenshot of our web page.

Researchers can also access our database via API call. The URL for the above query is:

http://ag-analytics.org/AgRiskManagement/api/dataservice?sql=SELECT
StateFIPS, StateAlpha, FreqDesc, Year, Value FROM NassCrops WHERE Year
> 2003 and Year < 2016 and FreqDesc = 'Monthly' and ShortDesc = 'CORN,
GRAIN - PRICE RECEIVED, MEASURED IN $ / BU' and AggLevelDesc =
'STATE'

https://www.ag-analytics.org/AgRiskManagement/ResAgDataQuery

24

Technical Details by Dataset for this example study

ExportGrainTotals

The source data was a list of CSV files on this webpage from USDA-FGIS:
https://www.gipsa.usda.gov/fgis/exportgrain/

• Export Grain Inspection 2016 (last updated 3/7/2016 4:20:58 PM)
• Export Grain Inspection 2015 (last updated 2/16/2016 7:01:47 AM)
• Export Grain Inspection 2014 (last updated 5/26/2015 4:34:21 PM)
• Export Grain Inspection 2013 (last updated 6/20/2014 8:22:09 AM)
• Export Grain Inspection 2012 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 2011 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 2010 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 2009 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 2008 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 2007 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 2006 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 2005 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 2004 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 2003 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 2002 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 2001 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 2000 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1999 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1998 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1997 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1996 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1995 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1994 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1993 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1992 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1991 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1990 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1989 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1988 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1987 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1986 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1985 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1984 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 1983 (last updated 4/8/2013 12:00:00 AM)

https://www.gipsa.usda.gov/fgis/exportgrain/
https://www.gipsa.usda.gov/fgis/exportgrain/CY2016.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2015.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2014.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2013.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2012.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2011.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2010.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2009.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2008.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2007.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2006.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2005.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2004.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2003.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2002.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2001.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2000.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1999.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1998.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1997.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1996.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1995.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1994.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1993.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1992.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1991.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1990.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1989.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1988.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1987.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1986.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1985.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1984.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY1983.csv

25

Shown below is a small section of one CSV file.

Thursday
Serial
No.

Type
Serv Cert Date Grain Pounds Destination

Subl/Carr
s

2016010
7 390469 IW

2016010
2 WHEAT

5887607
5

PHILIPPINE
S 30

2016010
7 390470 IW

2016010
3 WHEAT

2425060
0

PHILIPPINE
S 13

2016010
7 390471 IW

2016010
2 CORN

4515840
0 PERU 16

2016010
7 390472 IW

2016010
3

SOYBEAN
S

6139211
0

CHINA
MAIN 17

2016010
7 390473 IW

2016010
3

SOYBEAN
S

7777385
0

CHINA
MAIN 23

2016010
7 390474 IW

2016010
4 CORN

5032003
0 MEXICO 18

2016010
7 390475 IW

2016010
4 WHEAT

1212512
0 MEXICO 4

2016010
7 390481 I

2016010
2 CORN

2420000
0 MEXICO 110

The ETL process is as follows:
Step 1: Use YearlyExportGrainTotal.py to fetch links from USDA site, download all the csv
files, append them one after another to form a larger csv and write into 11_processed.csv
Step 2: Use Upload_YearlyExportGrainTotal.py to create table in AgDB
[dbo].[ExportGrainTotals] and bcp write to SQL server
Shown below is the python script for Step 1.

##########################
######Date: 01-25-2016
Copyright: Joshua D. Woodard, Ag-Analytics.org
Contributors: Lin Xue, Tridib Dutta, Josh Woodard, with assistance from Alex
Muchocki, Anthony Perello, and Ag-Analytics team.
##########################
######Summary: This script fetch links from usda site, download the csv files,
append them one after another to form a larger csv
###########################

packages needed
import urllib2
import re
import os
import pandas as pd
import ssl

global variable

26

workingDir = 'E:\\DatabaseFiles\\UpdateDBFiles\\ExportGrainTotals\\'
pathToFiles = 'https://www.gipsa.usda.gov/fgis/exportgrain/'
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE
function to fetch the links to the required .csv files
def fetchLinks(pathToFiles):
 lines = urllib2.urlopen(pathToFiles, context = ctx).readlines()
 lines = ''.join(lines)
 links = re.findall('(\S+).csv', lines)
 #print links
 #create the links corresponding to each file and store it in a list
 #the line below: creats a string out of the list links
 #replace the unwanted "'" by re.sub() and then replace the 'href=' by the
pathToFiles and split() into a list
 csvLinks = re.sub('[\']','', ' '.join(links).replace('href=',pathToFiles)).split(' ')
 for i in range(len(csvLinks)):
 csvLinks[i] = csvLinks[i] +'.csv'
 return csvLinks

function to download a file from given link
def downloadfiles(link):
 try:
 fileName = url.split('/')[5]
 #print fileName
testFile = urllib.FancyURLopener()
testFile.retrieve(url, workingDir + fileName)
#csvFile.write(testFile.read())
testFile.close()
 response = urllib2.urlopen(url, context=ctx)
 #open the file for writing
 fh= open(workingDir + fileName, "w")
 #read from request while writing to file
 fh.write(response.read())
 fh.close()
 except IOError as e:
 print e

main()
get the links (important variable, we will use it later as well)
reqLinks = fetchLinks(pathToFiles)
#read the files and dump those onto the working directory
for url in reqLinks:
 fileName = url.split('/')[5]
 downloadfiles(url)

27

###reqLinks[len(reqLinks)-1]
##reqLinks[::][0].split('/')[5]

##To build a single dataset, read in the files and stack one on top of the other
#First, build an empty dataframe
df = pd.DataFrame()
#cycle through the downloaded files and append one after the other
for x in reqLinks[::]:
 fileName = x.split('/')[5]
 DF = pd.read_csv(workingDir + fileName,low_memory=False)
 ##some of the cells in column 6 contain comma like " , ", remove the comma as
we are writing csv
 DF.iloc[:,6] = DF.iloc[:,6].str.replace(',',' ')
 df = df.append(DF, ignore_index=True)

now that the dataset is build, dump it in the RailWay_database as
11_processed.csv
df.to_csv(workingDir + '11_processed.csv', index = False)

Set up SQL Server Agent Job to update monthly.
SQL Job Name: OCE_ExportGrainTotals
Step 1: C:\python27\python
E:\DatabaseFiles\UpdateDBFiles\ExportGrainTotals\YearlyExportGrainTotal.py
 Step 2: C:\python27\python
E:\DatabaseFiles\UpdateDBFiles\ExportGrainTotals\Upload_YearlyExportGrainTotal.py
Schedules: Monthly on day 1

FreightCommodityStatistics ETL Procedure Example
For this example, we scrape Freight Commodity Statistics dataset from Surface Transportation
Board’s (STB) website (http://www.stb.dot.gov/econdata.nsf/FCStatistics?OpenView). These
are historical datasets which are available from the year 2012 onwards. The earlier years have
datasets in scanned pdf formats making them virtually useless and incapable of scraping or
using. There are altogether seven railroad companies whose commodity statistics data are
provided in the STB’s website. They are Burlington Northern Santa Fe (BNSF), Union Pacific
(UP), Grand Trunk Corporation (GTC), CSX Transportation (CXWT), Norfolk Southern (NS),
Soo Line Railroad (SOO), and Kansas City Southern Careers (KCS).
For each of these companies, the following information are collected. There are two major
categories: Revenue Freight Originating on respondent's Road and Revenue Freight Received
from connecting carriers. Within each of these two categories, there are two sub-category:
Terminating on line and Delivered to Connecting Carriers. Within each of these sub-categories,
there are two sets of numbers that are given: Number of Carloads and Number of Tons (2000
LBS). The Total Revenue Freight Carried and Gross Freight Revenue Dollars are also provided.
Each row of table contains the commodity the railway carried; full description and a
corresponding numeric code is also provided. Most the companies refer to this numeric code to
describe the commodity they carried.

http://www.stb.dot.gov/econdata.nsf/FCStatistics?OpenView

28

 The tables are not wholly consistent with each other, and contain numerous data entry
errors. For each of the companies, we had to write a script to download the data (the excel file)
and process that dataset into a usable format. Finally we combined those dataset into a single
small data table before uploading to DBMS for querying via cloud platform. To identify which
data belongs to which company and which year in the final table, we added two extra columns;
one representing year of the statistics and the second represents the company whose statistics it
is. The following python scripts need to be run in order to build the processed flat file from the
available excel files on the web. Note: We have noticed that some of the URLs may have
changed within the timeframe of our project. So if one or more script doesn't return anything,
then please check the URL first.

##Step 1
Run FrightComodityStatistics_{BNSF, GTC, CXWT, NS, SOO, UP, KCS}.py
scripts

These scripts will download raw data to a temporary subfolder 'tempDirFor_06' and then uses
this raw data to build the processed table for each company (NS etc.).
Step 1 above represents seven scripts, one for each company. Below is an example of a typical
script.

This script gets the data for the company BNSF
The raw data is already there in the tempDir_06 subfolder

import pandas as pd
import urllib
import chardet

These modules were used in the script to scrape and process the data.

#recode the CODE column for consistancy
def recode(x):
 #calc len of x (this would be like number of rows in your file
 N=len(x)
 #loop thorough and do checks then recode
 currTree=0 #set current tree val at zero
 currTreeLen=1 #
 recodeV= [None] * N

 for i in range(N):
 #need to convert x[i] to integer first since codeing of 01 is not consistent, the
convert backto string to strip lieading zeros
 y=int(x[i])
 v=str(y)
 chkTree=int(v[:currTreeLen])
 #check if equal to current tree num
 if chkTree==currTree:
 #if so recode by stripping of currTreeLen digits

29

 recodeV[i]=float(str(currTree)+'.'+v[currTreeLen:])
 #print str(currTree)+'.'+v[currTreeLen:]
 else:
 recodeV[i]=int(v)
 currTree=int(v)
 currTreeLen=len(v)

 return recodeV

The above code is needed to redo the code for each commodity. Due to the ambiguity present in
the coding, we felt the need for recoding into a different format which is consistent and which
can be used as a key in a database table.

A boolean function checks to see if it x is an integer
def is_int(x):
 try:
 int(x)
 return True
 except:
 return False

This function gets the row indices where there is not an integer
‘a’ is a pandas data frame
colIndex is the column index which we want to test
def findBadIndices(a,colIndex):
 badIndices = []
 for i in range(len(a)):
 x = a.iloc[i,colIndex]
 if not is_int(x):
 badIndices.append(i)
 return badIndices

boolean: number or not (could be int, float etc)
def is_number(x):
 try:
 float(x)
 return True
 except ValueError:
 return False

Boolean: checks if a string is not emplty
def isNotBlank (myString):
 if myString and myString.strip():
 #myString is not None AND myString is not empty or blank
 return True

30

 #myString is None OR myString is empty or blank
 return False

these will clean up the cells of each table (there are lots of errors)

There are couple of datetime object burried deep inside the excel file
this function checks if an entry is a pandas datetime object
def is_dateTimeObj(x):
 if isinstance(x, pd.datetime):
 return True
 else:
 return False

The code snippet above has several custom functions which will help us in the function below.

def clean_cell(some_string):
 if not pd.isnull(some_string):
 if is_dateTimeObj(some_string):
 return None
 if type(some_string) == unicode:
 ## convert to ascii
 some_string = some_string.encode('ascii','ignore')
 if isinstance(some_string, str):
 if chardet.detect(some_string)['encoding'] == 'ascii':
 if is_number(some_string):
 if is_int(some_string):
 some_string = int(some_string)
 return some_string
 else:
 some_string = float(some_string)
 return some_string
 else:
 if len(some_string.split('/')) > 1:
 some_string = None
 return some_string
 elif len(some_string.split('-')) > 1:
 some_string = None
 return some_string
 else:
 if isNotBlank(some_string):
 some_string = ''.join(c for c in some_string if c.isdigit())
 if isNotBlank(some_string):
 return some_string
 else:
 return None

31

 else:
 some_string = None
 return some_string
 else:
 #chardet.detect(some_string)['encoding'] != 'ascii':
 some_string = None
 else:
 return some_string
 return some_string

The workhorse for our python script is the above function which cleans each cell with errors.
The errors could be one of many. For example, a few of the entries were found to be a data-time
object while many of the entries had special symbols ‘-‘ or ‘,’ or white space in between digits
of a number, making them read in as character and not as a numeric value. Some even had
encoding problems which we needed to get rid off or if possible convert to ascii.

The following function outputs a dictionary with data type groups for the
columns of the dataFrame
def dataTypeOutput(dataFrame):
 g = dataFrame.columns.to_series().groupby(dataFrame.dtypes).groups
 return g

url =
'http://www.stb.dot.gov/econdata.nsf/27dead93525f6773852578aa004bc24d/4a7f
061966ae7fcb85257dfd00572bbd/$FILE/BNSF.xlsx'
testFile = urllib.URLopener()
testFile.retrieve(url,'tempDirFor_06/06_BNSF_output_2014.xlsx')

The above line of codes retrieve the data file from the provided URL.

skip_rows = 9
df_2014 = pd.DataFrame()
for i in range(12):
 if i != 11:
 df = pd.read_excel('tempDirFor_06/06_BNSF_output_2014.xlsx', skiprows
= skip_rows, header = None,sheetname=i)
 df_2014 = pd.concat([df_2014, df], ignore_index=True)
 else:
 df = pd.read_excel('tempDirFor_06/06_BNSF_output_2014.xlsx', skiprows
= 10, skipfooter = 14 ,header = None, sheetname = i)
 df_2014 = pd.concat([df_2014,df], ignore_index = True)

After examining the raw data, we needed to set the parameters of the pandas’ read_csv() function
accordingly. Above code snippet does exactly that.

32

The first column (0th column) contains both the Code and their values(names)
For consistency, we get rid off the code names and keep only the code
For consistency, we split up the first (index 0) INTO TWO COLUMNS (containing the code and
the name) as in below.

newDF = pd.DataFrame(df_2014.iloc[:,0].str.split(' ',1).tolist(), columns = ['0','1'])

Drop the first column and concatinate the newDF with it and then rename the columns
This line of code get rid off the code names

df_2014.drop(df_2014.columns[0],axis =1, inplace = True)

Concatenate newDF and df_2014

df_2014 = pd.concat([newDF[newDF.columns[0]], df_2014], axis = 1)

Remove any row with 0 columns having NaN

df_2014.drop(df_2014.index[findBadIndices(df_2014,0)], inplace = True)

Re-index the rows (to be consistent)
df_2014.index = list(range(len(df_2014)))

Rename the columns (to be consistant)

df_2014.columns = list(range(len(df_2014.columns)))
Recode the first column (using the recode() function).

df_2014.iloc[:,0] = recode(df_2014.iloc[:,0].values.tolist())

for i in range(1,12):
 df_2014.iloc[:,i] = df_2014.iloc[:,i].apply(clean_cell)

The other years, 2012 and 2013 are somewhat similar to 2014 in principle and we omit it from
this report for the sake of clarity and brevity.

add a 'Year' column to the dataframes
a = pd.Series([2014]*len(df_2014), dtype = 'int', name = 'Year')
df_2014 = pd.concat([df_2014,a], axis = 1, ignore_index=True)

add a 'Year' column to the dataframes
a = pd.Series([2013]*len(df_2013), dtype = 'int', name = 'Year')
df_2013 = pd.concat([df_2013,a], axis = 1, ignore_index=True)

add a 'Year' column to the dataframes
a = pd.Series([2012]*len(df_2012), dtype = 'int', name = 'Year')
df_2012 = pd.concat([df_2012,a], axis = 1, ignore_index=True)

33

#stack the different data frames according to the year
final_df = pd.concat([df_2012,df_2013,df_2014], ignore_index=True)

The above code snippet compiles the different years into a final table.
Once we process all the companies. We have seven datasets. We compile those seven into a
single large table in Step 2 below.

##Step 2
Run FrightComodityStatistics_buildTable.py

Note that this will create the final flatfile (.csv) by combining the cleaned up and processed files
from Step 1 for each of the companies mentioned above.

##Step 3
##to upload the table to a SQL server
Run FrightComodityStatistics_UPLOAD.py

Note 1. You must change the following information according to your need: sql

CREATE TABLE statement, sqlserverinstance, database schema, working director, filename
containing the table, table name etc.
 Note 2. We ran into problems with 'bcp' command (for bulk upload to SQL server). In
most of the cases we were able to resolve the issue by setting appropriate flag in the 'bcp'
command for end-of-line (EOF) charachter (it could be either {CR}{LF} or {CR} or {LF}.
Check yours by opening it with, say, Notepad++ and enabling hidden symbol viewing capabiity).
Here is a snapshot of the final dataset.

Code

Revenue Frieight
Origin Terminating

Online Carload

Revenue Frieight
Received

Terminating Online
Carload

Total Revenue Frieight
Carried Carload Year company

1 657042 18158 780980 2012 BNSF
1.1 613499 17513 733412 2012 BNSF

1.12 10710 2 10712 2012 BNSF
1.121 0 0 0 2012 BNSF

We encountered the following issues we ran into while processing the files for each company.
1. The url for some of the excel raw data file seems to have changed very recently and
URLopener() function from the `urllib` module no longer works. We needed to replace
`URLopener(`) by `FancyURLopener()` to make them retrieve the target raw data file.
2. Several of the excel files for companies including BNSF, GTC, etc. have multiple format
error making them really hard to make a flat file (`.csv`) out of those file.
All the scripts in Step 1 contain a function called `clean_cell()` which takes care of most of those
formating abnormalities buried deep inside those excel raw data files. For example, in the raw
data file for the year 2012 from the company BNSF, most of the entered numbers had space in

34

them (`2124 4` instead of 21244) making them read in as `string` in the database or python
reader, resulting in obvious misinterpretation while performing analysis or any mathematical
operations on these datasets. Couple of the cells seems to have accidentally encoded as a
`datetime` object when they should be clearly numeric. Our `clean_cell()` function is able to
handle all these problems. However, there might be unexpected formating error in the file which
`clean_cell()` may not be able to process.
3. Another major issue we ran into is the encoding of different goods/Commodities that the
railway companies transported. It seems that there is a industry-wide standard for encoding
commodity goods the railway companies handle. They have assigned integer code to different
goods. For example the number 1 (sometimes entered as 01, although not consistently)
represents a broad category which is called 'Farm Products'. Under this category is 'Field Crops',
which is assigned a value 11 (sometimes entered as 011, , although not consistently). Ironically,
in the same document, the number 11 was assigned to 'Coal' which is a broad category
representing coal based products such as Anthracite which was assigned a numeric value of 111.
This we thought could create a lot of confusion especially if this coding is used as 'key' while
downloading data from our database. To resolve the matter, we had to come up with our own
recoding of these numeric values. We decided that it is fit that instead of using integer values, we
would use float type numbers and 1 will be encoded as 1.000 while 11 (representing Field Crops,
a sub category of Farm product) will be assigned the value 1.100 instead of 11 or 011. This way
coal can be 11.000 and so on. We wrote a little function called `recode()` which can be found in
each of the scripts mentioned in Step 1.

GrainInspectionByPort
This table contains data for the grain inspected and/or weighed for export by region and port
region. The port regions are Pacific North West, Mississippi Gulf, Texas Gulf, Interior region,
Greal Lakes region and the Atlantic region. The data shows insepction for Corn, Wheat and
Soybean at these ports. The table contains data starting from 1/4/1996 to the present (as of the
writing of this report).

Copyright: Joshua D. Woodard, Ag-Analytics.org
Contributors: Lin Xue, Tridib Dutta, Josh Woodard, with assistance from Alex
Muchocki, Anthony Perello, and Ag-Analytics team.
##########################
######Summary: This script download the GTRTable16.xlsx from the USDA
website:
http://www.ams.usda.gov/services/transportation-analysis/gtr-datasets,
read and process the table using pandas and save it to a CSV file.
###########################
import os
import urllib
import pandas as pd

The above modules are used to scrape and process the file.

#global variables
workingDir = "E:\\DatabaseFiles\\UpdateDBFiles\\GrainInspectionByPort"

35

##retrieve the file from the link
url = 'http://www.ams.usda.gov/sites/default/files/media/GTRTable16.xlsx'
testFile = urllib.URLopener()
testFile.retrieve(url, workingDir + '\\12_output.xlsx')

The above code snippet retrieves the original raw data file (GTRTable16.xlsx) from the USDA
website and saves it as 12_output.xlsx in our local folder.

takes a datetime.datetime obj and converts into this specific format
def dateTimeToNormal(date):
 return date.strftime('%m/%d/%Y')

This is a utility function which will be used later while processing data.

The set of codes below read in the saved file (12_output.xlsx) into a pandas data frame and
change the names of the columns to a more readable names.

usecols =
['Date','Wheat','Corn','Soybean','Wheat.1','Corn.1','Soybean.1','Wheat.2','Corn.2','S
oybean.2',
'Wheat.3','Corn.3','Soybean.3','Wheat.4','Corn.4','Soybean.4','Wheat.5','Corn.5','So
ybean.5']

##read in the excel file into a pandas data frame DF
DF = pd.read_excel('12_output.xlsx', sheetname = 'Data',skiprows =
20,skip_footer = 50, usecols = usecols)

##change the column names to the following
newColNames =
['Date','pac_Wheat','pac_Corn','pac_Soybean','MS_Wheat','MS_Corn','MS_Soybe
an','TX_Wheat','TX_Corn','TX_Soybean','GL_Wheat','GL_Corn','GL_Soybean','
Atl_Wheat','Atl_Corn','Atl_Soybean','Int_Wheat','Int_Corn','Int_Soybean']

##change the colnames
for i in range(len(newColNames)):
 DF.columns.values[i] = newColNames[i]

As is typical of these raw datasets, there were seveal formating errors in the saved .xlsx file. The
functions below will find objects with unicode encoding among the datetime objects and return a
cleaned datetime object if possible.

There seems to be unicode objects buried in this column as seen above.
Need to clean those and convert to datetime.datetime object

36

First need to find the indices of those unicode values
def returnBadIndices(DF):
 bad_vals = []
 for i in range(DF.shape[0]):
 if type(DF.Date[i]) is unicode:
 bad_vals.append(i)
 #print i
 return bad_vals

bad_indices = returnBadIndices(DF)

return cleaned datetime.datetime objects

def returnCleanedDateTimeObjs(bad_vals, DF):
 import re
 from datetime import datetime
 cleanedVals = []
 dateList = []
 for i in range(len(bad_vals)):
 a = DF.ix[bad_vals[i],'Date'].split('/')
 a[2] = re.sub('[^0-9]','', a[2])
 a = a[2]+'-'+a[0]+'-'+a[1]

 dta = datetime.strptime(a,'%Y-%m-%d') ## necessary to make it uniform
with the rest of the column vals
 cleanedVals.append(dta)
 return cleanedVals

Fix the errors here
goodVals = returnCleanedDateTimeObjs(bad_indices,DF)
for i in range(len(bad_indices)):
 DF.ix[bad_indices[i],'Date'] = goodVals[i] ## assigned the cleanedup values to
the appropriate places

#convert to the required format using dateTimeToNormal() function
DF.Date = DF.Date.map(lambda x: dateTimeToNormal(x))

Once the date objects are cleaned and properly formated, we write it back to our local folder as
‘12_processed.csv’ file for the next step, which is to upload it to SQL server.

##write to a .csv file in preparation for upload to the SQL database
DF.to_csv(workingDir +'\\12_processed.csv',index = False)

37

############ Remove the temporary file
os.remove(workingDir+'\\12_output.xlsx')

A snapshot of the data is presented below.

Date
pac_Whe
at

pac_Soybea
n

MS_Whe
at

MS_Cor
n

MS_Soybe
an

TX_Whe
at

TX_Cor
n

1/4/1996 11540 3592 1827 26476 14510 6900 0
1/11/199

6 13881 2532 4188 32064 21989 3819 2586
1/18/199

6 17181 2410 3519 31917 21851 6182 2190
1/25/199

6 13129 1030 4871 41552 17118 3320 1819
2/1/1996 10798 1656 5371 37731 13637 5068 1100
2/8/1996 4377 391 4472 28466 12685 4013 2399

The next step is to upload it to our SQL datawarehouse. This is done by running the following
script.

Run 12_upload.py
The code for upload script is same as in all other cases (with the only exception being the file
name and the structure of the tables to be uploaded which needs to be changed each time a new
table is uploaded) and therefor left out from this description for brevity.

GrainTransportByMode Table ETL Example
This table represents data for mode of transport (by Truck, Burge or Railroad) of different crops
(Corn, Wheat, Soybean, Sorghum, and Barley) in the US, starting from the year 1978. It also
segment the data for domestic and export movement.
The following script was used to download the appropriate data file and processed it accordingly.
##########################
######Date: 01-18-2016

Copyright: Joshua D. Woodard, Ag-Analytics.org
Contributors: Lin Xue, Tridib Dutta, Josh Woodard, with assistance from Alex
Muchocki, Anthony Perello, and Ag-Analytics team.

##########################
######Summary: This script batch read all the fixed width text files into CSV
###########################

import pandas as pd
import urllib

As before, the following modules were used for our purpose.

38

Below code snippet retrieves the file from the appropriate URL and saves it in the local folder as
`01_output.xlsx’.

##retrieve the excel file (put in the code here)
url =
"http://www.ams.usda.gov/sites/default/files/media/DATA%20FOR%20MODAL
%20SHARE%20STUDY%202013.xlsx"
testFile = urllib.URLopener()
testFile.retrieve(url, "01_output.xlsx")

Data for different crops were provided in separate tab in the downloaded excel file. So we had to
get the excel sheet tab names to automate the process.

these names are retrieved from 01_output.xlsx file above
xls = pd.ExcelFile("01_output.xlsx")
allSheetNames = xls.sheet_names

ExcelSheetName = allSheetNames[1:7]
#ExcelSheetName = ['ALL GRAINS BY MODE ', 'CORN BY MODE','WHEAT
BY MODE','SOYBEANS BY MODE','SORGHUM BY MODE','BARLEY BY
MODE']

The following function reads the excel file tab by tab, drop certain unnecessary columns and then
combine all the crop information into a single table and saves it as ‘GrainTransportByMode.csv’
in our local folder for the next step, which is uploading it to our SQL datawarehouse.

For the sake of completeness, we renamed some or all of the columns for the ease of
understanding what the columns represent when downloaded by someone who is interested in
performing some analysis with these tables.

def buildTable(SheetName, inputFileName = "01_output.xlsx"):

 ## if 'ALL GRAINS BY MODE ' is little bit different from the Grain
worksheets themselves
 if SheetName == 'ALL GRAINS BY MODE ':
 DF = pd.read_excel('01_output.xlsx', sheetname = SheetName, skiprows=3)
 else:
 DF = pd.read_excel('01_output.xlsx', sheetname = SheetName, skiprows= 2)

 ## drop the columns 2,4,6
 dropcols = [2,4,6]
 DF.drop(DF.columns[[dropcols]], axis = 1, inplace = True)

39

 ## drop the oth row. not needed
 DF.drop(DF.index[[0]], inplace = True)
 DF.index = range(DF.shape[0]) #change the row index
 DF.head()

 Total = DF[:36]
 Export = DF[37: 67]
 Domestic = DF[68:]

 # reset the index (Total's index is already from 0)
 Export.index = range(Export.shape[0])
 Domestic.index = range(Domestic.shape[0])

 # rename the columns
 Total.columns =
['Year','Rail_Total_1000tons','Barge_Total_1000tons','Truck_Total_1000tons']
 Export.columns =
['Year','Rail_Export_1000tons','Barge_Export_1000tons','Truck_Export_1000tons
']
 Domestic.columns =
['Year','Rail_Domestic_1000tons','Barge_Domestic_1000tons','Truck_Domestic_
1000tons']

 ## merge the two columnwise to get one table (colnames indicates Export or
Domestic or total)
 tempDF = pd.concat([Domestic,Export[[1,2,3]]], axis = 1)

 newDF = pd.merge(tempDF, Total, on= 'Year', how = 'outer', left_index =
True)
 newDF = newDF.sort_index()
 fieldName = pd.Series(SheetName.split(" ")[0], index =
range(newDF.shape[0]))
 newDF = pd.concat([newDF, fieldName], axis = 1)

 return(newDF)

for i in range(len(ExcelSheetName)):
 if i == 0:
 tempDF = buildTable(ExcelSheetName[i])
 else:
 temp = buildTable(ExcelSheetName[i])
 tempDF = pd.concat([tempDF, temp])

tempDF.columns.values[len(tempDF.columns)-1] = 'GrainName'

40

tempDF.to_csv("GrainTransportByMode.csv", index = False)

Here is a snapshot of the final table.

Year
Rail_Domestic_1000
tons

Truck_Domestic_100
0tons

Barge_Export_1000
tons

Rail_Total_1000t
ons

1978 NULL NULL NULL 117087
1979 NULL NULL NULL 127177
1980 NULL NULL NULL 143402
1981 NULL NULL NULL 127581
1982 NULL NULL NULL 121188
1983 NULL NULL NULL 130457
1984 66737 86163 60194 124984
1985 64620 103200 51554 105086
1986 80202 102419 45108 115094
1987 93492 117268 56990 139667
1988 94941 121868 58480 151145
1989 92011 89748 62745 143893
1990 92698 111194 62501 134999
1991 85703 128526 63477 126245
1992 94854 115477 68424 135681
1993 91598 136873 60595 134717
1994 96767 124416 57966 124489
1995 101417 139851 67631 152033
1996 84695.756 143425.0132 66920.956 131998.955

Next we upload the document using the script ‘upload2DB_GrainTransportByMode.py’. Since
this is similar to the upload procedure for the other tables, we leave it out from this report.

GrainTransportCostIndex

Grain Transportation Cost Index table contains data for T & M Grain Transport Cost Index
Calculation data. The historical record goes back to 08/21/2002 and contains weekly updates.
There are data for Diesel prices, Secondary Unit, Secondary Shuttle, Illinoise River, Ocean Gulf,
and Pacific North West (PNW). The cost index is calculated for Trucks (=diesel price,
($/gallon)), for Rail (= near-month secondary rail market bid and monthly tariff rate with fuel
surcharge ($/car), for barge (= Illinoise River barge rate), and for Ocean frieght (=Routes to
Japan ($/metric ton)). Cost index is calculated taking Year 2000 as the base value.
The script ‘GrainTransportCostIndex.py’ downloads the data from the USDA website as
‘output.xlsx’, process it appropriately using pandas data frame and then writes it back to a local
folder as ‘08_processed.csv’ file. Then uploads it into the SQL datawarehouse. The procedure is
pretty simple as can be seen from below code. The codes are self-explanatory.

##########################
Copyright: Joshua D. Woodard, Ag-Analytics.org

41

Contributors: Lin Xue, Tridib Dutta, Josh Woodard, with assistance from Alex
Muchocki, Anthony Perello, and Ag-Analytics team.

##########################
######Summary: This script download the GTRTable1.xlsx from the
USDA website,
######read and process the table using pandas and upload to SQL server
using bcp(bulk copy).
import os, sys
import pyodbc
import subprocess
import urllib
import pandas as pd

Above python modules were used for this processing job.

Since we process the data and upload the processed table into a SQL server using a single script,
we have the relevant SQL command and the upload command in the script.

#global variables
workingDir = "E:\\DatabaseFiles\\UpdateDBFiles\\GrainTransportCostIndex\\"
sqlServerInstance = ".\MSSQLSVRAG" #this way when it is a SQL Server
named instance)
schema="dbo" #schema for processed data
db="TestDB" #database name
db="AgDB" #database name

#retrieve the file from the link
url = 'http://www.ams.usda.gov/sites/default/files/media/GTRTable1.xlsx'
testFile = urllib.FancyURLopener()
testFile.retrieve(url, workingDir + "output.xlsx")

DF = pd.read_excel(workingDir +'output.xlsx', sheetname = 'Data',
skiprows=range(6),na_values=['nq','n/a','One Week Lag '] ,parse_dates = True)

##drop the following columns 8,9,15,22,23
dropcols = [7,8,15,22,23]
DF.drop(DF.columns[[dropcols]], axis = 1, inplace = True)

##change the names of the columns
for i in range(7,13):
 DF.columns.values[i] = 'Weekly_Ind' + DF.columns.values[i].split('.')[0]

for i in range(13,19):
 DF.columns.values[i] = 'Base_' + DF.columns.values[i].split('.')[0]

42

for i in range(19,21):
 DF.columns.values[i] = 'MonAvgFuelTarrif' + DF.columns.values[i].split('.')[0]

Extract the date from the Timestamp object
DF.Date = DF.Date.map(pd.Timestamp.date)
DF.to_csv(workingDir + 'processedGTRTable1.csv', index = False)

After we process the file, we write the processed file ‘processedGTRTable1.csv’ into our local
folder. The next part of our code actually uploads the file in to the SQL server using bulk copy
tool (bcp).

try creating the database if it is already not there
try:
 conn = pyodbc.connect("DRIVER={SQL Server};
SERVER="+sqlServerInstance+"; DATABASE=Master; Trusted connection=
Yes", autocommit = True)
 #Note, default pyodbc connect is autocommit = false. For creating a new
database, must have autocommit = True
conn = pyodbc.connect("DRIVER={SQL Server};
SERVER="+sqlServerInstance+"; DATABASE=Master; UID=sa;
PWD=Voshln14!", autocommit = True)
 cursor = conn.cursor()
 query = "CREATE DATABASE " + db
 cursor.execute(query)
 cursor.commit()
 conn.close()
 print "Initial create of ",db," is complete."
except Exception as e:
 print db," DB already exists"
 print e

Creating database is done

conn = pyodbc.connect("DRIVER={SQL
Server};SERVER="+sqlServerInstance+";DATABASE="+db+";Trusted
connection= Yes")
##conn = pyodbc.connect("DRIVER={SQL
Server};SERVER="+sqlServerInstance+";DATABASE="+db+";UID=sa;
PWD=Voshln14!")
cursor = conn.cursor()

try:
 #create table if it does not already exist

43

 sqlcmd="""CREATE TABLE [dbo].[GrainTransportCostIndex] (
 [Date] date,
 [Ind_Price] float,
 [IndUnit] float,
 [IndShuttle] float,
 [IndRiver] float,
 [IndGulf] varchar(36),
 [IndPNW] float,
 [Truck] float,
 [Unit 1] float,
 [Shuttle 1] float,
 [Barge] float,
 [Gulf 1] float,
 [Pacific] float,
 [Truck 1] float,
 [Unit 2] float,
 [Shuttle 2] float,
 [Barge 1] bigint,
 [Gulf 2] float,
 [PNW 1] float,
 [MonAvgFuelTarrif_Unit] float,
 [MonAvgFuelTarrif_Shuttle] float
)"""
 cursor.execute(sqlcmd)
 cursor.commit()
 conn.close()
 print 'Initial create of [GrainTransportCostIndex] Complete.'
except Exception as e:
 #print '[GrainTransportCostIndex] already exists.'
 sqlcmd="""TRUNCATE TABLE [dbo].[GrainTransportCostIndex]"""
 cursor.execute(sqlcmd)
 cursor.commit()
 conn.close()
 print e

############ use bulk copy (bcp) to load the data into the CommodityFutures
table
theproc = subprocess.call('bcp '+db+'.'+schema+'.GrainTransportCostIndex' + ' in
' + workingDir + 'processedGTRTable1.csv' + ' -c -t, -T -S' + sqlServerInstance)
##print theproc
############ Remove the temporary file
os.remove(workingDir+'output.xlsx')

44

 Below is a snapshot of the processed data table.
Date Price Unit Shuttle River Gulf PNW

8/21/2002 1.333 -21.5 NULL 128 20.13 11.05
8/28/2002 1.37 -11.5 NULL 128 20.83 11.03
9/4/2002 1.388 -13 NULL 139 22.06 11.21

9/11/2002 1.396 -15 NULL 145 22.7 12.16

RailTraffic table

The source data is over 300 PDF reports we downloaded from website of Association of
American Railroads:
https://www.aar.org/newsandevents/Freight-Rail-Traffic/Documents/Forms/CM%20View.aspx

Shown below is a small section of the PDF report.

The PDF convertor we use is Xpdf: http://www.foolabs.com/xpdf/home.html
In particular, we used the pdftotext.exe binary file for Windows system, which is part of the
Xpdf.
After Xpdf is installed or binary files of pdftotext.exe is downloaded, the command to convert
PDF to text files is:

pdftotext –table file.pdf
It will create a file.txt file in the same directory.
The ETL process:

https://www.aar.org/newsandevents/Freight-Rail-Traffic/Documents/Forms/CM%20View.aspx
http://www.foolabs.com/xpdf/home.html

45

Step 0: Run InitLoad_PDFstoCSV.py to batch convert all the PDF files to txt files using
Xpdf’s pdftotext.exe then read the text files into one csv file. Run Upload_RailTraffic.py to
upload the data table dbo.RailTraffic to SQL server.
This step only needs to be done once to create the 04_railtraffic.csv for initial load. All future
updates will append newer records to existing dataset.
Step 1: Run Update_railtraffic.py to download the newest PDF file from source URL, convert
it to text file using using Xpdf’s pdftotext.exe, read it and append the data to 04_railtraffic.csv.
Step 2: Run Upload_RailTraffic.py to update the data table dbo.RailTraffic
Shown below is the python script to update RailTraffic dataset.

##########################
######Date: 01-21-2016
Copyright: Joshua D. Woodard, Ag-Analytics.org
Contributors: Lin Xue, Tridib Dutta, Josh Woodard, with assistance from Alex
Muchocki, Anthony Perello, and Ag-Analytics team.
##########################
######Summary: This script download the newest PDF from https URL, convert
it to text file, read it and append the data to railtraffic.csv
###########################
import os, sys
import os.path
import urllib2
import ssl, socket
import itertools
import re

#global variables
workingDir = "E:\\DatabaseFiles\\UpdateDBFiles\\RailTraffic"
mypath = 'https://www.aar.org/newsandevents/Freight-Rail-
Traffic/Documents/Forms/CM%20View.aspx'
#note: it's https
ssl.create_default_context module only available after python2.7.9
ctx = ssl.create_default_context()

define function to fetch the newest PDF link from a webpage
def fetchPDFlink(url):
 try:
 mylines = urllib2.urlopen(url, context=ctx).readlines() # note: context
parameter has to be passed for https
 k = re.search('href="(\S+).pdf"', ''.join(mylines))
 pdflink = k.group(0)
 pdflink = pdflink.replace('href="', 'https://www.aar.org')
 pdflink = pdflink.replace('"', '')
 return pdflink
 except Exception as e:
 print "NOT found plz check url"
 print e

46

define function to download the PDF from the link and convert it to text file
def downloadPDF(pdflink, filename):
 try:
 webFile = urllib2.urlopen(pdflink, context = ctx)
 pdfFile = open(workingDir + "\\" + filename, 'wb')
 pdfFile.write(webFile.read())
 webFile.close()
 pdfFile.close()
 # base = os.path.splitext(fname)[0]
 # os.rename(fname, base+ ".pdf")
 except IOError as e:
 print e
 #convert PDF to txt
 os.system(workingDir + "\\pdftotext -table " + workingDir + "\\" + filename)

function to check if a string can be represented as a number
def is_number(s):
 try:
 float(s)
 return True
 except ValueError:
 return False

function to read a text file and append a new line in output csv
def read_txt(filename):
 # grab the date from the text file name
 date = filename[:10]
 # open the input file with read only permit
 with open (workingDir + "\\"+ filename) as inF:
 outF.write(date + ",")
 linestr = ""
 for line in itertools.islice(inF, 8, 33):
 #strip the newline character
 line = line.rstrip()
 #check to see if the line is empty
 if line:
 #remove all comma in the line
 line = line.replace(",", "")
 arr = re.split("\s+", line)
 for ii in arr:
 # call function to check if ii is a number
 if is_number(ii):
 linestr += ii + ","
 break

47

 linestr = linestr.rstrip(",")
 outF.write(linestr + "\n")
##############
main()
##############
open an output file to append
outF = open(workingDir + "\\04_railtraffic.csv", "a")
call function to fetch the newest PDF link from a webpage
newlink = fetchPDFlink(mypath)
#get filename from the pdflink
fname = newlink.split('/')[-1]
#textfile name
textfile = fname.replace(".pdf", ".txt")
#check to see if file exists in current workingDir
if not os.path.isfile(fname):
 # call function to download the PDF and convert it to text file
 downloadPDF(newlink, fname)
 # call function read_txt to read the text file and append new line to
04_railtraffic.csv
 read_txt(textfile)
outF.close()

Shown below is a small section of the final data table. The rows of carloads types in the raw
PDF file are transposed to be the columns of the final table. Each row in the final table represent
data from one raw PDF file. Data from the PDF files are appended one after another to form a
time series.

Set up SQL Server Agent Job to update this dataset weekly.
Step 1: C:\python27\python E:\DatabaseFiles\UpdateDBFiles\RailTraffic\Update_railtraffic.py
Step 2: C:\python27\python E:\DatabaseFiles\UpdateDBFiles\RailTraffic\Upload_RailTraffic.py
Schedule: Weekly on Friday at 1 am

Date
Total
Carloads Chemicals Coal

Farm
and
Food
Products

Forest
Products Grain

Metallic
Ores
and
Metals

Motor
Vehicles
and
Parts

Nonmetallic
Minerals
and
Products

3/7/2013 283819 31360 114155 16456 10963 17289 25177 17803 28501
3/14/2013 276698 29196 112000 16862 10769 17625 21106 18182 29936
3/21/2013 280624 30143 111302 16110 10585 17379 23030 19430 31343
3/28/2014 278738 30460 110013 16415 11171 17034 23517 17561 32279
4/4/2013 281367 30557 109700 15899 11742 15388 28041 16906 31684

4/11/2013 280748 30475 111153 16365 11039 16888 22918 16502 33911
4/18/2013 275675 29609 104028 16449 11198 17150 23323 17913 34959
4/25/2013 276662 29598 106728 16331 10600 15670 25071 17430 34261
5/2/2013 275638 29891 104807 16000 10791 15672 25599 17294 34163

48

Every time the update happens, the newest PDF report is downloaded and its data is parsed and
extracted to form one new record to be appended to the data table.

SecondaryRailcarBids
Secondary Rail Car Bids
Data for the rail car bids in the secondary market is available for two US railroad companies:
Burlington Northern Sante Fe (BNSF) and Union Pacific (UP). The weekly data is available
from 5/3/1997 until now.
The script ‘SecondaryRailCarbids.py’ downloads the raw data file into a local folder, process it,
writes the processed file into local folder as ‘07_processed.csv’ and then uploads it to a SQL
datawarehouse using bulk copy tools (bcp).
Below is a snapshot of the code for the processing job.

##########################
Date: 01-22-2016
Copyright: Joshua D. Woodard, Ag-Analytics.org
Contributors: Lin Xue, Tridib Dutta, Josh Woodard, with assistance from Alex
Muchocki, Anthony Perello, and Ag-Analytics team.
##########################
Summary: This script download the GTRFigure4-6.xlsx from the ams
website:
http://www.ams.usda.gov/services/transportation-analysis/gtr-datasets,
read and process the table using pandas and upload to SQL server using
bcp(bulk copy).
###########################
import os, sys
import pyodbc
import subprocess
import urllib
import pandas as pd

#global variables
workingDir = "E:\\DatabaseFiles\\UpdateDBFiles\\SecondaryRailcarBids\\"
#workingDir =
"C:\Users\lx58\Dropbox\AgDB_Admin\OCE\data_summaries\Railway_Database
"
sqlServerInstance = ".\MSSQLSVRAG" #this way when it is a SQL Server
named instance)
#sqlServerInstance = "AG-AEM-1M9RBY1" #this way when it is not a SQL
Server named instance)
#sqlServerInstance = "AG-AEM-6656V12\MSSQLAGDEV1" ## mine is sql
named server instance

49

schema="dbo" #schema for processed data
#db="TestDB" #database name
db="AgDB" #database name

#retrieve the file from the link
url = 'http://www.ams.usda.gov/sites/default/files/media/GTRFigure4-6.xlsx'
testFile = urllib.FancyURLopener()
testFile.retrieve(url, workingDir + "07_output.xlsx")

DF = pd.read_excel(workingDir + '07_output.xlsx', sheetname = 'Secondary')
DF.to_csv(workingDir + '07_processed.csv', index = False)

The below script updates the processed file into a SQL server.

#######################
try creating the database if it is already not there
try:
 conn = pyodbc.connect("DRIVER={SQL Server};
SERVER="+sqlServerInstance+"; DATABASE=Master; Trusted connection=
Yes", autocommit = True)
 #Note, default pyodbc connect is autocommit = false. For creating a new
database, must have autocommit = True
 cursor = conn.cursor()
 query = "CREATE DATABASE " + db
 cursor.execute(query)
 cursor.commit()
 conn.close()
 print "Initial create of ",db," is complete."
except Exception as e:
 print db," DB already exists"
 print e

Creating database is done

conn = pyodbc.connect("DRIVER={SQL
Server};SERVER="+sqlServerInstance+";DATABASE="+db+";Trusted
connection= Yes")
cursor = conn.cursor()

try:
 #create table if it does not already exist
 sqlcmd="""CREATE TABLE [dbo].[SecondaryRailcarBids] (
[Week Ending] date,
[Bid Month] varchar(10),
[Month Number] bigint,
[Bid Year] bigint,
[Company] varchar(8),

50

[For Search] varchar(16),
[Non-Shuttle] float,
[Shuttle] float
)"""
 cursor.execute(sqlcmd)
 cursor.commit()
 conn.close()
 print 'Initial create of [SecondaryRailcarBids] Complete.'
except Exception as e:
 #print '[GrainTransportCostIndex] already exists.'
 sqlcmd="""TRUNCATE TABLE [dbo].[SecondaryRailcarBids]"""
 cursor.execute(sqlcmd)
 cursor.commit()
 conn.close()
 print e

############ use bulk copy (bcp) to load the data into the CommodityFutures
table
theproc = subprocess.call('bcp '+db+'.'+schema+'.SecondaryRailcarBids' + ' in ' +
workingDir + '07_processed.csv' + ' -c -t, -T -S' + sqlServerInstance)
##print theproc
############ Remove the temporary file
os.remove(workingDir+'07_output.xlsx')

A snapshot of the processed data table is provided below.
Week
Ending

Bid
Month

Month
Number

Bid
Year Company For Search

Non-
Shuttle Shuttle

5/3/1997 January 1 1998
BNSF-
GF

355531BNSF-
GF

NULL NULL

5/3/1997 January 1 1998 UP-Pool
355531UP-
Pool

NULL NULL

5/3/1997 February 2 1998
BNSF-
GF

355532BNSF-
GF

NULL NULL

5/3/1997 February 2 1998 UP-Pool
355532UP-
Pool

NULL NULL

5/3/1997 March 3 1998
BNSF-
GF

355533BNSF-
GF

NULL NULL

5/3/1997 March 3 1998 UP-Pool
355533UP-
Pool

NULL NULL

5/3/1997 April 4 1998
BNSF-
GF

355534BNSF-
GF

NULL NULL

5/3/1997 April 4 1998 UP-Pool
355534UP-
Pool

NULL NULL

5/3/1997 May 5 1997
BNSF-
GF

355535BNSF-
GF -95

NULL

5/3/1997 May 5 1997 UP-Pool 355535UP- -28 NULL

51

Pool

TrainSpeedByCompany

Train speed data is available from American Association of Railroads (AAR) website. The
publicly available data is for 2015 only. The historical data is hidden behind paywall.
The weekly data is reported by the six major U.S. railroad companies and contains train speed
data among other performance measures. We collected the train speed data for our data
warehouse.
Note that the data couldn’t be programmatically downloaded from AAR’s website. Instead, we
downloaded it manually and then processed it using the following python script.

the url of the file is hidden and cannot be retrieved. So I guess we have to
download the file manually
The manually downloaded file is saved as 05_TrainSpeed.csv in the Railway
Database under AgDB folder in dropbox
import csv

The above python module is used to process the data.
Below is a utility function which we will use later.

define is_number() function
def is_number(s):
 try:
 float(s)
 return True
 except ValueError:
 return False

Below is the code snippet to process the data.

#get the dates
with open('05_TrainSpeed.csv', 'rb') as f:
 reader = csv.reader((line.replace('\0','') for line in f))
 count = 0
 for row in reader:
 my_string = ' '.join(row)
 if count ==1:
 break
 elif 'Railroad Measure Category' in my_string:
 a = my_string
 a = a.strip().split()
 #print a

52

 tr = []
 date = []
 for item in a:
 if item.isalpha():
 tr.append(item)
 elif is_number(re.sub('[^a-zA-Z0-9]','',item)):
 date.append(item)
 tr = [' '.join(tr)]
 #print tr + ['4Q14']+ date
 count = count + 1

f.close()

A = []
#add the date information to the first line of A
A.append(tr + ['4Q14']+ ['Dec'+ date[0]] + date[1:])

retrieve the rest of the data
companyTrainCarType = ['BNSF','CN','CSX','Kansas','Norfolk','Union']

with open('05_TrainSpeed.csv', 'rb') as mycsv:
 reader = csv.reader((line.replace('\0','') for line in mycsv))
 for row in reader:
 new_string = ' '.join(row)

 new_string = re.sub('[^a-zA-Z0-9\n\.]','', new_string) ## clean up the bad
characters

 if not re.sub('[^a-zA-Z0-9]','',new_string).isalpha():
 if re.search("Train Speed MPH", new_string):
 for name in companyTrainCarType:
 if name == 'Kansas':
 new_string = re.sub('S.A. de C.V.','',new_string)
 if re.search(name, new_string):
 #new_list = re.sub('[^0-9\n\.]','',new_string).strip().split()
 b = []
 num = []
 for term in new_string.strip().split():
 #print term
 if is_number(term):
 num.append(term)
 elif term.isalpha():
 b.append(term)
 b = ' '.join(b)
 b = re.sub('Train Speed MPH','', ''.join(b))

53

 b = [b]
 A.append(b + num)

mycsv.close()

##now write the transpose of this A to a .csv file
import csv
B = zip(*A) #transpose the matrix
with open("05_processed.csv", "wb") as correct:
 writer = csv.writer(correct)
 writer.writerows(B)
correct.close()

 Below is a snapshot of the processed data set.
Railroad Measure
Category BNSF Intermodal BNSF Manifest BNSF Coal Unit

1/9/2015 35.3 22.3 17.6
1/16/2015 34.6 21.8 18.8
1/23/2015 34.5 21.7 19.4
1/30/2015 33.3 21.6 19.3
2/6/2015 32.8 20.6 17.6

2/13/2015 34.2 21.1 18.4

The upload proceedure is similar to the other datasets and left out from this report for brevity.

2.12 WaybillSamples
The Public Use Waybill Sample (PUWS) is a non-proprietary version of the STB Carload
Waybill Sample. The STB collects the data under the requirements that all US railroads that
terminate more than 4,500 revenue carloads must submit a yearly sample of terminated waybills.
Samples are available annually from 2000 to 2014. The source is:
http://www.stb.dot.gov/STB/industry/econ_waybill.html

Revised 2014 Public Use Waybill Sample

2013 Public Use Waybill Sample

2012 Public Use Waybill Sample

2011 Public Use Waybill Sample

2010 Public Use Waybill Sample

2009 Public Use Waybill Sample

2008 Public Use Waybill Sample
2007 Public Use Waybill Sample
2006 Public Use Waybill Sample
2005 Public Use Waybill Sample
2004 Public Use Waybill Sample

http://www.stb.dot.gov/STB/industry/econ_waybill.html
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/PublicUseWaybillSample2014.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/PublicUseWaybillSample2013.zip
http://www.stb.dot.gov/STB/docs/Waybill/PublicUseWaybillSample2012.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/PublicUseWaybillSample2011.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2010%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2009%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2009%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2009%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2008%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2008%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2008%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2007%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2007%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2007%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2006%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2006%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2006%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2005%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2005%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2005%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2004%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2004%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2004%20Public%20Use.zip

54

2003 Public Use Waybill Sample
2002 Public Use Waybill Sample
2001 Public Use Waybill Sample
2000 Public Use Waybill Sample

Each Waybill Sample is a text file that is unable to read without parsing the data first. See
below:

The Surface Transportation Board provides a Reference Guide to help understand the raw data.
http://www.stb.dot.gov/STB/docs/Waybill/2014%20STB%20Waybill%20Reference%20Guide.p
df
Page 99-100 of this Reference Guide contains Table 4-6. 247-Byte STB Public Use Waybill File
Record Layout. Basically, each row is a record. Each record contains fixed-width data. 1–6
byte is Waybill Date, 7-10 byte is Accounting Period, and 11-14 byte is Number of Carloads, so
on and so forth till 247 byte.
By reading the PDF Reference Guide comes with the sample and writing Python scripts to parse
the data and assign them to separate fields, we are able to decipher the raw code into readable
data in CSV format. (We can get data such as commodity code, carloads, Tons)

Below is the python script snippet we wrote to parse the raw data. We used python module
pandas to read the fixed width text file into CSV format.

import sys, os
import numpy
import pandas as pd

fwidths =
[6,4,4,1,4,4,2,3,4,1,1,1,5,7,7,9,9,9,1,1,1,1,1,1,1,4,1,1,5,3,1,3,1,2,2,2,2,2,2,2,2,2,3,
1,1,5,3,4,5,4,4,4,1,1,2,1,4,46,1,6,9,11,6]
dateparse = lambda x: pd.datetime.strptime(x, '%m%d%y')
define function to read file using pandas
def readfiles(filename):

http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2003%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2003%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2003%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2002%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2002%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2002%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2001%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2001%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2001%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2000%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/Public%20Use%20Waybill%20Samples/2000%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/URCS/Public%20Use%20Waybill%20Samples/2000%20Public%20Use.zip
http://www.stb.dot.gov/STB/docs/Waybill/2014%20STB%20Waybill%20Reference%20Guide.pdf
http://www.stb.dot.gov/STB/docs/Waybill/2014%20STB%20Waybill%20Reference%20Guide.pdf

55

 df = pd.read_fwf(filename, widths = fwidths, names = colnames,
parse_dates=['Waybill Date'], date_parser =dateparse, converters={'Accounting
Period': str})
 #define name of the processed csv
 csvname = filename.split(".")[0]+ ".csv"
 #write to csv file
 df.to_csv(csvname, index = False)

The ETL process:
Step 0: Use ReadWaybill.py to parse the raw text files into readable CSV and add header line
for the fields.
Step 1: Clean up raw data using cleanFields.py
Step 2: Combine all cleaned csv files into 02_processed.csv using buildTable.py
Step 3: upload data into SQL server using upload2DB.py
(note: If Step 1 indicate columns that have different data type than what SQL import wizard
suggested, manually change those to varchar when creating the CREATE TABLE statement.)

Step 1 Details:
The Waybill samples contain many columns of mixed type data (string mixed with numbers).
Each year, the mixed type columns vary. So each CSV file has to be examined separately before
creating the final "02_processed.csv".
Three kinds of actions are performed:

- If the column contains both string and number, we assign it varchar type when uploading
to SQL server, thus nothing needs to be done during preprocessing.

- If the column contains a mistake (e.g. a '10' (str) among 10 (int)), we wrote script to force
convert the string type to number.

- If the column contains meaningless special symbols (such as '*****'), we wrote script to
replace them with blank cells (NULL).

PU2005
[Col-14: Actual Weight In Tons]: replace "*******" with NULL and force
convert to int type.
[Col-36,37,38, 53: Interchange State #4, #5, #6, Num of Axles]: varchar

PUB06A
[14: Actual Weight In Tons]: replace "*******" with NULL and force convert to
int type.
[33, 34, 35, 36, 37, 53: Interchange State #1, #2, #3, #4, #5, #6, Num of Axles] :
varchar

PUB07A
[35,36,53]: varchar

PUB08A
[35,36,37,53]: varchar

56

#PUB09A
[28: Exact Expansion Factor]: replace "*****" with NULL and force convert to
int type.
 [Row-60443:Col-28]: "*****"
 [Row-60447:Col-28]: "*****"
 [Row-60448:Col-28]: "*****"
[33,34,35,36,37,53]: varchar

PUB10A
[11:Hazardous/Bulk Material In Boxcar]: varchar
[35,36,53]: varchar

PUB11A
[35, 36, 37, 38]: varchar

PUB12A
[7: TOFC/COFC Service Code]: varchar
[9: Trailer/Container Ownership Code]: varchar
[10: Trailer/Container Type Code]: varchar
[13: Builled Weight in Tons]: int
[11, 33, 34, 35, 36, 37, 53]: varchar

PUB13A
[35,36,37,53]: varchar

PUB14A
[35,36,37]: varchar

DIFFICULTIES AND RECOMMENDATIONS

OBSERVATIONS DURING THE ETL PROCESS
Several observations were made during the ETL process of processing these datasets for use.
First, among the various raw data formats, CSV and XLSX (Excel) are in general the easiest to
parse, followed by XML and fixed width text. While PDF is a nice format for displaying, it is
well accepted that it is not recommend for data storage. More often than not, the table layout is
lost during the conversion from PDF to text file and the resulting data cannot be parsed easily.
Data that is not in a format of delimited or fixed width cannot be parsed by programming
language easily, hence make data automation difficulty unnecessarily by the government and
other data publishing entities. Second, for web scrapping purpose, it is much easier to scrape files
that follow common naming convention and if the URL is persistent both in form and naming
convention. Despite the obviousness of this statement, it is only occasionally followed, and
disingenuous responses from data publication agencies (or no response) is not uncommon when
this is suggested, requested, or pointed out.

57

 A good example though is the ExportGrainTotals dataset. A new annual CSV data file
named CYyyyy.csv (ie. CY2016.csv) is posted under the same URL consistently:
https://www.gipsa.usda.gov/fgis/exportgrain/

• Export Grain Inspection 2016 (last updated 3/7/2016 4:20:58 PM)
• Export Grain Inspection 2015 (last updated 2/16/2016 7:01:47 AM)
• Export Grain Inspection 2014 (last updated 5/26/2015 4:34:21 PM)
• Export Grain Inspection 2013 (last updated 6/20/2014 8:22:09 AM)
• Export Grain Inspection 2012 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 2011 (last updated 4/8/2013 12:00:00 AM)
• Export Grain Inspection 2010 (last updated 4/8/2013 12:00:00 AM)

Third, when data entry is done by different railroad companies, they come up with their own data
forms and making it difficult to combine and summarize the data later. It would contribute to
taxpayer value if the government agent were to provide the companies with a template. Fourth,
we noticed many human errors during the process converting the raw data. The most common
issue is that columns of Excel files have mixed data type. For example, it is not uncommon to
find a column of float data type, but then one cell among a million or so that randomly contains
special characters such as “*****”. It is then necessarily to programmatically detect these
outliers and manually clean up those cells before uploading. It is recommended that some data
validation control being implemented during data entry to minimize human errors at source.

FreightCommodityStatistics: A Short Case
During the ETL process of the FreightCommodityStatistics, we encountered the following issues:
1. The url for some of the excel raw data file seems to have changed very recently and
URLopener() function from the `urllib` module no longer works. We needed to replace
`URLopener(`) by `FancyURLopener()` to handle the redirect. There was no announcement or
tracking of this issue. Thus, centralization and standardization is likely beneficial here.
2. Several of the excel files for companies including BNSF, GTC, etc. have multiple format
errors rendering them overly burdensome to convert to flat files (`.csv`). All the scripts above in
Step 1, contain a function called `clean_cell()` which addresses many of those formatting
abnormalities buried deep inside those excel raw data files, but not all. For example, in the raw
data file for the year 2012 from the company BNSF, most of the entered numbers had space in
them (`2124 4` instead of 21244) making them read in as `string` in the database or python
reader, resulting in obvious misinterpretation while performing analysis or any mathematical
operations on these datasets. Some of the cells seems to have accidentally encoded as a
`datetime` object when they should be clearly numeric. Our `clean_cell()` is able to handle all
most of these problems, but again had to be implemented and developed by us internally, and the
next team will surely unnecessarily run up to the same issues. This is wasteful, and the solution
is likely some basic standardization. And note still that there could likely be unexpected
formatting errors in the file which `clean_cell()` in the future if formats again change
unnecessarily from source.
3. Another major issue we ran into is the encoding of different goods/Commodities that the
railway companies transported. It seems that there is a industry-wide standard for encoding
commodity goods the railway companies handle. They have assigned integer code to different
goods. For example the number 1 (sometimes entered as 01, although not consistently)
represents a broad category which is called 'Farm Products'. Under this category is 'Field Crops',

https://www.gipsa.usda.gov/fgis/exportgrain/
https://www.gipsa.usda.gov/fgis/exportgrain/CY2016.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2015.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2014.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2013.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2012.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2011.csv
https://www.gipsa.usda.gov/fgis/exportgrain/CY2010.csv

58

which is assigned a value 11 (sometimes entered as 011, , although not consistently). Ironically,
in the same document, the number 11 was assigned to 'Coal' which is a broad category
representing coal based products such as Anthracite which was assigned a numeric value of 111.
This we thought could create a lot of confusion especially if this coding is used as 'key' while
downloading data from our database. To resolve the matter, we had to come up with our own
recoding of these numeric values which necessitated explicitly encoding a sequential record
recognition routine. We decided that instead of using integer values, we would use float type
numbers and 1 will be encoded as 1.000 while 11 (representing Field Crops, a sub category of
Farm product) will be assigned the value 1.100 instead of 11 or 011. This way coal can be
11.000 and so on. We wrote a function called `recode()` which can be found in each of the
scripts mentioned in Step 1.

	Metadata
	ETL Process Overview
	Application for collection of Rail Traffic Databases
	ExportGrainTotals
	FreightCommodityStatistics ETL Procedure Example
	GrainInspectionByPort
	GrainTransportByMode Table ETL Example
	GrainTransportCostIndex
	RailTraffic table
	SecondaryRailcarBids
	TrainSpeedByCompany
	2.12 WaybillSamples
	Difficulties and Recommendations
	Observations during the ETL process

