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Not for citation 

Measuring U.S. Agriculture Productivity: Primal vs. Dual Approaches 

 

Introduction 

There is an ongoing discussion about whether U.S. agricultural productivity growth has recently 

slowed down. Differing views are supported by productivity estimates obtained from different 

datasets and econometric approaches, as well as primal versus dual representations of the 

underlying technology. This study contributes to the ongoing discussion by shedding light on 

how the choice of dual versus primal approaches, and the imposition of certain restrictions in 

estimation, affect the estimated productivity trends when the same dataset is used across models. 

Plastina and Lence (2015) were the first to assess the effects of jointly imposing 

monotonicity and concavity conditions derived from economic theory on an aggregate 

representation of U.S. agricultural technology in the primal space. Previous applied production 

studies using flexible functional forms fell short of imposing both monotonicity and curvature 

conditions in estimation, and instead reported the proportion of the sample for which those 

conditions did not hold, warning readers about potential unknown biases introduced by those 

observations that did not conform to production theory. 

Plastina and Lence (2015) found that not only the shapes but also the locations of the 

probability density functions (pdfs) of the parameter estimates were significantly affected by the 

imposition of those theoretical restrictions. As a result, output elasticities and multifactor 

productivity estimates also differed substantially between restricted and unrestricted models. 

Finally, for the estimates recovered from the dataset (Ball et al. 2004) to conform to production 

theory, both concavity and monotonicity at each data point had to be imposed in estimation. 

The present study extends the analysis by Plastina and Lence (2015) into the dual space, 

and provides an encompassing comparison of productivity measures and technological 

characterizations of U.S. agriculture not only across restricted and unrestricted models, but also 

across primal and dual approaches. 
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The goals of the present study are twofold. The first goal is to analyze the effects on the 

estimated parameter pdfs caused by the restrictions stemming from production theory, for the 

case of a variable cost function representation of U.S. agricultural technology. The second goal is 

to evaluate the impact on multifactor productivity estimates of using dual versus primal 

representations of the agricultural technology.  

 

Model 

Since technology constrains the optimizing behavior of economic agents, one should be able to 

use an accurate representation of optimizing behavior to study the technology (Chambers 1996, 

p. 49). Assuming (1) the existence of a production function, 𝑦𝑦 = 𝑓𝑓(𝑋𝑋), that shows the maximum 

output, 𝑦𝑦, attainable from an arbitrary vector 𝑋𝑋 ≡ [𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛] comprising the levels of 𝑛𝑛 inputs; 

(2) which satisfies monotonicity and weak essentiality in 𝑋𝑋; and (3) that the input requirement 

set, 𝐵𝐵(𝑦𝑦) = {𝑋𝑋: 𝑓𝑓(𝑋𝑋) ≥ 𝑦𝑦}, is closed, non-empty and convex; then a well-defined variable cost 

function 𝐶𝐶 = 𝐶𝐶(𝑊𝑊,𝑦𝑦) exists which exhibits the following characteristics (Chambers 1996):1 

1. Non-negativity, 𝐶𝐶 = 𝐶𝐶(𝑊𝑊, 𝑦𝑦) ≥ 0. 

2. Non-decreasing in input prices, 𝑊𝑊 ≡ [𝑤𝑤1,⋯ ,𝑤𝑤𝑛𝑛]. If any input price increases, cost must 

not decrease, ∇𝑊𝑊𝐶𝐶(𝑊𝑊,𝑦𝑦) ≥ 0. 

3. Concave and continuous in 𝑊𝑊. Concavity is a direct result of the cost minimizing 

behavior (input price changes generate opposite direction changes in input 

utilization,∇𝑊𝑊 ∙ ∇𝑋𝑋 ≤ 0), and it does not impose any condition on the underlying 

technology. Assuming that the cost function is twice differentiable with respect to input 

prices, concavity requires the matrix of second order derivatives of the cost function with 

respect to input prices, 𝐻𝐻 ≡ ∇𝑊𝑊2 𝐶𝐶(𝑊𝑊,𝑦𝑦), to be negative semidefinite. 

                                                            
1 If the input requirement set is convex and monotone, then the technology represented by the cost function will be 
identical to the true input requirement set. If the true input requirement set is non-convex or non-monotone, the 
derived input requirement set will be a convex and monotone version of the true set and, most importantly, the 
derived technology will have the same cost function as the true one (Varian 1992, Ch. 6). 
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4. Positively linearly homogeneous in 𝑊𝑊, 𝜆𝜆𝐶𝐶(𝑊𝑊,𝑦𝑦) = 𝐶𝐶(𝜆𝜆𝑊𝑊, 𝑦𝑦) for any 𝜆𝜆 > 0. This 

property implies that only relative prices matter to economically optimizing agents.  

5.  Non-decreasing in 𝑦𝑦.  

The econometric estimation of the cost function requires selecting a specific functional form for 

the latter. In the present study, the following generalized quadratic cost function is used to 

represent the optimizing behavior: 
 
(1) 𝐶𝐶(𝑊𝑊,𝑦𝑦, 𝑡𝑡) = 𝛾𝛾0 + ∑ 𝛾𝛾𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑤𝑤𝑖𝑖 + 𝛾𝛾𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑦𝑦𝑦𝑦 + 1
2
∑ ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1 + ∑ 𝛾𝛾𝑡𝑡𝑖𝑖𝑤𝑤𝑖𝑖𝑡𝑡𝑛𝑛

𝑖𝑖=1 +
∑ 𝛾𝛾𝑦𝑦𝑖𝑖𝑤𝑤𝑖𝑖𝑦𝑦𝑛𝑛
𝑖𝑖=1 + 𝛾𝛾𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡 + 1

2
𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡2 + 1

2
𝛾𝛾𝑦𝑦𝑦𝑦𝑦𝑦2, 

 

where 𝛾𝛾𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑖𝑖𝑖𝑖 by Young’s theorem. To allow for changes in the shape of the cost function 

through time, expression (1) incorporates a time trend, 𝑡𝑡, that enters the function in levels, 

interacted with inputs, and squared. 

There are good reasons for employing the generalized quadratic function (1) for 

estimation purposes. Most importantly, it is a flexible functional form, both in the sense of being 

a second-order Taylor series (numerical) approximation to an arbitrary non-linear function, and 

in the sense of being a second-order differential approximation (with its function value, gradient, 

and Hessian equal to the corresponding magnitudes for any arbitrary general non-linear function 

evaluated at a certain level of its underlying arguments). In addition, the generalized quadratic 

allows for imposition concavity globally2 in estimation, and is self-dual.3  

In terms of the generalized quadratic, the aforementioned properties of the cost function 

can be expressed as a set of parametric restrictions, as follows. First, non-negativity requires that  
 
(2) 𝐶𝐶(𝑊𝑊,𝑦𝑦, 𝑡𝑡) = 𝛾𝛾0 + ∑ 𝛾𝛾𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑤𝑤𝑖𝑖 + 𝛾𝛾𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑦𝑦𝑦𝑦 + 1
2
∑ ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1 + ∑ 𝛾𝛾𝑡𝑡𝑖𝑖𝑤𝑤𝑖𝑖𝑡𝑡𝑛𝑛

𝑖𝑖=1 +
∑ 𝛾𝛾𝑦𝑦𝑖𝑖𝑤𝑤𝑖𝑖𝑦𝑦𝑛𝑛
𝑖𝑖=1 + 𝛾𝛾𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡 + 1

2
𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡2 + 1

2
𝛾𝛾𝑦𝑦𝑦𝑦𝑦𝑦2 ≥ 0.  

 

                                                            
2 Alternative flexible functional forms, such as the translog, do not allow for the global imposition of concavity in 
estimation. Using filters, concavity can only be imposed locally in estimation (for a particular point in time, or at the 
means of the data). 
3 Self-duality will prove useful to expand the present analysis to include profit functions in future research. 
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Second, a cost function non-decreasing in 𝑊𝑊 requires that 
 
(3)  𝜕𝜕𝜕𝜕(𝑊𝑊,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑤𝑤𝑖𝑖
= 𝑥𝑥𝑖𝑖(𝑊𝑊,𝑦𝑦, 𝑡𝑡) = 𝛾𝛾𝑖𝑖 + ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1 + 𝛾𝛾𝑡𝑡𝑖𝑖𝑡𝑡 + 𝛾𝛾𝑦𝑦𝑖𝑖𝑦𝑦 ≥ 0, 

 

where the first equality holds by Sheppard’s lemma, and 𝑥𝑥𝑖𝑖(𝑊𝑊,𝑦𝑦) is the unique, cost minimizing 

demand for input 𝑥𝑥𝑖𝑖. Third, concavity requires the Hessian, 
 

(4) 𝐻𝐻 ≡ ∇𝑊𝑊2 𝐶𝐶(𝑊𝑊,𝑦𝑦), = �
𝛾𝛾11 ⋯ 𝛾𝛾1𝑛𝑛
⋮ ⋱ ⋮
𝛾𝛾1𝑛𝑛 ⋯ 𝛾𝛾𝑛𝑛𝑛𝑛

�, 

 

to be negative semidefinite. Fourth, homogeneity of degree 1 in 𝑊𝑊 can be imposed in estimation 

through the following set of 𝑛𝑛 + 1 restrictions:  

 
(5a) ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖 = 0 𝑛𝑛

𝑖𝑖=1 , for 𝑖𝑖 = 1, … ,𝑛𝑛 
 
(5b) 𝛾𝛾0 + 𝛾𝛾𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑦𝑦𝑦𝑦 + 𝛾𝛾𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡 + 1

2
𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡2 + 1

2
𝛾𝛾𝑦𝑦𝑦𝑦𝑦𝑦2 = 0. 

 

Finally, the cost function is non-decreasing in 𝑦𝑦 if the marginal cost is non-negative: 
 
(6)  𝜕𝜕𝜕𝜕(𝑊𝑊,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑦𝑦
= 𝛾𝛾𝑦𝑦 + ∑ 𝛾𝛾𝑦𝑦𝑖𝑖𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1 + 𝛾𝛾𝑦𝑦𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑦𝑦𝑦𝑦𝑦𝑦 ≥ 0. 

 

To analyze the effects of imposing cost function restrictions in the estimation of equation 

(1), we consider the following models: 

• Model 1: Unrestricted estimation  

• Model 2: Non-negativity constrains - i.e. conditions (2), (3), and (6) - imposed in 

estimation at data means. 

• Model 3: Non-negativity constrains imposed at all data points in estimation. 

• Model 4: Concavity imposed in estimation. 

• Model 5: Concavity and non-negativity constrains imposed in estimation at data means. 
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• Model 6: Concavity and non-negativity constrains imposed at all data points in 

estimation. 

• Model 7: Linear homogeneity, i.e. equations (5a) and (5b), imposed in estimation at data 

means. 

• Model 8: Concavity and linear homogeneity imposed in estimation at data means. 

• Model 9: Concavity, non-negativity constrains, and linear homogeneity imposed in 

estimation at data means. 

• Model 10: Concavity, non-negativity constrains at all data points, and linear homogeneity 

at data means imposed in estimation. 

More specifically, under non-negativity constrains at data means, conditions (2), (3), and (6) are 

satisfied when evaluated at the sample averages of the input prices and output levels, and the 

time variable. Non-negativity constrains at all data points is a far more stringent constraint, as it 

involves satisfying restrictions (2), (3), and (6) at each of the input prices and output levels, and 

the time values contained in the data set. 

For each model, the elasticity of cost with respect to output, and the rate of disembodied 

technical change are calculated using expressions (7) and (8), respectively: 
 
(7) 𝜀𝜀𝜕𝜕𝐶𝐶 = 𝜕𝜕𝜕𝜕(𝑊𝑊,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑦𝑦
𝑦𝑦

𝜕𝜕(𝑊𝑊,𝑦𝑦,𝑡𝑡)
= �𝛾𝛾𝑦𝑦 + ∑ 𝛾𝛾𝑦𝑦𝑖𝑖𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1 + 𝛾𝛾𝑦𝑦𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑦𝑦𝑦𝑦𝑦𝑦�
𝑦𝑦

𝜕𝜕(𝑊𝑊,𝑦𝑦)
, 

 
(8) 𝜀𝜀𝜕𝜕𝑡𝑡 = 𝜕𝜕𝜕𝜕(𝑊𝑊,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑡𝑡
1

𝜕𝜕(𝑊𝑊,𝑦𝑦,𝑡𝑡)
= �𝛾𝛾𝑡𝑡 + ∑ 𝛾𝛾𝑡𝑡𝑖𝑖𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1 + 𝛾𝛾𝑦𝑦𝑡𝑡𝑦𝑦 + 𝛾𝛾𝑦𝑦𝑡𝑡𝑡𝑡�
1

𝜕𝜕(𝑊𝑊,𝑦𝑦)
. 

 

The elasticity of cost with respect to output is indicative of the returns to scale in production at 

the cost-minimizing bundle: if 𝜀𝜀𝜕𝜕𝐶𝐶 < 1 production is characterized by increasing returns to scale; 

and if 𝜀𝜀𝜕𝜕𝐶𝐶 > 1 production is characterized by decreasing returns to scale (Chambers 1988). The 

rate of disembodied technical change indicates the average percentage decline in costs due to 

increases in multifactor productivity. 

Price elasticities for each variable input and the semi-elasticity of input demand with 

respect to time are calculated using expressions (9) and (10), respectively: 



 
6 

 
(9) 𝜀𝜀𝑥𝑥𝑖𝑖𝑤𝑤𝑗𝑗 = 𝜕𝜕2𝜕𝜕(𝑊𝑊,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑤𝑤𝑖𝑖𝜕𝜕𝑤𝑤𝑗𝑗

𝑤𝑤𝑗𝑗

𝜕𝜕𝜕𝜕(𝑊𝑊,𝑦𝑦,𝑡𝑡) 𝜕𝜕𝑤𝑤𝑖𝑖⁄
= 𝜕𝜕𝑥𝑥𝑖𝑖(𝑊𝑊,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑤𝑤𝑗𝑗

𝑤𝑤𝑗𝑗

𝑥𝑥𝑖𝑖(𝑊𝑊,𝑦𝑦,𝑡𝑡)
= 𝛾𝛾𝑖𝑖𝑗𝑗𝑤𝑤𝑗𝑗

𝑥𝑥𝑖𝑖(𝑊𝑊,𝑦𝑦,𝑡𝑡)
, 

 
(10) 𝜀𝜀𝑥𝑥𝑖𝑖𝑡𝑡 = 𝜕𝜕2𝜕𝜕(𝑊𝑊,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑤𝑤𝑖𝑖𝜕𝜕𝑡𝑡
1

𝜕𝜕𝜕𝜕(𝑊𝑊,𝑦𝑦,𝑡𝑡) 𝜕𝜕𝑤𝑤𝑖𝑖⁄
= 𝛾𝛾𝑡𝑡𝑖𝑖

𝑥𝑥𝑖𝑖(𝑊𝑊,𝑦𝑦,𝑡𝑡)
. 

 

We first analyze the differences in the estimated elasticities, semi-elasticities, and the rate of 

technical change across models to examine the implications of imposing cost function 

restrictions in the estimation of equation (1). Then, we compare the returns to scale and the rate 

of technical change obtained in this study against similar measures obtained from a generalized 

quadratic production function fit to the same data set (Plastina and Lence 2015). 

 

Data 

Models 1 through 6 are estimated by employing the official USDA panel dataset on agricultural 

production for the United States (USDA 2015, Table 234). The dataset is described in Ball et al. 

(2004) and its main use is the calculation of TFP as the ratio of an index of output quantities to 

an index of input quantities. The panel was specifically developed to measure agricultural 

productivity. Earlier versions of the data were used by Morrison Paul et al. (2001), Huffman et 

al. (2002), and Wang et al. (2012) to evaluate agricultural productivity by means of a cost 

function; and by Plastina and Lence (2015) to evaluate productivity in primal space.  

The dataset contains one aggregate agricultural output and 𝑛𝑛 = 3 variable inputs (capital, 

labor, and materials) for each of the 𝑆𝑆 = 48 contiguous states over the period 1960-2004, i.e., 𝑇𝑇 = 

45 annual observations. All quantities are measured as transitive implicit Fisher quantity indexes, 

or “EKS” indexes based on the work of Eltetö and Köves (1964), and Szulc (1964), calculated 

with price indexes with bases equal to unity in Alabama in 1996. The transitivity of the quantity 

indexes ensures that indexes are comparable across states and years. 

                                                            
4 The dataset was updated on May 9, 2016, and the aggregate capital variable is no longer reported. Capital is 
disaggregated into Capital services excluding land and Land service flows in the new dataset. 
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The output quantity, 𝑦𝑦, measures the aggregate production of livestock, dairy, poultry, 

eggs, grains, oilseeds, cotton, tobacco, fruit, vegetables, nuts, and other miscellaneous outputs. 

Capital, 𝐾𝐾 ≡ 𝑥𝑥1, measures the service flows of real estate, durable equipment, and stocks of 

inventories. Labor, 𝐿𝐿 ≡ 𝑥𝑥2, measures the quality-adjusted amount of hired and self-employed 

labor. Materials, 𝑀𝑀 ≡ 𝑥𝑥3, include fertilizers, pesticides, energy and other miscellaneous inputs. 

Cost, 𝐶𝐶 ≡ 𝐶𝐶(𝑊𝑊, 𝑦𝑦, 𝑡𝑡), is constructed as the summation of the products of input quantities and 

input prices. Summary statistics for output and the three inputs are reported in Table 1. 

 

Estimation Methods 

Estimation is conducted by setting up equations (1) and (3) as a seemingly unrelated regressions 

(SUR) system. The dependent variables in the four SUR equations are cost (corresponding to 

equation (1)), and capital, labor, and materials (corresponding to equation (3)). The system is 

estimated by imposing the restrictions in the regression coefficients stated in equations (1) and 

(3).5 Because all four dependent variables are highly autocorrelated, the first lag of the 

corresponding dependent variable was added as an explanatory variable to each of the four 

equations, and their coefficients denoted by 𝛼𝛼𝜕𝜕, 𝛼𝛼𝐾𝐾, 𝛼𝛼𝐿𝐿, and 𝛼𝛼𝑀𝑀 for cost, capital, labor, and 

materials, respectively. 

The parameters of the SUR model are the 21 regression coefficients included in equations 

(1)-(3), the four coefficients corresponding to the lagged dependent variables, and the ten 

parameters involved in the covariance matrix of the regression residuals (consisting of four 

standard deviations σi and six correlation coefficients ρij). We estimate the model’s 35 

parameters by employing Bayesian Hamiltonian Monte Carlo (HMC) sampling (Duane et al., 

1987; Neal, 1994, 2011). The SUR HMC model is fitted using version 2.9.0 of the RStan 

program (Stan Development Team, 2015) and version 3.3.0 of the R software (https://www.r-

project.org/). 

                                                            
5 For example, the regression coefficient for the cross product of time and wages in the cost equation (1), 𝛾𝛾𝑡𝑡𝑊𝑊𝐿𝐿, is the 
same as the time coefficient in equation (3) for labor. 

https://www.r-project.org/
https://www.r-project.org/
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Bayesian techniques are quite useful for the present application, because they allow us to 

impose the desired estimation restrictions in a straightforward manner. Another advantage of the 

Bayesian approach is that it yields full posterior distributions for the parameters of interest. This 

feature is particularly useful when researchers try to characterize parameters with skewed 

posteriors, such as the parameters subject to concavity restrictions. Further, pdfs for the 

elasticities and the rate of technical change can be computed directly from the estimated pdfs for 

the underlying parameters, rather than by quadratic approximation (e.g., as in the delta method). 

The Bayesian procedure is explained next by focusing on Model 6 (i.e., the most 

restrictive specification). Models 1 through 5 are estimated using the same method, except for 

the relaxation of the corresponding parameter constraints. Estimation proceeds by conditioning 

on the initial set of observations (i.e., the variable values observed at 𝑡𝑡 = 1) (Lancaster 2004, Ch. 

9). The priors are half-Cauchy for the standard deviations of the residuals (σi ~ Cauchy(0, 2.5) 

for σi > 0), LKJ for the correlation matrix of the residuals (Residual Correlation Matrix ~ 

LKJcorr(4)), and weakly informative normal for the lagged-dependent variable regression 

coefficients, as well as for the regression coefficients not included in the Hessian (γi ~ Normal(0, 

5)). Since a negative semidefinite Hessian H = [𝛾𝛾𝑤𝑤𝐾𝐾𝑤𝑤𝐾𝐾, 𝛾𝛾𝑤𝑤𝐾𝐾𝑤𝑤𝐿𝐿, 𝛾𝛾𝑤𝑤𝐾𝐾𝑤𝑤𝑀𝑀; 𝛾𝛾𝑤𝑤𝐾𝐾𝑤𝑤𝐿𝐿, 𝛾𝛾𝑤𝑤𝐿𝐿𝑤𝑤𝐿𝐿, 𝛾𝛾𝑤𝑤𝐿𝐿𝑤𝑤𝑀𝑀; 

𝛾𝛾𝑤𝑤𝐾𝐾𝑤𝑤𝑀𝑀, 𝛾𝛾𝑤𝑤𝐿𝐿𝑤𝑤𝑀𝑀, 𝛾𝛾𝑤𝑤𝑀𝑀𝑤𝑤𝑀𝑀] implies that the symmetric (3 × 3) matrix Ω ≡ –H is positive 

semidefinite, we compute H by first setting the same priors for Ω as for the covariance matrix, 

and then recovering the Hessian parameters from the relationship H ≡ –Ω. That is, Ω = D(3) 

Corr(3) D(3), where D(3) is a (3 × 3) diagonal matrix and Corr(3) is a (3 × 3) of matrix 

correlation coefficients, so [D(3)]ii ~ Cauchy(0, 2.5) for [D(3)]ii > 0, and Corr(3) ~ LKJcorr(4). 

Finally, to ensure positive costs, capital, labor, materials, and output at all observation points, 

minimum values of coefficients 𝛾𝛾0, 𝛾𝛾𝑊𝑊𝐾𝐾, 𝛾𝛾𝑊𝑊𝐿𝐿, 𝛾𝛾𝑊𝑊𝑀𝑀, and 𝛾𝛾𝐶𝐶 are imposed so as to meet the 

positivity restrictions.6  

 

                                                            
6 For example, the restriction 𝛾𝛾𝑦𝑦 ≥ −min(𝛾𝛾𝑦𝑦𝑡𝑡 𝑡𝑡 + 𝛾𝛾𝑦𝑦𝑤𝑤𝐾𝐾 𝑤𝑤𝐾𝐾 + 𝛾𝛾𝑦𝑦𝑤𝑤𝐿𝐿 𝑤𝑤𝐿𝐿 + 𝛾𝛾𝑦𝑦𝑦𝑦 𝑦𝑦) is imposed to guarantee that condition 
(6) is met. 
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Results and Discussion 

Estimation results for Models 1 through 6 for the state of Iowa are reported in Table 2. For each 

model, this table shows the means of the parameters of interest, as well as their standard 

deviations, medians, and 95% credible intervals.7 For example, the unrestricted (i.e., Model 1) 

mean of parameter 𝛾𝛾𝐶𝐶 equals -0.6251, with a standard deviation of 0.5701, a median equal to -

0.6228, and a 95% credible interval ranging from -1.7344 to 0.4542. 

It is evident from the figures in Table 2 (compare, e.g., the estimates of parameter 𝛾𝛾𝐶𝐶 and 

the likelihood values across models) that the choice of model has only minor implications for the 

characterization of the production technology, and therefore for the policy recommendations 

stemming from it. This finding is in stark contrast to the conclusion in Plastina and Lence (2015) 

that imposing restrictions stemming from production theory in estimation of a generalized 

quadratic production function has a substantial effect on the characterization of U.S. agricultural 

production technology.  

The point estimates of the coefficients for the lagged dependent variables range between 

𝛼𝛼𝜕𝜕 = 0.4831 for Model 3, and 𝛼𝛼𝜕𝜕 = 0.5334 for Model 4; 𝛼𝛼𝐾𝐾 = 0.9079 for Model 3, and 𝛼𝛼𝐾𝐾 = 

0.9432 for Model 4; 𝛼𝛼𝐿𝐿 = 0.3419 for Model 6, and 𝛼𝛼𝐿𝐿 = 0.3678 for Model 2; 𝛼𝛼𝑀𝑀 = 0.3770 for 

Model 3, and 𝛼𝛼𝑀𝑀 = 0.4533 for Model 4. In all instances, credible intervals are very tight and 

with lower bounds far from zero, providing a strong indication that adjustments occur over 

multiple periods. The derived demand for capital exhibits high inertia, but significantly less than 

1 for all models but Model 3. The goodness of fit is consistent across Models 1 through 6, 

indicating that non-negativity and concavity restrictions are not too burdensome to the 

explanatory power of the model. It must be noted that, in general, the same qualitative results 

arise from Models 1 through 6. 

The elasticity of cost with respect to output is positive and significantly lower than 1 in 

all models (except Model 4), indicating that agricultural production in Iowa is characterized by 

                                                            
7 Credible intervals are the Bayesian analogs of confidence intervals. The upper and lower bound of the 95% 
credible intervals reported here are the 2.5% and 97.5% quantiles of the corresponding posterior distributions. 
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increasing returns to scale in the dual space (Table 3). This is an interesting finding given that 

Plastina and Lence (2015) report decreasing returns to scale for the U.S. aggregate in primal 

space across all models (those with concavity8 imposed in estimation, and those where concavity 

was not imposed in estimation), using the same database. 

The rate of disembodied technical change is significantly different from zero in all 

models, and the point estimates range between -0.74% for Model 2 and -0.84% for Model 3. 

Plastina and Lence (2015) report a 1.5% rate of technical change in primal space for Iowa, and 

1.45% for the U.S. aggregate for 1960-2004.  

As expected, the own-price elasticity of capital is negative and significantly different 

from zero, ranging from -0.1326 in Model 6 to -0.1512 in Model 1 (Table 4). The price elasticity 

of capital with respect to labor is negative, but not significantly different from zero in Models 1-

6. The price elasticity of capital with respect to materials is positive and significantly different 

from zero for all models (except Model 4), with a point estimate ranging from 0.0564 in Model 4 

to 0.0958 in Model 3.  

The own price elasticity of labor is negative and significantly different from zero, ranging 

from -0.0866 in Model 4 to -0.0612 in Model 3 (Table 5). The price elasticity of labor with 

respect to capital is negative, but not significantly different from zero in Models 1-6. Similarly, 

the price elasticity of labor with respect to materials is negative, but not significantly different 

from zero in Models 1-6. 

The own price elasticity of materials is negative and significantly different from zero for 

Models 4-6, ranging from -0.0859 in Model 4 to -0.0934 in Model 6 (Table 6). For Models 1-3, 

the point estimates of the own price elasticity of materials have the expected sign, but the 95% 

confidence intervals include the null value. The price elasticity of materials with respect to 

capital is positive (ranging from 0.0151 in Model 4 to 0.0258 in Model 3), and significantly 

different from zero in all Models except for Models 4 and 5. The price elasticity of materials 

with respect to labor is negative, but not significantly different from zero in Models 1-6. 

                                                            
8 Imposing concavity on the production function rules out increasing returns to scale.  
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Succinctly, the price elasticities indicate that (1) labor demand is not strongly responsive 

to capital or material prices; (2) capital and materials are substitutes; and (3) own price effects on 

input demand dominate cross-price effects. 

The semi-elasticities of input demands with respect to time suggest that technical change 

has not been Hicks-neutral. Instead, technical change been labor-saving (𝜀𝜀𝐿𝐿𝑡𝑡 < 0 and significant 

across models in Table 5), material-saving (𝜀𝜀𝑀𝑀𝑡𝑡 < 0 but not significant across models in Table 

6), and capital-using (𝜀𝜀𝐾𝐾𝑡𝑡 > 0 but not significant across models in Table 4). Plastina and Lence 

(2015) also report non-Hicks-neutral technical change, although they conclude that over time 

output has become more responsive to changes in materials and labor, and less responsive to 

changes in capital.  

 

Concluding Remarks 

The economic theory of producer behavior requires certain conditions to hold in order for a 

functional form to be representative of a production technology. Agricultural production studies 

are usually conducted using classical econometric methods that make it difficult, if not 

impossible, to impose such restrictions in flexible functional forms. Therefore, conditions 

required by economic theory need not hold in estimation. Using state-level panel data on U.S. 

agricultural production to fit a generalized quadratic cost function, we estimated six models 

characterized by different restrictions for Iowa. More specifically, Model 1 is unrestricted, 

whereas Models 2 through 6 impose respectively the following restrictions in estimation: non-

negativity of the cost function at data means, non-negativity of the cost function at all data 

points, concavity, both concavity and non-negativity of the cost function at data means, and both 

concavity and non-negativity of the cost function at all data points.  

Each model is estimated using Bayesian methods. A desirable feature of the proposed 

Bayesian procedure is that it greatly facilitates imposing concavity, non-negativity and 

homogeneity conditions. In addition, the procedure yields simulated parameter values from their 
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posterior pdfs, which can be used to compute simulated pdfs for functions of such parameters, 

such as price elasticities, elasticities of scale, and technical change. 

Contrary to what Plastina and Lence (2015) found in the primal space, imposing 

restrictions in the cost function does not qualitatively change the characterization of the 

underlying agricultural technology. 

Disembodied technical change generated, on average, cost savings of about 0.8% per 

year over 1961-2004 in Iowa.  

This is an ongoing work and we plan to estimate the model using all 48 states, and 

expand the analysis to include homogeneity of degree 1 for the cost function (Models 7-10). 

Finally, the analysis will be completed by comparing estimates of technical change on the dual 

space with estimates obtained in primal space, using the same database. 
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Table 1. Descriptive statistics, 1961-2004  

Indexes Unit Mean Median Standard 
Deviation 

Minimum Maximum 

Cost value Million $1996  9,291.1   10,860.5   3,557.2   3,427.4   14,127.6  

Capital quantity Million $1996  2,353.9   2,257.8   500.5   1,716.6   3,275.4  

Labor quantity Million $1996  5,127.1   5,309.9   1,544.8   2,541.7   7,918.6  

Materials quantity Million $1996  6,275   6,202   586   5,518   7,548  

Price of Labor Unitless*  0.641   0.802   0.363   0.148   1.105  

Price of Capital Unitless*  0.547   0.434   0.408   0.129   1.580  

Price of Materials Unitless*  0.894   1.057   0.341   0.359   1.319  

Output quantity Million $1996 13,034.6   12,866.2   1,828.9   10,138.5   16,362.1  

*Ratio of prices in each state and year to corresponding price in Alabama in 1996. 

  



 
16 

Table 2. Parameter estimates for Models 1 through 6. 
𝛾𝛾0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean 3.7747 3.7386 2.1589 3.8845 3.7742 2.1664 
Median 3.7587 3.8121 2.2238 3.9196 3.7425 2.2734 
Stdev 3.7304 3.7258 2.4089 3.8359 3.6925 2.4022 
Lower Bound^ -3.3771 -3.5357 -2.7400 -3.7407 -3.3768 -2.7496 
Higher Bound^ 10.8817 11.1129 6.7974 11.5088 11.2281 6.7864 

       
       

𝛾𝛾𝑡𝑡 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.1570 0.1595 0.1211 0.1513 0.1550 0.1154 
Median 0.1560 0.1579 0.1174 0.1506 0.1551 0.1121 
Stdev 0.1139 0.1127 0.0783 0.1192 0.1127 0.0760 
Lower Bound^ -0.0717 -0.0657 -0.0230 -0.0769 -0.0583 -0.0226 
Higher Bound^ 0.3823 0.3879 0.2823 0.3922 0.3882 0.2708 

       
       

𝜸𝜸𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.0007 0.0007 0.0004 0.0010 0.0011 0.0006 
Median 0.0008 0.0007 0.0004 0.0010 0.0011 0.0006 
Stdev 0.0029 0.0028 0.0022 0.0029 0.0028 0.0021 
Lower Bound^ -0.0051 -0.0050 -0.0038 -0.0048 -0.0046 -0.0036 
Higher Bound^ 0.0063 0.0061 0.0048 0.0065 0.0065 0.0046 

       
       

𝜸𝜸𝒕𝒕𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.0066 0.0065 0.0041 0.0078 0.0074 0.0049 
Median 0.0068 0.0066 0.0044 0.0077 0.0073 0.0050 
Stdev 0.0051 0.0051 0.0047 0.0049 0.0047 0.0039 
Lower Bound^ -0.0038 -0.0040 -0.0059 -0.0018 -0.0020 -0.0031 
Higher Bound^ 0.0162 0.0164 0.0125 0.0178 0.0167 0.0124 
       
       

𝜸𝜸𝒕𝒕𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean -0.0445 -0.0434 -0.0491 -0.0538 -0.0547 -0.0559 
Median -0.0447 -0.0433 -0.0490 -0.0536 -0.0550 -0.0566 
Stdev 0.0204 0.0203 0.0209 0.0174 0.0180 0.0175 
Lower Bound^ -0.0834 -0.0823 -0.0916 -0.0883 -0.0907 -0.0891 
Higher Bound^ -0.0042 -0.0040 -0.0078 -0.0196 -0.0185 -0.0207 

^Bounds of 95% Credible Interval 
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Table 2. Parameter estimates for Models 1 through 6 (continued). 
𝜸𝜸𝒕𝒕𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean -0.0139 -0.0127 -0.0221 -0.0166 -0.0169 -0.0198 
Median -0.0131 -0.0124 -0.0211 -0.0175 -0.0181 -0.0207 
Stdev 0.0200 0.0194 0.0205 0.0138 0.0140 0.0136 
Lower Bound^ -0.0559 -0.0532 -0.0646 -0.0412 -0.0411 -0.0443 
Higher Bound^ 0.0237 0.0237 0.0157 0.0125 0.0132 0.0087 

       
𝜸𝜸𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean 0.2215 0.2197 0.1526 0.2481 0.2392 0.1789 
Median 0.2211 0.2213 0.1562 0.2452 0.2384 0.1798 
Stdev 0.1663 0.1669 0.1595 0.1643 0.1605 0.1449 
Lower Bound^ -0.1011 -0.1181 -0.1785 -0.0748 -0.0784 -0.1036 
Higher Bound^ 0.5465 0.5398 0.4506 0.5727 0.5448 0.4686 

       
𝜸𝜸𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean 3.8243 3.7841 3.6529 3.7145 3.7169 3.5287 
Median 3.8260 3.7754 3.6574 3.7158 3.7240 3.5335 
Stdev 0.8893 0.8587 0.8082 0.9252 0.9044 0.8417 
Lower Bound^ 2.1075 2.1082 2.0535 1.8379 1.9308 1.8595 
Higher Bound^ 5.5868 5.5185 5.2481 5.5724 5.4691 5.1659 

       
𝜸𝜸𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean 1.3104 1.3152 1.1005 1.2079 1.2113 1.1450 
Median 1.3103 1.3092 1.1187 1.2050 1.2132 1.1290 
Stdev 0.7739 0.7839 0.7711 0.7247 0.7137 0.6911 
Lower Bound^ -0.2340 -0.2206 -0.4364 -0.1757 -0.1532 -0.1702 
Higher Bound^ 2.8484 2.8494 2.5658 2.6340 2.6655 2.5177 
       

𝜸𝜸𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean -0.5553 -0.5529 -0.5173 -0.5345 -0.5289 -0.4868 
Median -0.5546 -0.5554 -0.5222 -0.5343 -0.5324 -0.4891 
Stdev 0.1196 0.1187 0.1130 0.1196 0.1213 0.1127 
Lower Bound^ -0.7896 -0.7854 -0.7296 -0.7671 -0.7627 -0.6914 
Higher Bound^ -0.3215 -0.3106 -0.2895 -0.2883 -0.2788 -0.2516 
       

𝜸𝜸𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean -0.7962 -0.8025 -0.8111 -0.5736 -0.5765 -0.6362 
Median -0.7874 -0.7967 -0.8061 -0.5647 -0.5746 -0.6292 
Stdev 0.3139 0.3122 0.3119 0.3197 0.3213 0.3155 
Lower Bound^ -1.4376 -1.4071 -1.4193 -1.2249 -1.2097 -1.2723 
Higher Bound^ -0.1845 -0.1897 -0.2036 -0.0284 -0.0103 -0.0706 

^Bounds of 95% Credible Interval 
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Table 2. Parameter estimates for Models 1 through 6 (continued). 
𝜸𝜸𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean -0.7028 -0.7280 -0.6190 -0.6029 -0.6121 -0.6553 
Median -0.7170 -0.7296 -0.6260 -0.5800 -0.5845 -0.6290 
Stdev 0.4546 0.4405 0.4632 0.3432 0.3426 0.3198 
Lower Bound^ -1.5799 -1.5613 -1.4802 -1.3175 -1.3644 -1.3383 
Higher Bound^ 0.2503 0.1740 0.3522 -0.0307 -0.0342 -0.1272 

       
𝜸𝜸𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean -0.0839 -0.0843 -0.0886 -0.0729 -0.0726 -0.0807 
Median -0.0846 -0.0844 -0.0882 -0.0733 -0.0717 -0.0805 
Stdev 0.0508 0.0506 0.0493 0.0474 0.0482 0.0447 
Lower Bound^ -0.1881 -0.1851 -0.1846 -0.1666 -0.1707 -0.1669 
Higher Bound^ 0.0142 0.0138 0.0049 0.0174 0.0191 0.0063 

       
𝜸𝜸𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean 0.2148 0.2144 0.2523 0.1483 0.1554 0.1877 
Median 0.2149 0.2129 0.2502 0.1497 0.1574 0.1900 
Stdev 0.0972 0.0958 0.0879 0.0873 0.0859 0.0766 
Lower Bound^ 0.0223 0.0252 0.0831 -0.0206 -0.0096 0.0286 
Higher Bound^ 0.4003 0.4049 0.4296 0.3102 0.3207 0.3366 

       
𝜸𝜸𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean -0.1536 -0.1677 -0.1322 -0.0398 -0.0349 -0.0469 
Median -0.1560 -0.1689 -0.1387 -0.0162 -0.0114 -0.0285 
Stdev 0.2554 0.2536 0.2614 0.1449 0.1507 0.1544 
Lower Bound^ -0.6506 -0.6708 -0.6311 -0.3761 -0.3890 -0.3921 
Higher Bound^ 0.3606 0.3212 0.3898 0.2065 0.2275 0.2239 

       
𝜸𝜸𝒀𝒀 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean -0.6251 -0.6231 -0.3693 -0.6427 -0.6311 -0.3772 
Median -0.6228 -0.6296 -0.3827 -0.6494 -0.6252 -0.4032 
Stdev 0.5701 0.5680 0.3605 0.5868 0.5651 0.3593 
Lower Bound^ -1.7344 -1.7462 -1.0280 -1.8034 -1.7689 -1.0592 
Higher Bound^ 0.4542 0.4948 0.3765 0.5110 0.4595 0.3633 

       
𝜸𝜸𝒀𝒀𝒀𝒀 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean 0.0460 0.0463 0.0254 0.0475 0.0468 0.0269 
Median 0.0463 0.0465 0.0259 0.0478 0.0464 0.0286 
Stdev 0.0462 0.0458 0.0293 0.0473 0.0455 0.0290 
Lower Bound^ -0.0413 -0.0440 -0.0351 -0.0456 -0.0417 -0.0330 
Higher Bound^ 0.1343 0.1387 0.0786 0.1414 0.1397 0.0816 

^Bounds of 95% Credible Interval 
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Table 2. Parameter estimates for Models 1 through 6 (continued). 
𝜸𝜸𝒀𝒀𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean -0.0149 -0.0151 -0.0119 -0.0140 -0.0143 -0.0113 
Median -0.0148 -0.0150 -0.0116 -0.0140 -0.0144 -0.0110 
Stdev 0.0092 0.0090 0.0061 0.0096 0.0091 0.0060 
Lower Bound^ -0.0328 -0.0336 -0.0246 -0.0334 -0.0332 -0.0238 
Higher Bound^ 0.0039 0.0026 -0.0009 0.0050 0.0028 -0.0008 

       
𝜸𝜸𝒀𝒀𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean 0.0115 0.0118 0.0162 0.0096 0.0101 0.0148 
Median 0.0114 0.0116 0.0157 0.0096 0.0100 0.0147 
Stdev 0.0096 0.0096 0.0091 0.0095 0.0092 0.0087 
Lower Bound^ -0.0068 -0.0068 -0.0007 -0.0090 -0.0078 -0.0019 
Higher Bound^ 0.0307 0.0313 0.0348 0.0286 0.0283 0.0321 
       

𝜸𝜸𝒀𝒀𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.0050 0.0063 0.0246 -0.0006 0.0009 0.0214 
Median 0.0047 0.0063 0.0242 -0.0018 0.0002 0.0202 
Stdev 0.0517 0.0502 0.0483 0.0530 0.0518 0.0493 
Lower Bound^ -0.0989 -0.0913 -0.0680 -0.1014 -0.0996 -0.0736 
Higher Bound^ 0.1090 0.1059 0.1229 0.1086 0.1064 0.1220 
       

𝜸𝜸𝒀𝒀𝒕𝒕𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.2167 0.2157 0.2534 0.2085 0.2103 0.2379 
Median 0.2148 0.2134 0.2511 0.2067 0.2081 0.2374 
Stdev 0.0589 0.0577 0.0551 0.0535 0.0537 0.0522 
Lower Bound^ 0.1094 0.1076 0.1521 0.1076 0.1070 0.1393 
Higher Bound^ 0.3396 0.3319 0.3675 0.3182 0.3201 0.3415 
       

𝜶𝜶𝑪𝑪 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.5146 0.5175 0.4831 0.5334 0.5314 0.5006 
Median 0.5107 0.5148 0.4820 0.5298 0.5291 0.4969 
Stdev 0.0764 0.0775 0.0675 0.0794 0.0782 0.0713 
Lower Bound^ 0.3702 0.3707 0.3538 0.3882 0.3854 0.3672 
Higher Bound^ 0.6734 0.6773 0.6146 0.6984 0.6879 0.6442 
       

𝜶𝜶𝑲𝑲 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.9273 0.9263 0.9079 0.9432 0.9399 0.9185 
Median 0.9287 0.9271 0.9108 0.9436 0.9409 0.9218 
Stdev 0.0324 0.0309 0.0253 0.0314 0.0285 0.0215 
Lower Bound^ 0.8627 0.8610 0.8497 0.8814 0.8811 0.8704 
Higher Bound^ 0.9886 0.9835 0.9464 1.0048 0.9894 0.9507 

^Bounds of 95% Credible Interval 
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Table 2. Parameter estimates for Models 1 through 6 (continued). 
𝜶𝜶𝑳𝑳 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean 0.3604 0.3678 0.3431 0.3530 0.3479 0.3419 
Median 0.3586 0.3666 0.3420 0.3534 0.3490 0.3411 
Stdev 0.1098 0.1073 0.1066 0.1063 0.1065 0.1032 
Lower Bound^ 0.1482 0.1612 0.1349 0.1364 0.1415 0.1417 
Higher Bound^ 0.5775 0.5835 0.5520 0.5650 0.5556 0.5421 
       

𝜶𝜶𝑴𝑴 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.4368 0.4432 0.3770 0.4533 0.4493 0.4066 
Median 0.4390 0.4444 0.3799 0.4556 0.4469 0.4052 
Stdev 0.1148 0.1136 0.1081 0.1072 0.1075 0.1021 
Lower Bound^ 0.2110 0.2225 0.1651 0.2441 0.2407 0.2120 
Higher Bound^ 0.6526 0.6626 0.5861 0.6586 0.6638 0.6078 
       

𝝈𝝈𝑪𝑪 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.5019 0.5020 0.4955 0.5030 0.5022 0.5012 
Median 0.4964 0.4959 0.4915 0.4977 0.4964 0.4978 
Stdev 0.0589 0.0594 0.0556 0.0594 0.0581 0.0572 
Lower Bound^ 0.4022 0.4031 0.3992 0.4022 0.4048 0.4034 
Higher Bound^ 0.6310 0.6371 0.6174 0.6316 0.6298 0.6241 
       

𝝈𝝈𝑲𝑲 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.0549 0.0549 0.0557 0.0549 0.0551 0.0559 
Median 0.0542 0.0540 0.0551 0.0541 0.0545 0.0550 
Stdev 0.0071 0.0074 0.0074 0.0070 0.0073 0.0075 
Lower Bound^ 0.0431 0.0429 0.0432 0.0431 0.0429 0.0440 
Higher Bound^ 0.0707 0.0719 0.0718 0.0707 0.0722 0.0734 

       
𝝈𝝈𝑳𝑳 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean 0.3769 0.3759 0.3790 0.3746 0.3747 0.3768 
Median 0.3745 0.3715 0.3753 0.3712 0.3699 0.3718 
Stdev 0.0437 0.0448 0.0445 0.0436 0.0448 0.0466 
Lower Bound^ 0.3020 0.3008 0.3020 0.2997 0.2991 0.2999 
Higher Bound^ 0.4747 0.4738 0.4790 0.4677 0.4724 0.4825 
       

𝝈𝝈𝑴𝑴 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.3341 0.3323 0.3470 0.3230 0.3234 0.3332 
Median 0.3289 0.3282 0.3429 0.3187 0.3194 0.3291 
Stdev 0.0462 0.0458 0.0462 0.0430 0.0421 0.0435 
Lower Bound^ 0.2582 0.2556 0.2693 0.2516 0.2509 0.2578 
Higher Bound^ 0.4383 0.4362 0.4517 0.4197 0.4161 0.4257 

^Bounds of 95% Credible Interval 
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Table 2. Parameter estimates for Models 1 through 6 (continued). 
𝝆𝝆𝑪𝑪𝑲𝑲 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean 0.3201 0.3226 0.3634 0.3075 0.3112 0.3591 
Median 0.3257 0.3364 0.3716 0.3151 0.3168 0.3675 
Stdev 0.1476 0.1498 0.1387 0.1495 0.1474 0.1361 
Lower Bound^ 0.0178 0.0014 0.0663 -0.0113 0.0127 0.0665 
Higher Bound^ 0.5873 0.5902 0.6121 0.5698 0.5802 0.6074 
       

𝝆𝝆𝑪𝑪𝑳𝑳 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.4551 0.4512 0.4563 0.4243 0.4251 0.4332 
Median 0.4644 0.4616 0.4674 0.4333 0.4364 0.4397 
Stdev 0.1301 0.1308 0.1288 0.1368 0.1354 0.1328 
Lower Bound^ 0.1734 0.1698 0.1798 0.1320 0.1314 0.1645 
Higher Bound^ 0.6815 0.6748 0.6821 0.6639 0.6664 0.6652 
       

𝝆𝝆𝑪𝑪𝑴𝑴 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.5891 0.5893 0.6383 0.5728 0.5756 0.6214 
Median 0.6050 0.6041 0.6537 0.5906 0.5947 0.6380 
Stdev 0.1302 0.1307 0.1118 0.1376 0.1386 0.1219 
Lower Bound^ 0.2906 0.2860 0.3894 0.2645 0.2590 0.3413 
Higher Bound^ 0.8012 0.7959 0.8195 0.7925 0.7956 0.8095 
       

𝝆𝝆𝑲𝑲𝑳𝑳 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean -0.0605 -0.0601 -0.0638 -0.0475 -0.0532 -0.0518 
Median -0.0625 -0.0601 -0.0650 -0.0471 -0.0549 -0.0526 
Stdev 0.1464 0.1415 0.1418 0.1457 0.1416 0.1429 
Lower Bound^ -0.3355 -0.3320 -0.3353 -0.3273 -0.3224 -0.3331 
Higher Bound^ 0.2282 0.2270 0.2086 0.2364 0.2271 0.2315 

𝝆𝝆𝑲𝑲𝑴𝑴 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.3028 0.3086 0.3956 0.2705 0.2811 0.3781 
Median 0.3142 0.3172 0.4049 0.2780 0.2860 0.3851 
Stdev 0.1946 0.1875 0.1668 0.1896 0.1819 0.1590 
Lower Bound^ -0.1070 -0.0801 0.0385 -0.1193 -0.0859 0.0375 
Higher Bound^ 0.6496 0.6454 0.6864 0.6196 0.6099 0.6634 
       

𝝆𝝆𝑳𝑳𝑴𝑴 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.2601 0.2626 0.2369 0.2621 0.2535 0.2478 
Median 0.2690 0.2663 0.2454 0.2655 0.2618 0.2516 
Stdev 0.1410 0.1411 0.1439 0.1364 0.1392 0.1356 
Lower Bound^ -0.0269 -0.0315 -0.0612 -0.0163 -0.0301 -0.0287 
Higher Bound^ 0.5194 0.5228 0.5015 0.5167 0.5090 0.4978 

^Bounds of 95% Credible Interval 
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Table 2. Parameter estimates for Models 1 through 6 (continued). 
LikelihoodP Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 176.5424 176.6852 173.4191 173.7588 173.4520 166.5135 
Median 176.8824 177.1389 173.8097 174.0793 173.9746 166.9548 
Stdev 4.5932 4.9389 4.5839 4.9116 5.4077 4.9978 
Lower Bound^ 166.6852 165.7644 163.4715 163.1750 161.3069 156.0331 
Higher Bound^ 184.6299 184.8873 181.5127 182.2938 182.4634 174.9589 

^Bounds of 95% Credible Interval 
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Table 3. Cost elasticities for Models 1 through 6. 

 
Elasticity of Cost with respect to Output     

𝜺𝜺𝑪𝑪𝒀𝒀 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.240426 0.247187 0.28971 0.226974 0.233922 0.2826 
Median 0.24264 0.246049 0.282801 0.228653 0.23174 0.275623 
Stdev 0.108157 0.103564 0.089285 0.112803 0.10523 0.089941 
Lower Bound^ 0.022982 0.045575 0.133007 -0.00217 0.041418 0.125439 
Higher Bound^ 0.447214 0.454617 0.48358 0.439647 0.441744 0.471497 

 
Semi-elasticity of Cost with respect to time      

𝜺𝜺𝑪𝑪𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean -0.00741 -0.00736 -0.00837 -0.00758 -0.00773 -0.00827 
Median -0.00739 -0.0074 -0.00836 -0.00766 -0.00781 -0.00833 
Stdev 0.002563 0.002576 0.002461 0.002389 0.00237 0.002219 
Lower Bound^ -0.01241 -0.01226 -0.01314 -0.0121 -0.01209 -0.01236 
Higher Bound^ -0.00236 -0.00227 -0.00355 -0.00273 -0.00298 -0.00383 

 

^Bounds of 95% Credible Interval 
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Table 4. Capital elasticities for Models 1 through 6. 
Own-price elasticity       

𝜺𝜺𝑲𝑲𝒘𝒘𝑲𝑲 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean -0.15121 -0.15055 -0.14085 -0.14553 -0.14402 -0.13257 
Median -0.15102 -0.15122 -0.1422 -0.14549 -0.14497 -0.13318 
Stdev 0.032576 0.032314 0.030766 0.032557 0.033019 0.030687 
Lower Bound^ -0.215 -0.21385 -0.19868 -0.20887 -0.20768 -0.18825 
Higher Bound^ -0.08754 -0.08457 -0.07882 -0.0785 -0.07592 -0.06851 
       
       
Elasticity of Capital with respect to Labor Price    

𝜺𝜺𝑲𝑲𝒘𝒘𝑳𝑳  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean -0.01952 -0.0196 -0.02061 -0.01694 -0.01688 -0.01878 
Median -0.01968 -0.01963 -0.02052 -0.01706 -0.01667 -0.01873 
Stdev 0.011824 0.011779 0.011476 0.011033 0.011201 0.010405 
Lower Bound^ -0.04375 -0.04305 -0.04294 -0.03874 -0.0397 -0.03881 
Higher Bound^ 0.003313 0.003199 0.001139 0.004037 0.004435 0.001475 
       
       
Elasticity of Capital with respect to Price of Materials    

𝜺𝜺𝑲𝑲𝒘𝒘𝑴𝑴 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.081603 0.081442 0.095852 0.056359 0.059044 0.07132 
Median 0.081659 0.080879 0.095067 0.056881 0.059809 0.072191 
Stdev 0.036924 0.036396 0.033389 0.033166 0.032649 0.029094 
Lower Bound^ 0.008471 0.009578 0.03158 -0.00781 -0.00364 0.010851 
Higher Bound^ 0.15208 0.153856 0.163234 0.117871 0.121836 0.12788 
       
       
Semi-Elasticity of Capital with respect to time   

𝜺𝜺𝑲𝑲𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.002807 0.002781 0.001733 0.003301 0.003124 0.002076 
Median 0.002884 0.002825 0.001876 0.003286 0.003121 0.002107 
Stdev 0.002183 0.002165 0.00199 0.002095 0.002009 0.001662 
Lower Bound^ -0.0016 -0.00169 -0.0025 -0.00077 -0.00085 -0.0013 
Higher Bound^ 0.006901 0.006952 0.005304 0.007573 0.007085 0.005281 

 

^Bounds of 95% Credible Interval 
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Table 5. Labor elasticities for Models 1 through 6. 
Elasticity of Labor with respect to Capital Price    

𝜺𝜺𝑳𝑳𝒘𝒘𝑲𝑲 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean -0.01049 -0.01054 -0.01108 -0.00911 -0.00908 -0.01009 
Median -0.01058 -0.01055 -0.01103 -0.00917 -0.00896 -0.01007 
Stdev 0.006356 0.006332 0.006169 0.005931 0.006021 0.005593 
Lower Bound^ -0.02352 -0.02314 -0.02308 -0.02083 -0.02134 -0.02086 
Higher Bound^ 0.001781 0.001719 0.000612 0.00217 0.002384 0.000793 
       
       
Own-price elasticity    

𝜺𝜺𝑳𝑳𝒘𝒘𝑳𝑳  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean -0.08501 -0.08569 -0.0866 -0.06124 -0.06155 -0.06792 
Median -0.08407 -0.08507 -0.08607 -0.06029 -0.06135 -0.06718 
Stdev 0.033515 0.033339 0.033304 0.034133 0.034311 0.033682 
Lower Bound^ -0.1535 -0.15024 -0.15155 -0.13078 -0.12917 -0.13584 
Higher Bound^ -0.0197 -0.02026 -0.02174 -0.00303 -0.0011 -0.00754 
       
       
Elasticity of Labor with respect to Price of Materials    

𝜺𝜺𝑳𝑳𝒘𝒘𝑴𝑴  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean -0.02679 -0.02925 -0.02306 -0.00695 -0.0061 -0.00818 
Median -0.02721 -0.02947 -0.02419 -0.00283 -0.002 -0.00497 
Stdev 0.044552 0.044233 0.045597 0.025271 0.02629 0.026933 
Lower Bound^ -0.11349 -0.11701 -0.11008 -0.06561 -0.06786 -0.06839 
Higher Bound^ 0.062893 0.056023 0.067988 0.036025 0.039682 0.039057 
       
       
Semi-Elasticity of Labor with respect to time   

𝜺𝜺𝑳𝑳𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean -0.00868 -0.00846 -0.00959 -0.01049 -0.01067 -0.01089 
Median -0.00872 -0.00844 -0.00955 -0.01045 -0.01073 -0.01104 
Stdev 0.003987 0.003961 0.004076 0.003396 0.003507 0.003416 
Lower Bound^ -0.01627 -0.01605 -0.01786 -0.01723 -0.01769 -0.01738 
Higher Bound^ -0.00081 -0.00078 -0.00153 -0.00383 -0.00361 -0.00404 

 

^Bounds of 95% Credible Interval 
  



 
26 

Table 6. Materials elasticities for Models 1 through 6. 
Elasticity of Materials with respect to Capital Price    

𝜺𝜺𝑴𝑴𝒘𝒘𝑲𝑲 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean 0.021937 0.021894 0.025768 0.015151 0.015873 0.019173 
Median 0.021952 0.021743 0.025557 0.015291 0.016079 0.019407 
Stdev 0.009926 0.009784 0.008976 0.008916 0.008777 0.007821 
Lower Bound^ 0.002277 0.002575 0.00849 -0.0021 -0.00098 0.002917 
Higher Bound^ 0.040884 0.041361 0.043882 0.031687 0.032753 0.034378 
       
       
Elasticity of Materials with respect to Price of Capital    

𝜺𝜺𝑴𝑴𝒘𝒘𝑳𝑳  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean -0.0134 -0.01463 -0.01153 -0.00348 -0.00305 -0.00409 
Median -0.01361 -0.01474 -0.0121 -0.00142 -0.001 -0.00248 
Stdev 0.022281 0.022121 0.022803 0.012638 0.013147 0.013469 
Lower Bound^ -0.05675 -0.05852 -0.05505 -0.03281 -0.03394 -0.0342 
Higher Bound^ 0.031453 0.028017 0.034001 0.018016 0.019845 0.019533 
       
       
Own-price elasticity    

𝜺𝜺𝑴𝑴𝒘𝒘𝑴𝑴 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean -0.10016 -0.10375 -0.08822 -0.08592 -0.08723 -0.0934 
Median -0.10219 -0.10399 -0.08922 -0.08266 -0.08331 -0.08964 
Stdev 0.064788 0.062778 0.06602 0.048908 0.048829 0.045573 
Lower Bound^ -0.22517 -0.22252 -0.21095 -0.18777 -0.19446 -0.19074 
Higher Bound^ 0.035672 0.024801 0.050189 -0.00437 -0.00488 -0.01813 
       
       
Semi-Elasticity of Materials with respect to time   

𝜺𝜺𝑴𝑴𝒕𝒕 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Mean -0.00222 -0.00202 -0.00352 -0.00264 -0.0027 -0.00315 
Median -0.00209 -0.00197 -0.00337 -0.00279 -0.00288 -0.0033 
Stdev 0.003193 0.003093 0.00327 0.0022 0.002227 0.002163 
Lower Bound^ -0.00891 -0.00848 -0.01029 -0.00657 -0.00656 -0.00706 
Higher Bound^ 0.00377 0.003775 0.0025 0.001999 0.002103 0.00139 

 

^Bounds of 95% Credible Interval 
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