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Abstract 

The Neoclassical theory of production establishes a dual relationship between the profit 

value function of a competitive firm and its underlying production technology. This 

relationship, commonly referred to as duality theory, has been widely used in empirical 

work to estimate production parameters, such as elasticities and returns to scale, without 

the requirement of explicitly specifying the technology. We generate a pseudo-dataset by 

Monte Carlo simulations, which starting from known production parameters, yield a 

dataset with the main characteristics of U.S. agriculture in terms of unobserved firm 

heterogeneity, decisions under uncertainty, unexpected production and price shocks, 

endogenous prices, output and input aggregation, measurement error in variables, and 

omitted variables. Econometric estimation conducted with the mentioned pseudo-data 

show that the initial production parameters are not precisely recovered and therefore the 

elasticities are inaccurately estimated. The deviation of the own- and cross-price elasticities 

from their true values, given our parameter calibration, ranges between 6% and 229%, with 

an average of 71%. Also, own-price elasticities are as imprecisely recovered as cross-price 

elasticities. Sensitivity analysis shows that results still hold for different sources and levels 

of noise, as well as sample size used in estimation. 

 

Keywords: duality theory, firm’s heterogeneity, measurement error, data aggregation, 

omitted variables, endogeneity, uncertainty, Monte Carlo simulations. 
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1. Introduction 

The Duality theorem applied to the Neoclassical theory of production has provided 

practitioners with a useful method to provide quantitative answers to important economic 

questions. Provided certain regularities hold, such as perfect competition, profit 

maximizing behavior, and certainty, the solution of the primal problem (i.e. the optimal 

input demands and output supplies arising from the maximization of profits given prices 

and the production function) are the same as those arising from the dual problem, i.e., the 

application of Hotelling’s Lemma (Shephard’s Lemma) to the profit function (cost 

function) to derive the optimal input demands and output supplies. In other words, the 

Duality theorem implies an explicit algebraic relationship between the value function 

(profit or cost function) of the firm’s optimization problem and its underlying production 

function. Therefore, both could be used to empirically estimate price or substitution 

elasticities, returns to scale, and welfare impacts.  

Employing the dual problem begins with approximating the profit (or cost) value 

function with a parametric functional form, and applying Hotelling’s (or Shephard’s) 

Lemma to obtain a parametric form for the optimal input demands and output supplies. 

Then, system parameters are econometrically estimated using market data (prices and 

quantities), and finally, using them to recover the technology features of interest 

(elasticities, return to scale, etc.). According to Shumway (1995), attractive features of 

the dual approach include the facts that (a) no system of first-order equations has to be 

solved to obtain input (output) demands (supplies), (b) more functional forms can be 

used, (c) it is less prone to computational errors, (d) it requires data that are usually easier 

to obtain, (e) it is more accurate and more tractable for multi-output technologies. On the 
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other hand, highlights that curvature properties are advised to be pre-tested, and 

collinearity of prices and allocatable inputs induces estimation inefficiency. 

The reliance of the approach on a set of assumptions prompted a literature seeking to 

evaluate its performance in empirical applications. Burgess (1975) and Appelbaum 

(1978) are among the earliest. These authors failed to identify the source of the 

discrepancy between conclusions from the primal and dual approaches because they used 

a functional form that is not self-dual (translog), and used real-world data (for which the 

mentioned assumptions do not necessarily hold and do not allow to know the true data 

generating process (DGP)) . As a result, when the primal and dual approaches led to 

conflicting results, the authors could not establish which approach was preferable, and 

what portion of the whole divergence in the estimated parameters was attributable to a 

failure of duality versus to the functional specification. 

An exception is the study by Lusk et al. (2002), who analyzed the empirical 

properties of duality theory by simulating various datasets representing scenarios of price 

variability, length of time series, and measurement error. They found that small sources 

of measurement error translate into large errors in estimated parameters, emphasizing the 

necessity of high-quality data to estimate empirical models. 

Considerable effort has been put into testing the most appropriate flexible functional 

form (FFF) for a given dataset (Guilkey, Lovell and Sickles, 1983; Dixon, Garcia and 

Anderson, 1987; Thompson and Langworthy, 1989), induced by the fact that results are 

driven by the specified functional form. Analyses of this type usually consist of the 

following steps. First, a parametric functional form is selected to approximate the 

production technology. Several parameter scenarios are chosen, and observations are 
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simulated corresponding to the “true” production DGP for each scenario. Second, a set of 

input and output prices is computed under the assumption of profit maximization. Third, 

depending on the objective, the profit or cost function is approximated by a FFF, and the 

resulting system of input demands and output supplies is derived. Fourth, econometric 

methods are applied to estimate the parameters of the resulting system, which are finally 

compared with the true, known production parameters. However, as these authors 

assumed perfect competition, profit maximization, certainty, and lack of measurement 

errors, deviations from duality theory only come from the choice of functional form. As a 

result, we cannot judge the performance of duality theory in empirical applications, 

because data used by practitioners are usually not free from at least some of these 

problems.  

In this paper, we propose to analyze the ability of the duality theory approach to 

recover underlying production parameters from data with commonly observed problems. 

Among other realistic properties, the simulated data include (i) optimization under 

uncertainty; (ii) prediction errors in prices and quantities of variable netputs; (iii) omitted 

variable netputs; (iv) output and input aggregation; (v) measurement errors in the 

observed variables; (vi) unobserved heterogeneity across firms; and (vii) endogenous 

output and input prices. For meaningful analysis, we calibrate the simulated data to 

capture realistic magnitudes of the noise arising from each source. Knowing the true 

technology parameters, Monte Carlo simulations are used to compute the necessary price 

and quantity variables. While calibrated to represent typical datasets encountered in 

practice, the levels of noise embedded in these variables affect the data used in 

estimation, preventing duality theory from holding exactly. Hence, the true production 
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parameters may not be recovered with enough precision, and the estimated elasticities 

measurements may be more inaccurate than expected. 

We first generate a panel of input and output prices and quantities for successive 

periods of time and coming from a set of firms with heterogeneous technology. As this 

DGP does not bear the problems described in the previous paragraph, we employ it to 

confirm that the dual approach is able to recover the production parameters with 

sufficient accuracy provided its basic assumptions are met.  

Second, we add noise to the generated panel of price and quantity variables to 

replicate the aforementioned real-world problems found in data used by practitioners. We 

aim at generating noise comparable to that encountered in widely used datasets, such as 

the one constructed and maintained by Eldon Ball for U.S. input/output price and 

quantities (USDA-ERS), the USDA-ARMS database, the U.S. Agricultural Census 

database (USDA-NASS), and the Chicago Mercantile Exchange (CME) futures prices 

database. We chose the first dataset because it is publicly available and it has been used 

for applications of duality theory in several widely cited papers (Ball, 1985; Ball, 1988; 

Baffes and Vasavada, 1989; Shumway and Lim, 1993; Chambers and Pope, 1994). The 

remaining two data sources provide useful information to calibrate cross-sectional 

parameters. We seek to calibrate parameters and noise levels directly observed (e.g., price 

variability and length of time series) and also unobserved (e.g., measurement error, 

endogeneity of output prices, production and price shocks). Moreover, we adopt the 

criteria of calibrating parameter values to favor recovery of true production parameters, 

especially for those that are unobservable.1  

                                                           
1 In this study, we generate a panel data of observations across firms and over time. We focus here on the 

properties of duality theory applications using time series data. The analysis of applications with cross-
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We set up the expected profit function and derive the system of input demands and 

output supplies, to then econometrically estimate its parameters for comparison with the 

true (and known) production parameters. Comparisons are performed using Lau’s (1976) 

Hessian identities between production and restricted profit functions. 

2. The model of a single firm  

Consider a producer who maximizes the expected utility of uncertain terminal wealth by 

choosing the level of netputs.2 The firm’s problem3 is: 

 
     

  
0 0

0

[ , ] 1 [ , ] 0

, 0[ ] 0

max max

max

y y

y

EU W EU W

EU W y

 

   

y y

y p y
  (2.1) 

where U is a strictly increasing and twice-continuously differentiable concave utility 

function of terminal wealth (
1W  ), defined as initial wealth ( 0W ) plus uncertain end-of-

period profits ( ). The tilde ( ) indicates a random variable. Variable y is a vector of n 

variable netput quantities, p are the corresponding variable netput prices normalized by 

0p which is the price of 0y , the numeraire commodity. The expectation operator E 

integrates over the uncertainty of random variables p and y . 

Defining K as the vector of m quasi-fixed netputs, a production plan consists of 

the vector  0 , ,y  y K  belonging to the production possibilities set 1 n mS R   .4 As shown 

                                                           
sectional data is as relevant as the one pursued here. We leave it for future research. The properties of 

duality theory using panel data can be studied with the data generated, but they are less frequent in the 

literature because these datasets are not as readily available.  
2 According to netput notation, a positive value is a net output and a negative value is a net input. 
3 The model setup follows closely the one used in Rosas and Lence (2015), which in turn is based on Lau 

(1976) 
4 The properties of the set S include: (i) the origin belongs to S; (ii) S is closed; (iii) S is convex; (iv) S is 

monotonic with respect to y0; and (v) non-producibility with respect to at least one variable input, which 

implies at least one commodity is freely disposable and can only be a net input in the production process (a 

primary factor of production).  
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by Jorgenson and Lau (1974), there exists a one-to-one correspondence between the set S 

and a production function G (also constrained by the quasi-fixed netputs K), such that:5 

   0 0( , ) max / , ,G y y S   y K y K   (2.2) 

Therefore, we can rewrite problem (6) as follows:  

       [ ] 1 [ ] 0 ,max m ;axEU W E GU W  y y p y - y K    (2.3) 

The solution to this problem is a set of expected netput demand equations *( , ; )y p K   

and a restricted profit function ( , ; )R p K   which are dependent on the vector of 

normalized expected netput prices, the vector of quasi-fixed netputs, and a set of 

parameters 𝜷. 

The duality theory establishes a relationship between the production function 

 , ;G y K   and the restricted profit function ( , ; )R p K  , which Lau (1976) proved in 

terms of their Hessian matrices under the assumption of convexity and twice continuously 

differentiability of both functions. In our analysis, these Hessian relationships are a key 

result because are used to write the estimated parameters of the restricted profit function (

 ) as a function of the parameters of the underlying production function ( ), and then 

used to compare the recovered parameters with the true ones. See Rosas and Lence (2015) 

for more details on how this comparison is performed. 

To operationalize this problem, we proceed by assigning functional forms in 

problem (2.3). We assume a constant absolute risk aversion (CARA) utility function of 

                                                           
5 The properties of the production function G are: (i) the domain is a convex set of Rn+m that contains the 

origin; (ii) the value of G at the origin, say G(0), is non-positive; (iii) G is bounded; (iv) G is closed; and 

(v) G is convex in {y, K}. Convexity is required because of the convention used in Lau (1976) that y0 =  ̶ 

G(y, K). We follow the convention that the value of the production function is positive infinity if a 

production plan is not feasible, that is, max{Ø} =  ̶ ∞, where {Ø} is the empty set. 
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the form 1)( WeU     with  representing the coefficient of absolute risk aversion 

(which determines the degree of concavity of the utility function), defined as U U    

where U   and U   are the first and second derivatives, respectively, of the utility function 

with respect to the random terminal wealth. The treatment of risk and uncertainty in the 

duality theory framework with profit functions includes the work by Pope (1982), Coyle 

(1992), Coyle (1999), Pope and Just (2002). In the case of cost functions, developments 

are due to Pope and Chavas (1994), Pope and Just (1996), Pope and Just (1998), 

Chambers and Quiggin (1998), Moschini (2001), and Chavas (2008), among others. 

Then, we assume a quadratic FFF for the production function  , ;ft fftG y K  :  

   1
1 2 11 12 222ft f ft f ft f ft ft f ft ft f ft ftG A A A A          y K A y y y K K K   (2.4) 

where f and t, respectively, index firms and time, 
1 fA and 

2 fA  are (n×1) and (m×1) 

vectors of 
,i f  coefficients, 

11 fA  is a symmetric and nonsingular (n×n) matrix, and 
12 fA

and 
22 fA  are (n×m) and (m×m) matrices of firm f. Submatrices 

11 fA , 
12 fA  and 

22 fA  

form a symmetric and positive semi-definite ((n+m)×(n+m)) matrix 
fA  of 

,ij f  

coefficients.6 We collectively denote all 
,i f  and 

,ij f  coefficients as 
f . This functional 

form is self-dual, the production and profit function Hessians are only functions of 

parameters, and is broadly employed by practitioners in applications of the duality 

approach.  

Uncertainty in a farmer’s decision process comes from events such as random 

weather, pests, and selling prices not known with certainty at the time of making 

                                                           
6 Positive semi-definiteness is required because of the convention used in Lau (1976) that y0 =  ̶ G(y, K).  
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allocation decisions, among others. In particular, the farmer optimizes by choosing the 

quantity of expected output at the end of the growing season. We model production 

uncertainty by introducing a mean-zero, heteroskedastic production shock denoted by 

ft  for each firm f and time t. The functional form is as follows: 

 
 

 
3

22
8

,ft ft ft

ft ft

g 

  
  

y D v

D y v
  (2.5) 

where D is a (1×n) row vector of constants, “∙” is the dot product, and v is an (n×1) 

random vector. The entries of v corresponding to variable outputs are distributed as 

~ 1 2 (2,2)Betav    , or an independent and identically distributed (iid) symmetric 

shock with mean zero in the interval [-1,1]. Elements corresponding to variable inputs are 

zero. While this is consistent with firms facing output quantity uncertainty, the jointly 

specified technology induces uncertainty in all choice variable netputs. There are at least 

two reasons for choosing functional form in (2.5). First, it guarantees a heteroskedastic 

production error with a standard deviation increasing at a decreasing rate, consistent with 

the assumption that bigger firms are less exposed to uncertain events (weather) because a 

bad draw is more likely to be offset by a good draw within the same firm. Second, the 

multiplicative constants, the beta distribution parameters, and the random error jointly 

induce a production shock ranging from plus or minus 10% to 60% of the average 

quantity produced.7 The shock enters the solution of variable netput quantities in its first 

derivative and premultiplied by  
1

11A


. To achieve the desired level of variability in each 

                                                           
7 For comparison, a pooled panel of farm-specific corn yield over a period of five years shows that the 2.5th 

and 97.5th percentiles are respectively 60% lower and 40% higher than the average yields in the Corn Belt 

region, 60% lower and 42% higher in the Lake States region, and 80% lower and 70% higher in the 

Northern Plains region. 
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netput quantity, and to reduce variability induced by other netputs (especially in the case 

of inputs), entries of D are set equal to the inverse of the main diagonal of  
1

11A


. 

 

Figure 2.1. Production shock as a function of firm’s average variable netput 

quantity (
0fty ) at time t = 0t , for selected netputs.  

Note: Top panels: distribution of netput quantities (
0fty ) faced by each firm. Middle panels: minimum, 

mean, and maximum shock as percentage of firm’s average quantity
0fty . Bottom panels: coefficient of 

variation of the distribution of quantities CV(
0fty ) by firm. 

Figure 2.1 shows selected production shocks computed for netput 1 (output) and 

netput 8 (input) for all firms f at time 0t = 1. In the top panels, the distribution of the 

netput quantity faced by each firm 
0fty  is plotted against the firm’s average netput 

quantity
0fty . The middle panels show the minimum (green), mean (blue), and maximum 

(red) of the production shock ( ) as a percentage of the firm’s average netput quantity. 
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For firms with higher levels of outputs or inputs, the minimum and maximum shocks 

represent a lower percentage of the average quantity, ranging between 10% and 50% 

depending on the netput, yielding a coefficient of variation decreasing in netput quantity, 

which is consistent with the desired production shock heteroskedasticity (bottom panels).  

Firms also face end-of-period output price uncertainty, modeled as a log-normal 

deviation from the firm-specific price 
*

ftp , or: 

    *log logft ft p p e   (2.6) 

where e is an (n×1) random vector. Entries associated with prices of outputs are iid 

normally distributed shocks with mean zero and standard deviation of 0.2 (Lence 2009). 

Entries corresponding to inputs are zero, assuming input prices are known at the decision 

moment.  

We induce correlation between the levels of output prices and quantities by the Iman 

and Conover (1982) method. We assume production shocks have an impact on prices of 

the opposite sign and set the correlation coefficient to -0.30 based on observed 

correlations of these variables for the U.S. Further, because commodity prices tend to 

move together, we impose a strong positive correlation of 0.90 among commodity prices. 

Similarly, we assume output quantity shocks are positively correlated among them 

because weather is likely to affect all crops; therefore, we set the correlation coefficient 

to 0.90.  

3. Simulation of panel data 

To analyze the empirical properties of duality theory, we generate a noiseless and a noisy 

dataset. Consistent with Rosas and Lence (2015), the noiseless dataset is used both to 

illustrate the ability of duality to recover true production parameters when data are free 
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from the aforementioned problems, and to show the implications on parameters recovery 

when data are aggregated across firms with heterogeneous technology. In this study, we 

focus on the noisy dataset which allows us to document the effects on production 

parameter estimation from using duality theory when the dataset features realistic 

problems. 

The simulation produces a panel of 8 variable netput prices and quantities over a 

period of T = 50 years, from R = 3 regions each composed of F = 10,000 heterogeneous 

firms, such that firm heterogeneity is higher across regions than within it. Therefore, 

conditional on the set of parameters 
*

fa , there are R F T   = 1.5 million observations 

for each variable of the vector *, , ;ft ft ft f
  y p K a .8  

 
Figure 3.1. DGP of noiseless and noisy datasets used in estimation. 

Figure 3.1 sketches the simulation of the data. The first step is to Monte Carlo 

simulate for each firm and time period the set of starting production parameters 𝒂𝑓
∗  and 

the quasi-fixed netputs 
*

ftK  (section 3.1). Second, conditioning on these values, we draw 

                                                           
8 This figure roughly represents about one-fifth of the quantity of farms in a given state of the Corn Belt, 

Lake States and Northern Plains regions in the U.S. (Corn Belt states: IA, IL, IN, MO, OH; Lake States: 

MI, MN, WI; and Northern Plains states: KS, ND, NE, SD). State-level time-series datasets with 

information on prices and quantities of agricultural outputs and inputs are available for no more than 50 

years in the U.S. 

NOISELESS DATASET

NOISY DATASET

max 

max E

Noiseless estimation

• Realized shocks

• Omitted variables

• Netput aggregation

• Measurement error

Time series data

Time series data Noisy estimation
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expected variable netput prices that are exogenous in the case of the noiseless dataset 
**

ftp

, and endogenous in the noisy data
*

ftp  (section 3.2). For the latter, calibrated values of 

initial wealth 
0, ftW  (section 3.3) and the coefficient of absolute risk aversion λf  are 

provided for the maximization problem’s objective function. Third, we solve an expected 

profit maximization problem to obtain the expected variable netput quantities 
**

fty  

(section 3.4). The noiseless panel dataset is then aggregated across heterogeneous firms 

before proceeding to estimation of the time-series dataset. We finally recover production 

function parameters, which we denote as 
f  (section 5).  

In the case of the noisy data (section 3.5), we assume a risk-averse individual who 

chooses optimal expected netput quantities 
*

fty  so as to maximize the expected utility of 

end-of-period terminal wealth (subsection 3.5.1). Before proceeding to estimation, we 

disturb the data with the following sources of noise: shocks in production and expected 

output and price (section 3.5.2), omitted variables (section 3.5.3), aggregation across 

netputs (section 3.5.4), and measurement errors in price and quantity variables (section 

3.5.5). Finally, the variables are aggregated over unobserved heterogeneous firms to 

conduct time-series estimation (section 3.5.6). The expected netput quantity and prices 

are denoted as 
fty  and 

ftp , respectively. Estimation results yield the set of production 

parameters denoted as ˆ
f (section 5). 

3.1 Random generation of true production parameters: 
*

fa  and 
*

ftK  

The production function of each firm  , ;ft fftG y K   is conditioned by the parameter set 

*

fa  and the set of quasi-fixed netputs 
*

ftK , which together determine the technology of 
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each firm, and ultimately drive the values of elasticities, returns to scale, and other firm 

measurements. As Figure 3.1 states, we simulate by Monte Carlo the values for 
*

ftK , 

vectors
1 fA and 

2 fA , and submatrices 
11 fA , 

12 fA  and 
22 fA  in equation (3.1), which are 

used in the random generation of the netputs prices and quantities pseudo-data. We use 

the methods and procedures described in Rosas and Lence (2015), which for reasons of 

space are not explained here. It has to be noted that to favor identification of parameters, 

technology is allowed to change only across firms and not over time. The recovery of 

technological change parameters can be left as a topic for future research without 

compromising the conclusions arrived in this study.  

3.2 Random generation of expected variable netput prices: 
**

ftp and 
*

ftp  

Throughout the analysis, we assume producers solve the maximization prices based on 

expected output prices and current input prices. We generate two sets of firm-specific 

expected prices for each region.  

Prices are exogenous in the first case (
**

ftp ), and are used to test duality theory 

with noiseless data. We start by simulating “national” netput prices calibrated to match 

the mean, standard deviation, and serial autocorrelation of CME future crop prices and 

Eldon Ball’s input prices, as AR(1) lognormally distributed processes. The details are 

explained in Rosas and Lence (2015). 

 In the second case, prices are endogenous with respect to the aggregated netput 

quantity (
*

ftp ), and are used in the evaluation of duality theory properties in empirical 

work when using more realistic (noisy) data, which is the focus of this study. In a 

competitive market it is realistic to assume each firm is a price taker, because the netput 
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quantity decisions of any single firm do not affect price levels. This is usually modeled as 

the firm facing exogenous and fixed netput prices (i.e., a perfectly horizontal demand for 

outputs and supply for inputs). For an aggregation of firms, this is not necessarily the 

case. On aggregate, firms face downward sloping demand curves for their outputs and 

upward sloping supplies for inputs. In this case, changes in netput quantities at the 

aggregate level result in market-level price changes.  

We introduce a system of isoelastic market demands and supplies faced by firms 

in period t, described by 
t t t

Q p . The n-dimensional vector Qt is the aggregate market 

demand of output or the aggregate market supply of input 𝑛 faced by firms; 
t

p  denotes 

an n-dimensional vector of ntp  netput market prices, each raised to the power of ηn (the 

calibrated netput-specific demand or supply own price elasticity); and t  is an (n×n) 

diagonal matrix of supply and demand netput-specific shocks nt  coming from the 

market. All Greek letters represent calibrated parameters.  

The objective is to find a vector of netput prices 
*

ftp , where the optimal vector of 

netput quantities aggregated across firms ( * *

t ftf
y y ) equals the vector of market 

quantities ( tQ ). As will become apparent when we set up the firm’s maximization 

problem, we can write the optimal quantity of variable netputs as follows: 

    *

t f ft ftf
y   X p    (3.1) 

where 
fX  is a time-invariant matrix of production coefficients summarizing the elements 

of 
fa , 

ftp  is the vector of firm-specific prices received (defined as 
ft t ftp p  and 

explained below), and 
ft  is a vector of production errors, such as optimization mistakes, 
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weather shocks, deviation of prices from expected values, etc. These errors depend on the 

firm’s production parameters due to the claimed heteroskedasticity given by function g(.) 

in (2.5). By substituting for the firm-specific production coefficients and prices we have: 

     *

0t f t ft f t ft ftf
y g v     X p X p   (3.2) 

where X is the analog of the set of production coefficients a, pt is the vector of “national” 

prices, and g0(.) is the analog of function g(.). With a sufficiently large number of farms 

(F) and by independency of the random variables 
f ,

ft  and 
ftv  (the iid shocks in 

ft  

and 
ft ), *

ty converges in distribution by the law of large numbers to a Normal random 

variable whose mean is: 

 t t tF F y Xp    (3.3) 

The expression in (3.3) depends only on the known “average” production parameters and 

“national” time-t prices pt, which in fact are the same as those on the isoelastic demand or 

supply function faced by firms.  

Therefore, the vector of time-𝑡 netput prices is the *

tp  which clears the market (

t tQ y ), or in other words, the one which implicitly solves the following system for each 

t: 

 
t t t tF F  p Xp    (3.4) 

The system in (3.4) is nonlinear in pt and is conditional on known values—the set 

of known production parameters X and time-specific systematic shocks t . We obtain 

the desired vector of “national” netput prices *

tp  by numerically solving this system for 

each time t, given a random market shock t . 
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This requires generating values of t . We model the systematic shocks coming 

from the market t  as auto-correlated and behaving according to a Log-normal 

distribution: 

   0 1 , 1log(lo )g n n t nt n n      , (3.5) 

where 
20 )( ,
nn Normal  . For each netput n, the three parameters 0n , 1n , and n  are 

calibrated such that the resulting vector of average prices *

tp  have volatility values 

comparable to those of Eldon Ball’s dataset. Appendix I provides calibration details.  

 The systematic shocks coming from the market, nt , are generated for each t and n 

as follows. Dropping the “n” subscript again to ease notation, in the long run, the 

logarithms of t  and 1t   converge to 𝜙̅ and therefore we can calculate the long-run 

expected shocks as    0 1log 1    . To generate the desired systematic Log-normal 

shocks, we set    0 0 1log 1s     , take a draw from a Normal(0,
2

n
 ) random 

variable, and use (3.5) to calculate the systematic shock for the first iteration, i.e.

0log( )s  . This procedure is repeated 10,000 times.  

Next, we plug the vector ϕs for each iteration into (3.4) and use the MATLAB 

function fsolve to solve this system 10,000 times for the vector of n “national” prices that 

simultaneously clears the n markets in each t.9 We keep the last 50 solutions which 

constitute the vector of endogenous “national” netput prices *

tp . 

                                                           
9 Price variability is a key element for recovering production parameters, because a high dispersion 

contributes to the identification of a bigger portion of the production function. Random draws from 

Normal(0,
n

 ) are independent from each other, and therefore systematic shock are as well; however, 

when plugged into system (3.4) correlation between national prices is induced through matrix X. This DGP 

ultimately generates national netput prices with higher temporal variance and with lower correlation 
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Firm-specific netput prices, endogenous ( *

ftp ) and exogenous ( **

ftp ). These are both 

generated as deviations from “national” price. With the endogenous case as an example, 

first, a regional average is calculated as * *

rt t rtrd p p ,10 where dr is a regional indicator 

with mean one across regions11 and rt  is a mean one symmetric shock distributed as 

rt  [0.95 + 0.10Beta(2,2)], and independent from dr, to allow non-constant deviation 

from national average prices over time. Then, firm-specific random prices are in turn 

generated as deviations from the regional average. These deviations are small relative to 

variability of *

ftp  (and **

ftp ) to acknowledge for the contemporaneous low variability of 

prices firms receive and pay. That is, * *

ft ftrp p , where 
ft  is a symmetric mean one 

shock distributed as 
ft  [0.80 + 0.40Beta(2,2)]. Shocks rt , 

ft , and dr are 

independent. The calibration of shock 
ft  implies firm-specific prices with a coefficient 

of variation of 0.08, which doubles that of firm prices in USDA-ARMS dataset. 

In order to favor identification of parameters in estimation, the following 

assumptions in calibration were made. Netputs prices were assumed to be independent 

from firm size. Also, a continuum of firm’s prices were generated, while the observed 

frequency of firm’s prices in USDA-ARMS dataset is concentrated in about four values. 

3.3 Random generation of initial wealth: W0,ft  

In the noisy dataset, each firm f at time t is assumed to be an expected utility maximizer. 

The argument of the utility function is end-of-period terminal wealth calculated as initial 

                                                           
between netput prices than Eldon Ball’s dataset. These two aspects favor identification in estimation when 

prices are explanatory variables, as it is our case. 

10 The same procedure and shocks are used for
**

ft
p . 

11 The values of dr are 0.90, 1.00, and 1.10 for regions 1 through 3 respectively.  
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wealth (W0,ft) plus random profits. Based on the strong correlation observed between total 

net assets (TNAft) and value of production (VPft) in the USDA-ARMS database, we model 

initial wealth as a function of each firm’s value of production.12 The following model is 

used for each firm f at time t: 

 2

0 1 2VTNA VPP        (3.6) 

where τ  is an heteroskedastic error term distributed Normal(0, 2

 ) which accounts for 

the non-constant variation observed  in total net assets as a function of value of 

production. We seek to estimate the γ parameters as well as the form of the 

heteroskedasticity. Following Wooldridge (2003), we model heteroskedasticity as follows 

2

0 1 2

2ˆ exp( )u VVP P     , where 2û  is the estimated variance of τ and κ is a mean 

one multiplicative error term. This implies 2 2

0 1 2
ˆlog( ) VP eu VP       or a linear 

regression for which e ~ Normal(0, 2

e ).  

 We estimate model parameters with USDA-ARMS data. Details are explained in 

Appendix II and table II.1 shows estimation results. Using these parameter estimates and 

the value of production coming from our model, we generate the initial wealth for each 

firm f in time t. 

3.4 Simulation of noiseless dataset 

The noiseless dataset is formed by variable netput quantities and prices, and quasi-fixed 

netputs: 
** ** *[ , , ]ft ft fty p K . We first solve the problem in (2.3) assuming all farmers are risk 

                                                           
12 Total net assets are calculated as “value of total farm financial assets” minus “total farm financial debt.” 

Value of production is calculated as “all crops – value of production” plus “all livestock – value of 

production.” These two variables from USDA-ARMS database constitute the dataset used to estimate the 

model in equation (3.6). 
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neutral (or expected profit maximizers) and prices received or paid are exogenous (
**

ftp ). 

These results are used to test the accuracy of duality theory in recovering production 

technology using time-series data whose only source of noise is aggregation across 

heterogeneous firms. This constitutes the minimum possible noise when interested in 

applying duality theory with time series. Under the normalized quadratic production 

function  ** *, ;ft ft fG y K a  in (2.4), the FOCs are: 

 
** ** *

1 11 12 0ft f ft f ftA A A   p y K   (3.7) 

This system is jointly solved for the vector of optimal variable netput quantities 
**

fty  

as a function of the vector of variable netput prices
**

ftp , the vector of quasi-fixed netput 

quantities 
*

ftK , and the production parameters 
*

fa . The solution is: 

    ** ** * * 1 ** *

11 1 12, ;ft ft ft f f ft f f ftA A A  y p K a = p K   (3.8) 

This produces a panel dataset of (R×F) firms over T time periods that can be used to 

recover production parameters using time-series or cross-section with noiseless data. We 

denote this dataset as follows:  

 
** ** *[ , ]ft ft fty , p K   (3.9) 

3.5 Simulation of noisy dataset 

In this section, we explain how we generate data to mimic the features faced by 

practitioners when working with real-world data. It contains variable netput quantities 

and prices, and quasi-fixed netputs: 
*[ , , ]ft ft fty p K . We assume risk-averse firms that 

maximize expected utility, and the data are subject to omitted variables, aggregation 

across netputs, measurement error, and aggregation across heterogeneous firms.  
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3.5.1 Maximization of expected utility 

We solve the problem in (2.4) for the vector of expected variable netput quantities 

* *

,

*

0

*, , , ; )f ft fft ft ft W( ay p K  conditional on expected netput prices, quasi-fixed netput 

quantities, the level of absolute risk aversion (
f ), initial wealth, and the true production 

parameters. Values of 
f  are consistent with a relative risk aversion coefficient 

uniformly distributed in the interval [2.0, 4.0] (Pennacchi, 2008 pp. 16). This constitutes 

a source of noise because duality theorem assumes a deterministic problem whose 

solution is generally different from the expected utility case.  

We solve the problem using numerical methods and employing Gaussian 

quadrature. Using four nodes for each output price and quantity random variable, we are 

guaranteed to exactly approximate the problem’s objective function up to the seventh 

moment. For this application, the numerical integration of the objective function has to 

take into account its multi-dimensions, that nodes behave according to nonstandard 

distributions, and that they are correlated with each other. Given these problem 

requirements, we create a routine to calculate nodes and weights used in the objective 

function approximation. First, based on the MATLAB functions qnwnorm (Miranda and 

Fackler, 2011), that calculates Standard Normal nodes and weights, we generate four 

independent Log-normally distributed nodes and weights for each of the three output 

price random variables. Similarly, based on the function qnwbeta, that calculates standard 

Beta nodes and weights, we generate four independent nodes and weights distributed 

Beta in the interval of interest for the three output quantity random variables. Second, 

using the Iman and Conover (1982) method, we impose directly to the nodes, negative 

correlation between output prices and quantities (correlation coefficient equal to -0.30) 
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and positive correlation within them (coefficient of 0.90). These transformations do not 

affect the weights. Third, we use the MATLAB function fmincon to optimize the 

approximated objective function. We pass the FOCs and SOCs to the optimization 

routine, respectively, as equality and inequality constraints. Based on the normalized 

quadratic production function in (2.4), the FOCs are: 

     *

1 1 11 12 0E U W A A A g       
 

p y K y v   (3.10) 

with   1

1

WeU W    . The SOCs are: 

         *

1 1 11 12 1 11

2

0E U W A A A g U W A g             
  

p y K y v y v  

 (3.11) 

where   12

1

W
U W e

    .  

 The optimal solution is the vector of expected netput quantities for each farm and 

time that we donate as 
*

fty . 

3.5.2 Realized shocks of production and prices 

Farmers solve the maximization problem given a set of output prices, which reflect 

their expectations of harvest prices. It is commonly accepted that prediction errors make 

this difference relevant. Even in the case of locking in the production with instruments 

such as forward contracts, it might be the case that not all of the production is sold under 

this type of arrangement. In the case of input prices, some prices might not be known at 

the beginning of the production period, especially for inputs purchased during the 

growing season. In either case, deviations from the true expected price induce bias and 

inconsistency in the parameter estimates of a model when prices are regressors, and 

consequently in the elasticities of interest.  
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We obtain the observed price 
ftp  by drawing from the distribution in equation (2.6) 

and adding that draw to the price used in optimization: 

    *log logft ft t p p e   (3.12) 

where te  is a realization of a Normal(0, e = 0.2) random variable for the case of outputs 

(Lence, 2009) and a Normal(0, e = 0.1) for the inputs, implying that the price deviation 

from decision values is lower for inputs. These shocks are systematic and affect all firms 

by the same proportion in a given time.  

 We also claim that data on netput quantities are different from planned quantities 

or the  optimal solution of (2.4) due to uncertain events in agricultural production, such 

as weather. We model the observed quantities as follows: 

  * *

ft ft ft ftg y y y v   (3.13) 

where the shock vft is a realization of the random variable controlling production errors (

ft ) given by (2.5). We assume this shock has two components; one is systematic given 

by vft ~  ̶ 1 + 2Beta(2,2), and the other is idiosyncratic modeled as vft = vt  × Uniform[0.87, 

1.13]. This allows weather variables to not only affect production quantities over time, 

but also to have different local effects in a given year. To calibrate the width of the 

interval, we run a fixed-effects model of farm-level yields at various locations (counties) 

and time periods (years) on a location-specific effect, weather variables (temperature and 

cumulative precipitation), and time dummies. After estimation, we measure the 

contribution of weather variables to yield variation by fitting a “restricted” model with 

only the weather and time-dummy variables using the estimated parameters. The 
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coefficient of variation of the fitted yields provides the dispersion of weather shocks vft. 

Details of this estimation are provided in the appendix of Rosas and Lence (2015). 

Finally, we introduce contemporaneous negative correlation between quantity and 

price shocks with a coefficient equal to -0.3 (Rosas, Babcock, Hayes, 2015), and positive 

correlation with a coefficient of 0.9 within quantities and within prices.  

3.5.3 Omitted variable netputs 

Production takes place with several netputs, but the econometrician rarely observes them 

all. This situation can arise due to a misreporting of data from a surveyed producer in 

which one or more than one netputs are omitted, or when some inputs are not part of the 

surveyed set. In either case, while the producer optimally chooses a set of n variable 

netputs to maximize profits, but the econometrician only observes a subset of them.  

3.5.4 Aggregation across netputs  

Technology processes employ a variety of inputs to produce several outputs; however, 

data available to practitioners are usually not as disaggregated. In some cases, even if 

data can be obtained for several inputs and outputs, they are aggregated because they are 

not the objective of the study and/or to not excessively penalize the degrees of freedom 

during estimation. We aggregate netput quantities and prices at the firm and for each 

time. Dropping the f and t subscripts, this is done as follows: 

 
ij ijij

i

ij iji

i

i j
i

n n nn

n n nn

y w y

p w p












  (3.14) 

where Ωi is a subset i of netputs, nij is the jth netput in subset Ωi, and ni denotes a new 

netput formed by the aggregation of those in subset Ωi. The pooling of variable netput 

quantities ( in
y ) in set Ωi is performed by a weighted average of the quantities in the set, 
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with weights given by each netput value ( ij ijn n
p y ) share on the total value of the set Ωi; 

that is   
1

ij ij ij ij ijij
in n n n nn

w p y p y



  . The procedure to aggregate netput prices is 

analogous.  

3.5.5 Measurement error in prices and quantities 

Measurement error is a common problem in datasets available to researchers and induces 

bias and inconsistency in parameter estimation. Efforts to quantify the level of errors in 

the data include Morgenstern (1963), who identifies a 10% standard error in the national 

income data, and reports that the U.S. Department of Commerce in the state-level Food 

and Kindred Products data have an 8% measurement error in input and output figures. 

Lusk et al. (2002) study the consequences of applying duality theory using variables 

measured with error, and Lim and Shumway (1992a, 1992b) analyze violations of 

maintained hypotheses such as profit maximization, convex technology, and regressive 

technical change. Based on the mentioned literature, we calibrate an error with a standard 

deviation of 0.05 around the “true” value for netput prices, 0.08 for variable netput 

quantities, and 0.10 for quasi-fixed netputs. Calibration values are less than or equal to 

those reported in the literature, especially in the case of prices. The error is distributed as 

standard Beta(2,2) and we modify its interval to yield the desired standard deviation.    

Added noise described in previous subsections implies the following panel for firm f 

and time t which we can use to recover production parameters applying either time-series 

or cross-section analysis:  

 *, , ;ft ft ft f
  y p K a   (3.15) 

3.5.6 Unobserved Firm Heterogeneity.  
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Finally, in agreement with this study’s objective of testing duality theory using time-

series data, before estimation we proceed to aggregate across the F=10,000 

heterogeneous firms as if data came from a single firm. This aggregation is performed on 

both the noiseless data described in (3.9) and the noisy data in (3.15). If the objective 

were to study empirical properties of duality under a cross-sectional dataset, we would 

have taken one year of the panel and conducted the analysis without aggregating across 

firms. This is left for future research. 

For each period t, we aggregate the subvector , ,ft ft ft
  y p K  across firms to obtain 

observations over T=50 time periods (years) of a “single firm” yielding the dataset

 , ,t t ty p K . For netput quantities, we aggregate by adding across firms since they are 

homogeneous commodities. The nth netput price at period t ( ntp ) is a quantity-weighted 

average of the firm-specific netput prices.  

 

 
1

t ftf

t ftf

nt nt nft nftf
p y p y















y y

K K   (3.16) 

The time-series noiseless dataset used in estimation is denoted as follows: 

 ** ** *, ,t t t
  y p K   (3.17) 

and the noisy dataset used in estimation is the following: 

  , ,t t ty p K   (3.18) 

4. Data for estimation 

Noiseless data in (3.17) include all n = 8 netput quantities and prices, and m = 1 quasi-

fixed netput. Variable netput prices are exogenous from quantities but have serial 
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autocorrelation. The DGP yields 500,000 observations for each of the three regions 

(F=10,000 firms in the region over T=50 years). We aggregate the 10,000 heterogeneous 

firms at each time t, resulting in a dataset of 50 observations for each variable per region 

that we use to estimate a system of netput demands and supplies in (5.2). To avoid the 

addition of another source of noise coming from heterogeneous technology across 

regions, we select region 1 to conduct the estimation, and compare results with the true 

parameters of that same region. The consequences of pursuing estimation incorporating 

data from other more heterogeneous regions to capture a broader area and increase the 

sample size, which are common in these applications, are shown as a sensitivity analysis. 

In the case of noisy data in (3.18), n’ = 4 netputs are included due to the omission of 

one input and one output, the pooling of two variable outputs into one, and the pooling of 

two variable inputs into one. There is also one quasi-fixed netput because we did not 

consider the case of omitting the quasi-fixed netput. The figure below represents the 

structure of the noisy data. 

Variable 

netput 
1 2 3 4 5 6 7 8 

 

Noisy data are also subject to endogeneity between netput prices and quantities, 

maximization under expected utility of risk-averse farmers, production and price 

unexpected shocks, and measurement error. We take the region’s population of 10,000 

heterogeneous firms and draw 100 samples of 6,000 observations. We aggregate over the 

heterogeneous firms resulting in a time-series dataset of 50 observations for each variable 

and, for each sample, conduct econometric estimation of the system in (5.2). We sample 
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from the population to avoid final results to be dependent on a single sample.13,14 For the 

same reasons stated above, we select region 1 to conduct the estimation. The case of 

pooling observations from heterogeneous regions as a way of increasing the number of 

observations in estimation, and its effects on parameters recovery, is presented as 

sensitivity analysis. 

5. Estimation 

We approximate the restricted profit function ( , )R p K , which solves the problem in (2.3), 

by the following normalized quadratic flexible functional form:  

   1 2 11 12 2
1

22, ;R B B BB B           K K Kp K p p p p K p   (5.1) 

where B1 and B2 are (n×1) and (m×1) vectors of βi coefficients, B11 is a symmetric (n×n) 

matrix, and B12 and B22  are (n×m) and (m×m) matrices. Submatrices B11, B12, and B22 

form a symmetric ((n+m)×(n+m)) matrix B of βij coefficients, which in the case of the 

NQ profit function, is exactly the Hessian matrix with respect to (p,K). All βi and βij 

coefficients collectively form the set β. The error structure p՛κ is consistent with 

McElroy’s (1987) additive general error model (AGEM) applied to the case of profit 

functions. The (n×1) vector of random variables κ is jointly normally distributed with 

mean zero and an (n×n) covariance matrix Σκ. This covariance matrix induces 

contemporaneous correlation between the equations. Also, the DGP of netput prices—

both exogenous and endogenous—was constructed as an AR(1) process, implying serial 

                                                           
13 Given that the population size in each region is relatively large, we do not require too many samples to 

achieve robust results. Also, the sample size within a region (6,000 observations) is sufficiently high 

compared to real-world datasets used to construct state-level aggregates. For example, the 2004 ARMS 

dataset consists of samples that range between 48 and 1600 firms depending on the state, with an average 

of 428 firms.   
14 For comparison, estimation was also conducted using the entire population in the region and aggregating 

across all the heterogeneous firms, which implies only one time-series dataset to be estimated. Results were 

very similar to the case of the 100 samples from the population. 
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autocorrelation in the independent variables that needs to be accounted for in the 

estimation. 

We derive the set of input demands and output supplies by Hotelling’s lemma, 

yielding the system to be estimated: 

   1 11 12, ;y B B B    p K p K   (5.2) 

We conduct estimation by iterated SUR, which converges to maximum likelihood, 

and is the most common method employed in empirical works based on duality theory. 

We impose symmetry cross-equation restrictions (βij = βji , i ≠ j) in matrix B11. We do not 

estimate the parameters of the profit function because the parameters needed to evaluate 

the production parameters of interest are present in the demands and supplies. 

Treating Mean-Independence Violations in Estimation. First, an inspection of the 

autocorrelation and partial autocorrelation functions of the noiseless and noisy time series 

suggests first differentiation of the data for estimation. This is a consequence of the DGP 

of price data as AR(1) processes.  

Second, for the case of the noisy dataset only, we employ an instrumental variables 

approach to treat the omitted price variables. We use the same omitted variables as 

instruments which are regarded as the best instrument possible.  

Third, we also use instruments to account for the endogeneity of the explanatory 

variables in the case of the noisy dataset. Endogeneity is present because the independent 

variables (prices) in the output supplies and input demands system are correlated with the 

error term κ as a consequence of the systematic shocks nt  in the market. Instruments 

have to be correlated with prices but uncorrelated with the error term. Given that we 

know the source of the endogeneity (i.e., shocks nt ), we construct instruments by 
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regressing each price on its systematic shock: 0 1nt nt ntp iv    . The error term (ivnt) 

is, by construction, orthogonal to nt  but correlated with ntp  accounting for the variation 

of prices not explained by the systematic shocks, constituting the ideal instrument. There 

is one instrument for each netput price, as well as one instrument for each omitted 

variable.  

The estimated values of matrix B11 and vector B12 are the focus of our attention; they 

are, respectively, the marginal effects of prices and quasi-fixed netputs on netput 

quantities, and therefore they are the base to construct the estimated profit function 

Hessian matrix [ B̂ ] and the elasticities matrix of netput quantities with respect to own 

price, cross prices, and quasi-fixed netputs [ Ê ].15 As described in figure 5.1, we obtain 

matrices [ B ] and [ B̂ ] from estimation using noiseless and noisy datasets respectively, 

that are then transformed into elasticity matrices in a straightforward way. In order to 

compare estimated elasticities with true values, we proceed as follows. We begin from 

the true and known firm-specific production function Hessian matrix [A]f  and convert it 

into the corresponding profit function Hessian [B]f  using Lau’s Hessian identities. We 

further transform the true profit function Hessian into the true matrix of own- and cross- 

price elasticities and quasi-fixed elasticities of netput quantities [E]f. Finally, as indicated 

in figure 5.1, we compare the true [E]f  versus the estimated values ([ E ] and [ Ê ]) to 

evaluate how precisely we recover the true price and quasi-fixed netput elasticities under 

duality theory, both in the case of noiseless and noisy data. Note that this comparison 

implies that the true values are represented by a distribution of each firm’s true 

                                                           
15 In the case of noiseless data they are denoted as [ B ] and [ E ], respectively.   
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parameters, whereas the estimated values consist of a point estimate and its confidence 

interval. 

 

Figure 5.1. Comparison between true and estimated elasticities for noiseless and 

noisy datasets. 

 

6. Results 

Estimation results for the noiseless and noisy data are presented separately.  

6.1. Noiseless data estimation 

Econometric estimation conducted with the noiseless pseudo-dataset, that is the one 

arising from the aggregation across heterogeneous firms but without any other source of 

noise show that the Duality theory is able to recover true production parameters fairly 

accurately. Precisely, these results, already derived and explained in Rosas and Lence 

(2015), are that estimated elasticities with respect to prices (quasi-fixed netputs) deviate 

on average 12.4% (7.5%) from the median of the true elasticities according to the 

computed root mean squared error (RMSE),16 which summarizes the average difference 

                                                           

16 When compared to the median of the distribution, the RMSE is 
2

1/21

, ,64
[ ( ) ]

ij s ij siS j s
E E


     where 

S = 10,000 is the number of draws from the limiting distribution of the SUR parameter estimates and the 

subscript s indicates the sth
 draw of the ijth parameter. Comparison with the mean can be performed by 

substituting 
ij

E  by
ij

E . The RMSE averages over all the 64×S squared differences. A measure of its 

dispersion is achieved by computing the standard deviation of these 64×S values before averaging over 

them. 
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between each entry of the estimated elasticity matrix and the median of the corresponding 

true elasticity distribution. The RMSE contains two sources of variation or error. One is 

due to the SUR estimation error within each of the 64 parameters, and the other is 

associated with the variation of the difference between the estimated and the true value of 

the elasticity across the 64 parameters. Given the SUR estimation provides only a minor 

source of error because the point estimates are all highly significant due to the use of 

noiseless data, we argue that the majority of the RMSE standard deviation is attributed to 

the deviations between the estimated and the true value across elasticities. 

6.2. Noisy data estimation 

Estimation with noisy data consists of 16 own- and cross-price elasticity values of 

variable netput quantities, and 4 elasticities with respect to quasi-fixed netputs. Figure 6.1 

shows the distribution of the true firm-specific price elasticities and its corresponding 

SUR point estimates indicated with a red circle (and its 95% confidence interval with a 

red “+” sign). After estimation, we take 10,000 draws from the parameters asymptotic 

distribution of each of the 100 samples, transform them into elasticities, and calculate 

their mean, standard deviation, and confidence interval over the 1,000,000 values. Except 

for the case of entries (2 2), (2 3), (3 2), and (3 3), all other distributions involve more 

than one true elasticity due to the aggregation of netputs, as described in section 4.6.4. In 

these cases, and in order to compare with the SUR estimated elasticities, we construct a 

“new true” elasticity distribution as a revenue weighted average of the original true 

elasticities.  

In light of the conclusions from the previous section, we measure the accuracy in 

recovering the true elasticity by comparing the estimated value to the median of the true 
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distribution.17 Figure 6.1 shows that duality theory provides a good approximation to the 

true distribution in some cases, and a bad one in others, when comparing where the 

estimated value falls relative to where the true distribution accumulates more mass.  

 

Figure 6.1. Own- and cross-price elasticities of variable netput quantities. True 

versus estimated values with noisy data.  

Note. Each ij panel is the ij entry of the 4x4 own- and cross-price elasticity matrix E in the case of 

noisy data. The elasticity value is in the horizontal axis and histogram frequency in the vertical. The 

histograms are the distribution across firms of the true elasticity (Eij). Red dot is the SUR estimated 

elasticity ( ˆ
ij

E ) and red “+” sign is the 95% confidence interval. 

However, as table 1 shows, the percentage difference between the median of the 

true distribution ( ijE ) and the estimated value ( ˆ
ijE ) is high for the majority of the entries 

in the elasticity matrix. The difference ranges between 6% and 229%, and is less than 

12% in only one entry. The estimation of the own price elasticities (main diagonal) are 

                                                           
17 A comparison using the mean of the true distribution was conducted and provided less accurate results.  
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not recovered with sufficient precision given that the differences range between 15% and 

44%. Moreover, entries (2 2) and (3 3) which correspond to netputs 4 and 5 (which are 

not aggregated with other netputs) are more imprecisely estimated than the other main 

diagonal elements which do arise as aggregated netputs. As expected, the off-diagonal 

elements (or the cross-price elasticities) are less accurately estimated than the main 

diagonal entries, because they require more information to be recovered. 

As a summary measure of the dispersion in recovering the true elasticities, we 

calculate the RMSE of the difference between the median of the true distribution and the 

SUR estimated values for all 16 estimated elasticities. As shown in table 2 under case 1, 

it yields a value of 0.22 in elasticity units. The average value of all true elasticities 

(calculated as the mean absolute value of all the medians of the true distributions) is 0.31. 

Therefore, by comparing both values we conclude that duality theory recovers elasticities 

which are, on average, off by 71% of the true elasticities. These results provide evidence 

that the econometric approach of duality is unable to deliver precise estimates of 

underlying production parameters when employed with data featuring real-world 

characteristics.  
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Figure 6.2. Elasticity of variable netput quantities with respect to quasi-fixed 

netputs. True versus estimated values with noisy data.  

Note. Each Eik panel is the elasticity of netput i with respect to the quasi-fixed input in the case of noisy 

data. The elasticity value is on the horizontal axis and histogram frequency on the vertical. The histograms 

are the distribution across firms of the true elasticity (Eik). The red dot is the SUR estimated elasticity ( ˆ
ik

E ) 

and the red “+” signs denote the 95% confidence interval. 
 

The estimation of variable netput elasticities with respect to quasi-fixed netputs is 

even more inaccurate. Results are shown in figure 6.2. Each panel titled as Eik is the 

elasticity of netput i with respect to the quasi-fixed netput. The SUR point estimates of 

the elasticities are within the support of the true distribution except for E4k, in which case 

the estimated elasticity has the reversed sign. As a similar summary measure, the RMSE 

relative to the median of the true distribution is 0.67 expressed in elasticity units, and the 

average value of the elasticities is calculated at 0.54. These results, shown table 2 under 
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case 1, imply that the inaccuracy in recovering the true elasticities, averaged over the 4 

netputs, amounts to 123%. 

6.3. Sensitivity analysis 

We explore the robustness of noisy data estimation results to changes in the sources and 

levels of noise. Estimations that consider different sets of omitted netputs and different 

sets of aggregated netputs provide similar results. For example, two estimations with the 

noisy data structure shown below yields price elasticity estimates with respect to variable 

netputs that are 57% and 69% deviated from the true price elasticities. Elasticities with 

respect to quasi-fixed netputs differ 76% and 120% relative to their true values. 

Variable 

netput 
1 2 3 4 5 6 7 8 

Variable 

netput  
1 2 3 4 5 6 7 8 

These values, shown in table 2 under case 2 and case 3 respectively, are 

quantitatively similar to our previous conclusions, suggesting that other combinations of 

omitted netputs and aggregated netputs would provide results that are at least 

qualitatively similar.18  

We regularly encounter empirical applications of duality theory with time-series 

data where observations from different regions or states are pooled together for 

estimation; examples are Schuring, Huffman and Fan (2011) and O’Donnell, Shumway 

and Ball (1999). Although pooling increases the sample size favoring the degrees of 

freedom, which is especially advantageous in the presence of several explanatory 

variables, it also involves including observations from states that are likely to have 

different technology. We conduct a sensitivity analysis to study the consequences of such 

                                                           
18 We present only a few cases due to the computational burden of such analysis 
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practice. This practice implies seeking to recover production parameters from firms that 

are more heterogeneous than in the case of a single state usually by adding regional- (or 

state-) level dummy variables. For this sensitivity analysis we employ our noisy 

simulated data from regions 1, 2, and 3 in (3.8). From each region and in each of the 50 

time-periods, we take five samples of 2,000 observations representing samples of firms 

from five states within the region. We aggregate each sample across its heterogeneous 

firms to obtain the time-series data for each state. We stack the observations by state first, 

and then by region, resulting in a dataset composed by 750 observations. Note that results 

above are derived with 50 observations. We estimate model in (5.2), and as it is done in 

the mentioned studies, we add dummy variables for observations in region 1 and 2, 

leaving region 3 as the base. We transform the estimated parameters into netput 

elasticities with respect to variable netput prices and with respect to quasi-fixed netputs, 

and compare them with the true elasticities. These are represented by the distribution of 

true firm-specific elasticities, as it was in the previous analysis, but in this case, is the 

distribution over the firms in the three regions.  

We find that the RMSE relative to the median of such distribution of true 

elasticities, and averaged over the 16 elasticities calculated is 53%, which is very similar 

to the findings above. This is formed as the ratio between the RMSE relative to the 

median of the true distribution (0.18) and the median of the true distribution of elasticities 

(0.35). Divergence from true elasticities ranges between 11% and 209% depending on 

which of the 16 entries of the elasticities matrix we consider. Standard errors of the 

estimated elasticities are lower than in the previous analysis, which is in part a 

consequence of in increased number of observations. However, that does not contribute 
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to reduce the bias in the estimated parameters and elasticities relative to the true ones. 

Results, when RMSE is calculated with respect to the mean of the distribution and results 

of netput quantity elasticities with respect to quasi-fixed netputs, also indicate inaccuracy 

in recovering production parameters. Therefore, the practice of incorporating data from 

other regions, characterized by a more heterogeneous technology than within the region, 

contributes to reducing the standard error of the point estimates (large statistical 

significance) but does not help in reducing the bias relative to the true elasticity values. 

7. Conclusions 

The dual relationship between the production function and the profit or cost function 

established by the Neoclassical theory of the firm has been widely applied in empirical 

work with the objective of obtaining price elasticities, substitution elasticities, and return 

to scale estimates. This empirical method, usually referred to as “duality theory 

approach” has the advantage of providing the mentioned features of the production 

function using market data on input and output prices and quantities, without the 

requirement of explicitly specifying the technology relationships. However, the duality 

theorem requires a set of assumptions, which we claim fail to hold in practice; or in other 

words, market data typically employed in this type of studies bear levels of noise that 

prevent the theorem from holding exactly. If this is the case, the elasticity estimates will 

be biased with respect to their true values.  

In this paper we analyze the ability of the approach to recover the technology 

features when the dataset taken to estimation reflects real-world characteristics 

comparable to those found by practitioners in empirical applications. Based on a model of 

maximization of expected utility of terminal wealth, we first choose the parametric form 
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of the production function and use Monte Carlo simulations to generate its set of 

parameters for a number of firms with heterogeneous technology. In particular, from the 

solution of this problem, we generate a pseudo-dataset of netput prices and quantities for 

heterogeneous firms, coming from different regions and for successive years, such that 

their features are comparable to those found in data on U.S. agriculture and typically used 

by practitioners in empirical applications. In this regard, the DGP incorporates 

optimization under uncertainty, prediction errors in prices and quantities of variable 

netputs, endogenous prices, omitted variable netputs, output and input data aggregation, 

measurement errors in the observed variables, and unobserved heterogeneity across firms. 

We calibrate model parameters using datasets (both time-series and cross-sectional) 

widely employed in practice.   

We apply the Duality approach to this multi-netput pseudo-dataset, with consists 

of deriving the system of input demands and output supplies from a profit function 

approximated by a FFF, and estimate its parameters (and the corresponding elasticities) 

using traditional econometric methods (more precisely a SUR regression). Because the 

initial (primal) production parameters are known to us, we can evaluate the ability of this 

approach to recover these parameters by transforming the estimated parameters from the 

dual model into the primal parameters, and then comparing them. This transformation is 

performed by means of the so-called Hessian identities. 

Also, because we know the existing sources of noise in the data, we explicitly 

treat them in estimation. We deal with serial autocorrelation by estimating the model with 

data in first differences. To tackle omitted variables, we employ an instrumental variables 

approach in which our instruments are precisely the variables we omit in the first place. 
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Similarly, we use instruments to consider the presence of endogeneity in aggregate 

prices. In this case, we also know the source of endogeneity and therefore we can 

construct the best set of instruments possible.  

Results show that the dual approach applied on a time-series dataset bearing the 

minimum noise possible, i.e., only arising from aggregating firms with heterogeneous 

technology, is able to recover elasticities within the support of the distribution of initial 

elasticities, and considerably close to the mean and median of such distributions. 

Second, the use of noisy data prevents the dual approach from providing 

parameter estimates that are sufficiently close to their true values. The root mean squared 

error, measuring the average deviation of the estimated elasticities from their true values, 

is calculated at 71%, implying that the dual approach estimates elasticities are, on 

average, 71% away from the true values. It is the case that, conditional on the dataset, 

own-price elasticities require less information from the data to be estimated with the 

same level of precision than cross-price elasticities; however, both own- and cross-price 

elasticities are inaccurately recovered. The case of netput elasticities with respect to 

quasi-fixed netputs is even more inaccurate. Results are robust to different calibrations of 

the data structure, specifically, the omission and aggregation of different sets of netputs, 

as well as the sample of firms used in estimation. Also, sensitivity analysis shows that the 

common practice of pooling data from different states and/or regions in order to increase 

the degrees of freedom in estimation yields a similar bias in the estimated elasticities as 

in the case of considering a single and more technologically homogeneous state. 
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Table 1. Comparison of estimated elasticities ( ˆ
ijE  ) versus median of true elasticities 

distribution ( ijE ) in the case of noisy data. 

  1 2 3 4 

1 

ijE  0.505 -0.081 -0.031 -0.106 

ˆ
ijE  0.424 -0.019 -0.050 0.009 

Std. Dev. (0.125) (0.024) (0.007) (0.038) 

Interval 0.178 0.670 -0.066 0.027 -0.064 -0.036 -0.066 0.084 

% diff. 16% 76% 60% 108% 

2 

ijE  0.230 -0.757 -0.076 0.263 

ˆ
ijE  0.078 -0.423 0.112 0.688 

Std. Dev. (0.097) (0.056) (0.019) (0.055) 

Interval -0.111 0.268 -0.532 -0.312 0.074 0.150 0.580 0.796 

% diff. 66% 44% 247% 162% 

3 

ijE  0.244 0.206 -0.810 -0.075 

ˆ
ijE  0.399 0.217 -0.457 -0.246 

Std. Dev. (0.057) (0.038) (0.035) (0.045) 

Interval 0.288 0.510 0.144 0.291 -0.525 -0.389 -0.334 -0.158 

% diff. 64% 6% 44% 229% 

4 

ijE  0.397 0.332 -0.035 -0.782 

ˆ
ijE  -0.028 0.547 -0.101 -0.895 

Std. Dev. (0.124) (0.044) (0.018) (0.069) 

Interval -0.271 0.215 0.461 0.633 -0.136 -0.065 -1.031 -0.759 

% diff. 107% 65% 190% 15% 

Note: Interval is the 95% confidence interval of the point estimate ˆ
ij

E   
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Table 2. Sensitivity analysis. Comparison of estimated elasticities ( ˆ
ijE ) versus median 

of true elasticities distribution ( ijE ) in the case of noisy data, and different sources of 

noise. 

Elasticities 

with respect 

to 

 RMSE relative to Median 

 case 1 case 2 case 3 

Variable 

Netput Prices 

RMSE 0.22 0.26 0.20 

Median  0.31 0.46 0.29 

% deviation 71% 57% 69% 

Quasi-fixed 

Netput 

Quantity 

RMSE 0.67 0.44 0.42 

Median 0.54 0.57 0.35 

% deviation 123% 76% 120% 

Note: Each case consists of a different set of omitted netputs and a different set of netputs aggregated together. 

In case 1, netputs 3 and 8 are omitted, and netputs 1 and 2, and 6 and 7 are aggregated. In case 2, netputs 1 

and 4 are omitted, and netputs 2 and 3, and 7 and 8 are aggregated. In case 3, netputs 3 and 7 are omitted, 

and netputs 1 and 2, and 5 and 6 are aggregated.  
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APPENDIX I 

Random generation of market shocks for each netput n, used to endogenize netput prices: 

The vector of market elasticities of the isoelastic demand or supply (
t t t

Q p ) faced by 

firms is the following (FAPRI Elasticities Database and other sources):    [-0.25 -0.21 -

0.75 0.90 0.87 0.85 0.83 0.80]. The calibrated parameter values of market shocks ( nt ) in 

equation (3.5) used to generate random endogenous “national” prices are in the table 

below.  

Table I.1. Calibrated parameter values of market shocks ( nt ) in equation (3.5)  

 
n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 

1n   0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

log( ) 10.2193 10.5644 10.3588 9.528 8.5391 8.9875 8.9013 9.2518 

2

log( )  0.2372 0.104 0.1874 0.4071 0.4807 0.6218 0.9402 0.3587 

0n  5.1096 5.2822 5.1794 4.764 4.2696 4.4937 4.4506 4.6259 

2

n  0.1779 0.078 0.1406 0.3053 0.3605 0.4664 0.7051 0.269 

 

We calculate these values as follows. We generate data for variables nt  in 

equation (3.4). These shocks are not observed directly so we approach the problem as 

follows. What we do observe are time series of netput prices (as in Eldon Ball’s dataset), 

which are related to the market shock by equation (3.4). So we first plug values of 

randomly generated netput prices (10,000 time periods described in section 3.2) into the 

system, and solve for starting values of nt  with MATLAB function fsolve. This yields a 

time series of nt  that allows us to “learn” about its moments conditional on the AR(1) 

log-normally distributed prices, “average” production parameters, and elasticities. 
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From equation (3.5), the long run mean of market shocks is 
0 1)( 1g )lo (    , 

and the long run variance is 
2 2 2 2

log( ) 1 log( )       , or 
2 2 2

1 log( )(1 )      if we solve for 

the variance of the error term. Both the mean and the variance are directly obtained from 

the time series of starting values of nt . Therefore we have two equations and three 

parameters ( 0 , 1 , and 
2

 ) implying that we need to fix one. We fix 1 = 0.5, and from 

the mean and variance of the mentioned time series (log( ) and 
2

log( ) respectively) we 

calculate 0  and 
2

  for each netput n (as reported in table II.1).  

Then we set  0 0 1)log( (1 )s     , draw a random deviate from a Normal(0,
2



), and using equation (3.5) and 0  and 1 , we calculate market shock for the initial 

period, 0log( )s  . We iterate over this procedure S=10,000 times and for each netput n, 

obtaining a time series of market shocks. These are finally plugged in system (3.4) to 

solve for the vector of “national” netput prices using MATLAB function fsolve, as 

explained in the text.  
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APPENDIX II 

Estimation results of model (3.7) are presented in table II.1 

Table II.1. Parameter estimates of initial wealth and the form of its 

heteroskedasticity, equation (3.7) 

Dependent variable: TNA Region 1 Region 2 Region 3 

Explanatory variables Parameter estimates: γi , i = 1,2,3 

Constant 
0.724 0.8429 0.8917 

(0.040) (0.058) (0.058) 

VP 
1.279 1.1375 0.5743 

(0.064) (0.062) (0.042) 

VP2 
-0.066 -0.019 -0.0096 

(0.008) (0.002) (0.001) 

R2 0.16 0.1947 0.0922 

Dependent variable: log(
2û )  Region 1 Region 2 Region 3 

Explanatory variables Parameter estimates: δi , i = 1,2,3 

Constant 
-2.062 -1.925 -1.5069 

(0.045) (0.058) (0.048) 

VP 
1.544 0.9639 0.416 

(0.071) (0.063) (0.035) 

VP2 
-0.105 -0.0264 -0.0061 

(0.008) (0.002) (0.001) 
R2 0.16 0.1131 0.0805 

ˆ
e   2.084 2.170 2.0104 

Note: TNA: Total Net Assets. VP: Value of Production. Standard errors in parenthesis. 

 

Random generation of initial wealth W0,ft: Based on parameter estimates in (3.7), the 

firm- and time-specific initial wealth (W0,ft) is generated as follows: 

STEP 1: Obtain the value of production of firm f and time t, calculated as: 
***' *

ft ft ftVP  y p . 

Endogenous prices 
*

ftp  are those from section 3.2. We approximate firm’s netput 

quantities 
***

fty  as the solution of problem (2.3) under risk-neutrality. We do not 

assume risk-aversion at this stage because solving the expected utility problem 

requires conditioning on initial wealth which is what we are trying to calculate. The 
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value of 
***

fty  allows us to calculate a proxy for firm’s value of production and initial 

wealth and is used exclusively in this step and nowhere else in the analysis. 

STEP 2: Take a draw from κ ~ logn( 21 2

2
ˆ ˆ,e e  ). Together with ̂  and VPft find the 

estimated variance of τ using the equation for 2û . Because e is normal then κ is log-

normal; since the mean of κ is one, the mean of e is 21
2

ˆ
e . The standard notation is 

that parameters in the log-normal are mean and variance of the underlying normal 

distribution. 

STEP 3: Take a draw from a Normal(0, 2û ) for the error term ̂ . 

STEP 4: Calculate the initial wealth as: 
2

00, 1 2
ˆ ˆ ˆ ˆ

ft ftft VP VPW       . 

 


