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Abstract 

This study evaluates the economics of conservation tillage (chisel till and no till) and examines 

how climate change will likely affect it. We use data from long-term experimental plots in 

Indiana to estimate how corn and soybean yields respond to weather patterns under alternative 

tillage practices. Yield functions are coupled with random draws of weather variables to 

construct distributions describing the probability that conservation tillage will result in higher 

profits than more intensive tillage, under current and future climatic regimes. Results suggest 

that, in our study area, projected climate change will make conservation tillage more attractive.  
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Introduction 

Adoption of conservation tillage has received considerable attention in the past due to its widely 

promoted environmental benefits (e.g. Karlen et al., 1994a; Omonode et al., 2010; Sengupta and 

Dick, 2015). Concerns about soil erosion and nonpoint source pollution of water resources 

resulted in government support for adoption of conservation tillage. The economic performance 

of conservation tillage operations relative to more intensive alternatives is likely to influence 

farmers’ decisions about which tillage practice to adopt (Stonehouse, 1991; Weersink et al., 

1992a; Yiridoe et al., 2000; Kurkalova et al., 2006; Archer and Reicosky, 2009). Tillage 

practices influence net returns from farming through two channels: 1) differences in yields 

obtained under alternative tillage practices, and 2) relative costs associated with tillage 

operations of varying intensity.  

A key feature of conservation tillage is that its effect on crop yields is influenced by 

weather patterns. For instance, in a given field, intensive forms of tillage have traditionally 

performed better (resulted in higher yields) than conservation tillage if beginning-of-season 

weather is cool and wet (Kovar et al., 1992). Therefore changes in weather patterns associated 

with climate change are likely to affect the relative performance of tillage practices. We 

contribute to the literature on the economics of conservation tillage by quantifying the expected 

effect of climate change on the economic performance of conservation tillage relative to more 

intensive alternatives. 

To achieve our objective, we estimate expected corn and soybean yields, conditional on 

tillage and weather. We do so by exploiting data from field experiments to estimate yield 

response functions that include interaction terms between weather and tillage variables. 

Estimated yield functions are coupled with current and projected probability distributions of 
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weather to characterize the expected effect of climate change on yield distributions. Randomly 

simulated yields are subsequently combined with prices and cost estimates to obtain probability 

distributions of net economic returns. These are used to examine the economic attractiveness of 

conservation tillage under current climatic conditions, and how such attractiveness is likely to be 

affected by climate change. 

We consider three tillage practices, in decreasing order of intensity: moldboard plow 

tillage, chisel plow tillage, and no till. Moldboard plow tillage is the most soil disrupting 

practice, leaving less than 15% of crop residue remaining on the field between harvest and 

planting. Tillage using a chisel plow is a form of conservation tillage where typically at least 

30% residue coverage remains between harvest and planting. No till leaves the soil completely 

undisturbed between harvest and planting; normally about 90% of residue cover remains under 

no till corn, and 75% under no till soybeans. We find that a risk neutral farmer, under current 

climate patterns and a corn-soybean rotation, prefers both forms of conservation tillage to a 

moldboard plow. However, moldboard plow dominates conservation tillage practices under 

continuous corn, especially in high yield (i.e. residue) systems on fine-textured soils such as the 

common dark prairie mollisols in the USA.  

More importantly, we find that changes in weather patterns projected by mid-century 

improve the economics of conservation tillage relative to moldboard plow across crops and 

rotation systems. But these changes may or may not be large enough to warrant adoption of 

conservation tillage, absent public policies. We find that projected climate change at mid-century 

for dark prairie soils in the Corn Belt of the USA may induce a switch from chisel plow to no till 

among farmers growing corn in rotation. But moldboard plow is expected to continue to 

dominate conservation tillage practices under continuous corn. Finally, the improvement in the 
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economics of conservation tillage (sufficient or not to warrant behavioral changes) is positively 

correlated with the magnitude of the change in climate. Consequently, changes in beginning-of-

season weather under projected climate change enhance the alignment of private economic 

incentives with environmental stewardship, an issue largely overlooked by the extant literature.  

 

Conservation Tillage Literature 

Intensive tillage has traditionally been used by farmers due to its many benefits, including weed 

control and seedbed preparation. However, intensive tillage disrupts and exposes the soil and 

leads to greater erosion, soil degradation, structural breakdown, and compaction issues (Pagliai 

et al., 2004). In addition there are concerns about impacts on long term soil health and 

productivity. More importantly, from the perspective of environmental policy, intensive tillage 

leads to sediment and nutrient runoff resulting in pollution of surface water.  

An alternative management practice that can mitigate some of the adverse effects of 

intensive tillage is conservation tillage. Conservation tillage includes a number of different 

practices but is generally defined as any type of tillage that 1) leaves 30% or more crop residue 

on the soil surface after planting, or 2) maintains at least 1,000 pounds of small grain residue 

equivalent per acre throughout the critical wind erosion period (Natural Resources Conservation 

Service, 2011; Conservation Technology Information Center, 2015). This form of tillage may 

employ the use of chisel plows, disks, deep rippers, field cultivators, shallow vertical tillage 

implements, or a combination of these tools. Under no till the soil is left undisturbed from 

harvest to planting, except for strips of up to a third of the row width that may involve only 

residue disturbance or may (under strip till) include minimal soil disturbance in the intended crop 

row area. 
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Conservation tillage can alleviate soil erosion, and reduce nonpoint source pollution 

(from nitrogen and phosphorous) and damages to water quality (Karlen et al., 1997). 

Additionally, conservation tillage can offset the emission of greenhouse gases like CO2 because 

it increases the amount of atmospheric carbon stored in the soil (Omonode et al., 2007; Gál et al., 

2007); this is particularly true when crop productivity increases with no till (Ogle et al., 2012). 

Under no till, soil carbon can increase at an average annual rate of 48 +/- 13 g C m-2 yr-1 (West 

and Post, 2002). Reductions to losses of another major greenhouse gas, nitrous oxide (N2O), 

have also received attention in the conservation tillage literature (Li, Changsheng et al., 1996; 

Omonode et al., 2010). 

The environmental benefits from adoption of conservation tillage practices have been 

extensively documented. However, profitability is an important factor influencing adoption 

(Yiridoe et al., 2000, Cary and Wilkinson, 1997). The relative profitability of conservation tillage 

critically depends upon yield differentials under alternative tillage practices. It is also influenced 

by differences in cost of production. Costs of production vary across tillage practices due to the 

cost of tillage operations themselves, but also due to changes in application of chemical inputs. 

Other factors affecting the profitability of conservation tillage include the farmer’s planning 

horizon and degree of risk aversion (Epplin et al., 1982; Helms et al., 1987; Williams, 1988; 

Williams et al., 1990; Krause and Black, 1995). Finally, farmers’ subjective perception of the 

relative performance of tillage practices is also an important factor in adoption (Ding, 2009). 

This study focuses on evaluation of cost differences and yield responses in a stochastic 

environment. Conservation tillage can result in savings in labor, machinery, and energy costs due 

to a reduction in the number of field equipment passes (Weersink et al. 1992b). However, it can 

also result in higher cost of chemical inputs as residue cover may increase the prevalence of pests 
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and diseases. Conservation tillage affects yields by increasing organic matter and microbial 

activity in upper soil horizons (Gál et al., 2007; Karlen et al., 1994b). It also gives the soil a 

lower bulk density and better drainage capacity. Crop residues left on the soil surface help 

conserve soil water by reducing evaporation and improve water infiltration (Diaz-Zorita et al., 

2004). These effects may result in increased soil productivity and yields. But conservation tillage 

can also reduce yields by delaying warming and drying up of the soil (possibly delaying 

planting), and slowing plant emergence (Doster et al., 1983).  

Overall, evidence suggests that yields under different tillage scenarios vary by cropping 

system, soil properties, land slope, and climatic conditions (e.g. Toliver, 2012). A number of 

studies found that adoption of no till results in decreased crop yields (Doster et al., 1983; Griffith 

et al., 1988; Vyn and Raimbault, 1993). Corn yield reductions with no-till are more likely in 

continuous corn production than in the common corn-soybean rotation (West et al., 1996). 

However, under favorable conditions, no till can achieve profits comparable to conventional 

tillage methods (Ogle et al., 2012). In some cases lower yields and reduced profits may occur in 

the early years of adoption, but can be overcome once soil nutrients are built up and the soil 

structure is improved (Grandy et al., 2006).1 

The important role of agro-climatic conditions in shaping the response of yields to 

adoption of conservation tillage partly explains spatial variability in adoption patterns. For 

instance, in our study area (Indiana), less intensive tillage practices are widely adopted in the 

south where weather is warmer and where soils have a higher percentage of sand and higher 

slopes. This is true for both corn (Figure 1.a) and soybeans (Figure 1.b.), though conservation 

                                                           
1 They are also influenced by the degree to which the farmer conducts a proper implementation of conservation 

tillage practices. But our study abstracts away from these considerations as we use field experiments that have been 

implemented by specialists.  
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tillage adoption is much higher throughout the state for the latter crop. Overall adoption of 

conservation tillage in Indiana in 2015 was 40% for corn and 80% for soybeans (Indiana State 

Department of Agriculture, 2015). A majority of this is no till. Estimates by the Indiana 

Conservation Partnership conclude that 36% of all corn acreage and about 60% of soybean 

acreage is under no till or strip-till (Figures 1.a and 1.b). 

[Figure 1 here] 

As suggested above, weather is an important factor influencing yield response to tillage. 

Moreover, weather is random and distributed according to a pattern that can vary over time due 

to climate change. Therefore, the relative profitability of conservation tillage is also random and 

subject to temporal variation. Previous literature has used the concept of stochastic dominance to 

compare the economic performance of conservation tillage relative to more intensive practices 

(Weersink et al., 1992a; Klemme 1985; Yiridoe et al., 2000; Archer and Reicosky, 2009). These 

studies provide key insights into the economics (i.e. risk/return) of conservation tillage by 

incorporating risk through randomness of yields. However, they use unconditional distributions 

of yield and, thus, no systematic link to weather is estimated. This precludes examination of the 

effect of changes in weather patterns (e.g. due to climate change) on the economics of 

conservation tillage. Our study attempts to fill this gap. 

 

Policy Background 

The goal of environmental policy is to get polluters to incorporate the value of external damages 

caused by production processes into their private cost (Doering et al., 1999). There are many 

external damages associated with agricultural production, but water quality is a major area where 

improvement is both important and feasible. The primary source of water quality degradation in 
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the United States (US) is soil erosion and runoff of agricultural inputs (Kling, 2011). The US 

government has targeted the agricultural sector for improvements by incentivizing voluntary 

management practices that reduce soil erosion and runoff. 

The Environmental Quality Incentives Program (EQIP) and the Conservation Reserve 

Program (CRP), administered by the Natural Resource Conservation Service (NRCS), are 

perhaps the most influential programs that target non-point source pollution (Doering et al, 

1999). EQIP was initiated in 1996. This program provides technical and financial assistance to 

help farmers implement conservation tillage and other runoff-reducing practices. The NRCS 

pays 75% of the cost to adopt practices such as no till or cover cropping. The federal farm bill 

establishes payment calculations and eligibility, and NRCS state offices make funding allocation 

decisions. A farmer can voluntarily apply for funding support from a given program. Payments 

for adoption of conservation tillage practices are done on an annual basis; a maximum of three 

payments is imposed over the duration of a single contract (National Resources Conservation 

Services, 2016a). Both no till and mulch till (in this study chisel tillage in continuous and 

rotation corn can be considered mulch tillage) are covered under the program (Natural Resources 

Conservation Service, 2016b). 

Despite these efforts, many agricultural watersheds do not meet water quality goals set 

forth in the Clean Water Act (Kling, 2011). A large body of literature has attempted to shed light 

on the causes behind the limited success of existing policies. These studies, both theoretical 

(Shortle and Dunn, 1986) and empirical (e.g. Rabotyagov et al. 2010), have deepened our 

understanding of the relative merits of competing policies addressing water quality issues. A 

number of studies have estimated the magnitude of subsidies required to induce adoption of 

conservation tillage. Some of these studies used stated preference methods (Lohr and Park, 1995; 

http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/financial/eqip
http://ajae.oxfordjournals.org/content/93/2/297.short#ref-15
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Cooper and Keim, 1996; Cooper, 1997), others have used revealed preference methods 

(Kurkalova et al. 2006). The present study contributes to the policy debate by examining the 

effect of climate change on the magnitude of the subsidy that would trigger adoption. The use of 

data from field experiments is a key element of our analysis, as it permits quantification of the 

influence of weather and tillage practices on yields. 

 

Methods 

We model a representative farmer that chooses a tillage practice to maximize profits, defined as 

revenue minus variable production cost. All other production inputs are kept constant which 

allows us to focus our attention on the tillage decision. A profit-maximizing farmer is likely to 

adopt a more intensive tillage practice 𝑛 (e.g. moldboard plow tillage) if it results in higher 

profits relative to a less intensive practice 𝑚 (e.g. chisel tillage), per unit of land: 

𝑃𝑘 ∗ (𝑌𝑘,𝑗
𝑚 |𝒘) − 𝑉 − 𝑂𝑘

𝑚 + 𝑞𝑘,𝑗
𝑚 ≤ 𝑃𝑘 ∗ (𝑌𝑘,𝑗

𝑛 |𝒘) − 𝑉 − 𝑂𝑘
𝑛     (1) 

where 𝑃𝑘 denotes price of crop 𝑘 (𝑘 = 𝑐 for corn, and 𝑘 = 𝑠 for soybean); 𝑌𝑘,𝑗
𝑚 |𝑤 represents 

yield of crop 𝑘, under crop rotation 𝑗 (𝑗 = 𝑐𝑐 for continuous corn, 𝑗 = 𝑐𝑠 for corn/soybean 

rotation, and 𝑗 = 𝑠𝑠 for continuous soybean) and less intensive tillage practice 𝑚 (𝑚 = 𝑁𝑇 for 

no till, 𝑚 = 𝐶ℎ𝑇 for chisel till); and 𝑌𝑘,𝑗
𝑚 |𝑤 represents yield of crop 𝑘, under crop rotation 𝑗 and 

more intensive tillage practice 𝑛 (and 𝑛 = 𝑀𝑃 for moldboard plow, and 𝑛 = 𝐶ℎ𝑇 for chisel till). 

Yields are conditional on a vector of weather variables, 𝒘. Furthermore, 𝑉 represents variable 

costs that do not differ between tillage practices (e.g. fertilizer); 𝑂𝑘
𝑚 capture operating costs 

expected to vary by crop and tillage practice (machinery, machinery labor time, and chemical 

costs); and 𝑞𝑘,𝑗
𝑚  is the subsidy obtained by the farmer adopting a conservation tillage practice 𝑚 

which will vary by crop, rotation, and specific tillage practice. Three pair-wise economic 
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comparisons of tillage practices can be conducted: no till vs. moldboard plow, no till vs. chisel 

tillage, and chisel tillage vs. moldboard plow. 

The difference between yields under alternative tillage practices is determined by weather 

𝒘, which is random. Therefore fulfillment of the inequality (1) is also random. All else constant, 

cooler and wetter weather results in higher yields under more intensive tillage practices (Toliver 

et al., 2012); i.e. cooler and wetter weather decreases 𝑌𝑘,𝑗
𝑚 − 𝑌𝑘,𝑗

𝑛 . We capture this randomness 

through a cumulative distribution function (CDF) describing the probability that the difference 

between profits under conservation practice 𝑚 and those under more intensive practice 𝑛 are 

lower or equal to some arbitrary number 𝑧; i.e. 𝑃𝑟𝑜𝑏[𝑋 = 𝑃𝑘 ∗ (𝑌𝑘,𝑗
𝑚 − 𝑌𝑘,𝑗

𝑛 |𝑤) + (𝑂𝑘
𝑛 − 𝑂𝑘

𝑚) +

𝑞𝑘,𝑗
𝑚 ≤ 𝑧]. We denote this CDF by Φ𝑘,𝑗

𝑚−𝑛(𝑧). Note that the CDF evaluated at 𝑋 = 0 (i.e. 

Φ𝑘,𝑗
𝑚−𝑛(0)), denotes the probability that less intensive tillage practice 𝑚 will result in lower profit 

than more intensive practice 𝑛. 

Let us assume that a farmer considering adoption of a less intensive tillage practice 

requires at least a probability 𝑅 that such practice will be more profitable (𝑋 > 0). Then the 

farmer will implement the following decision structure: 

{
implement tillage practice 𝑚         if   Φ𝑘,𝑗

𝑚−𝑛[𝑋 = 0] < 1 − 𝑅     

implement tillage practice 𝑛          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                 
    (2) 

The function Φ𝑘,𝑗
𝑚−𝑛[𝑋] is composed of three parts. First, the yield differential conditional 

on weather, (𝑌𝑘,𝑗
𝑚 − 𝑌𝑘,𝑗

𝑛 |𝑤). Second, deterministic parameters 𝑃𝑘, 𝑂𝑘
𝑚, 𝑂𝑘

𝑛, and 𝑞𝑘,𝑗
𝑚  that combine 

with yields to determine the profitability of less intensive relative to more intensive tillage 

practices. The third part is the probability distribution of weather variables in vector 𝒘. The next 

section discusses estimation of the yield response to seasonal weather conditions. We will 

subsequently discuss estimation of probability distributions of weather variables. Regarding 
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deterministic parameters, the subsidy 𝑞𝑘,𝑗
𝑚  will be determined endogenously in our study; i.e. we 

will calculate the subsidy that makes a certain tillage practice 50% (𝑅 = 0.5) likely to 

outperform another, more intensive, practice. A detailed discussion of how parameters 𝑃𝑘, 𝑂𝑘
𝑚, 

and 𝑂𝑘
𝑛 are calculated is included in Appendix A. 

 

Yield Function Estimation 

A long-term experiment on different tillage systems spanning 40 years (1975-2014) was 

conducted at the Purdue Agronomy Center for Research and Education (ACRE) in West-central 

Indiana (40º28’07”N, 87º00’25”W). The soil at the experiment site is Chalmers silty clay loam 

(4% organic matter). One year (2011) resulted in yield anomalies due to hail damage, leaving 39 

years of usable experimental data. The experiment comprised a block design with 12 split-plots. 

The study annually tracked crop yield differences for three tillage practices (moldboard plow, 

chisel plow tillage, and no till) and three crop rotations (continuous corn, corn-soybean rotation, 

and continuous soybeans) most commonly used in Indiana. Two plots were planted to corn-

soybean rotation under each tillage practice with one starting with corn and one with soybeans in 

1975. This resulted in a total of 12 split-plot treatment combinations (three continuous corn plots, 

three continuous soybeans, and six corn-soybean rotations with three plots in each rotation crop 

in a given year). Therefore, in any given year, 6 plots produce corn (three continuous corn and 

three corn after soybeans) and 6 produce soybeans (three continuous soybeans and three 

soybeans after corn). 

Plots in the experiment were 32-feet wide and 150-feet long. The experimental area had 

less than 2% slope and was systematically tile drained at 20-m intervals. All primary tillage 

occurred in the fall. In the spring, one disking and/or one or two field cultivation passes aided 

seedbed preparation. For the experimental plots analyzed, residue coverage for the moldboard 
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plow was 5-15% following corn and 2-5% following soybeans (West, personal communication, 

November 16, 2015). The chisel plow experimental plots had a residue coverage of 30-40% 

following corn and 10-20% following soybeans (West, personal communication, November 16, 

2015). The no till plots had a residue coverage of 87-95% following corn, and 70-80% following 

soybeans. 

As part of the experiments, data on yields, weather, and management practices were 

collected from 1975 to 2014 (except 2011). Weather variables include growing degree days 

(GDD), precipitation, and stress degree days (SDD), recorded at the ACRE weather station 

(West Lafayette 6 NW) over the 39 year length of the experiment (Midwestern Regional Climate 

Center 2015). We use these data to estimate a linear regression model and quantify the 

expectation of yield conditional on weather and tillage practices.2 Descriptive statistics of 

variables included in the regressions are reported in Table 1. Values in this table reveal a 

substantial variability of yields over time and across management practices. No till seems to 

typically result in lower yields as compared to moldboard plow and chisel. The greatest 

discrepancy between no till and alternative practices occurs under continuous corn. Yields under 

chisel and moldboard plow are similar across cropping scenarios. 

(Insert Table 1 here) 

Substantial weather variability is also observed in the study period and exploited to 

estimate regression equations. 

Two strategies are possible to estimate the effect of tillage practice on yields. First, 

separate regressions can be run partitioning the sample by crop and tillage practice. In this case, a 

                                                           
2 Other studies have used crop models to forecast crop yields under climate change. A growing body of literature 

links climate, crop and economic models together. Rosenzweig et al. (2013) reviews some of these studies and 

discusses how such models may be improved. 
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total of six equations would be estimated (corn yield function under three tillage practices, and 

soybeans yield under three tillage practices), and each equation would be estimated based on a 

sample of 78 observations (2 observations per year -one for continuous cropping and one for 

rotation cropping- for 39 years). Second, a combined regression could be run where the sample is 

partitioned by crop but not by tillage practice, and the effect of tillage on yields is captured by 

inclusion of tillage dummies. Each function would be estimated based on a total of 234 

observations (6 observations per year, for 39 years). 

Estimating a combined regression with dummies results in an increase in degrees of 

freedom (although it may also lead to multicollinearity problems), but it assumes that the 

variances of the residuals from separate regressions are essentially the same (Gujarati, 2009). Its 

validity hinges upon fulfillment of this assumption. When the assumption does not hold, running 

separate regressions for each group is the best strategy. Therefore we used the following protocol 

to define the optimal estimation strategy. First, we run separate regressions and save the 

residuals. Second, we test whether variances of the two populations are statistically significantly 

different. For this, we use an F-test (Snedecor and Cochran, 1989). This test (available from the 

authors upon request) results in a failure to reject the null hypothesis of different variances. 

Therefore, we run a combined regression with dummies clustering observations by crop.  

Two functions were estimated, one for corn and one for soybeans. Crop yield is the 

dependent variable in these regressions. The vector of independent variables includes dummy 

variables indicating tillage practices (moldboard plow is excluded as it is the baseline practice), 

crop rotation (a dummy for a crop grown in rotation, leaving continuous cropping as the 

baseline), and interactions between crop rotation and tillage dummy variables. In addition, we 

include variables to account for the planting date (dummies for early April, late April, late May, 
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early June, and late June with the most common practice, early May, as the baseline), an annual 

time trend, and a vector of weather variables.  

Generally speaking, conservation tillage tends to reduce yields relative to moldboard 

plow due to poorer seedbed conditions, delayed seedling emergence and crop development, and 

(or) more plant-to-plant variability in growth and development (Boomsma et al., 2009). 

Therefore we expect coefficients on standalone conservation tillage dummies to be negative. 

Crops grown in rotation typically attain higher yields (Hennessy, 2006), so the coefficient on the 

rotation dummy is expected to be positive. Moreover, conservation tillage performs better under 

crop rotation than in a continuous cropping system (Lund et al., 1993). This is especially true for 

corn. Therefore the coefficients on the interactions between conservation tillage dummies and 

the rotation dummy are expected to be positive, at least for corn. 

The range of planting dates were divided into two week intervals. Consequently we 

created an early April dummy, which takes a value of one if the crop was planted in the first two 

weeks of April and zero otherwise, late April was equal to one if the crop was planted in the last 

two weeks of April, and so forth. The most commonly implemented planting dates for each crop 

were used as baselines—early May for corn and late May for soybeans. Planting dates were 

decided based on soil moisture conditions (especially in the no-till plots) at the beginning of each 

growing season. Planting dates for both corn and soybean were consistently the same among 

tillage and rotation systems in each year of the experiment. There is inter-annual variation in 

planting dates, but not across split-plots in a given year. Earlier planting dates are associated with 

longer growing seasons and higher yields. Therefore, coefficients on planting dates earlier (later) 

than the baseline are expected to be positive (negative).  
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The time trend is included to capture increases in yields due to, among other things, 

improvements in hybrid seeds. From 1981 to 1994, the experiment used a single corn hybrid 

(Becks 65X) (Boomsma et al., 2009). Since 1994, superior commercial hybrids in yield and leaf 

disease tolerance were used to reflect then-common hybrids available to farmers. Modern 

hybrids have more tolerance to plant density that allows for higher plant populations and results 

in higher yields. Therefore the coefficient of the time trend is expected to be positive. The time 

trend does not interact with weather (tests rendered them insignificant), which implies that 

productivity gains are neutral; they do not affect yield response to weather. It is worth noting that 

innovations such as drought- and heat-resistant hybrids (which were not planted in this 

experiment) would require inclusion of year-weather interaction terms. 

The vector of weather variables includes precipitation, GDD, and SDD. GDD is 

calculated daily as the difference between maximum daily temperature (not to be above 86° 

Fahrenheit) and minimum daily temperature (not to be below 50° F). These daily figures are 

added up to calculate monthly GDD. SDD is measured as the number of days in which 

temperature exceeded 86° Fahrenheit. This variable is included to capture extreme heat events 

that can seriously suppress plant growth, even if not affecting GDD significantly. Stress degree 

days capture the adverse reaction that, on average, corn plants experience to temperatures above 

86 degrees Fahrenheit (Taylor, 2012). Late fall and winter rainfall and temperatures have little 

impact in determining corn yields (which was confirmed by preliminary regressions) and so were 

not used as explanatory variables. 

April and May precipitation and GDD were separated from total precipitation and GDD 

over the June – September months that encompass the growing season. Weather occurrences in 

April and May were separately interacted with dummies for tillage practices to capture the fact 
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that the effect of tillage practices on yields is conditioned by beginning-of-season weather (see 

for example Yamoah et al., 1998 and Vetsch and Randall, 2004).3 Higher residue cover delays 

warming and drying of the soil which may affect plants’ early emergence and can impact crop 

yields (Yamoah et al., 1998; Vetsch and Randall, 2004). This can constitute an advantage of 

conservation tillage in warmer weather conditions. Therefore the coefficients of the interaction 

between GDD in April and less intensive tillage dummies are expected to be positive. Abundant 

precipitation quantities in April and May are expected to have a yield-reducing effect under 

conservation tillage. Therefore, the derivative of yield with respect to less intensive tillage 

dummies is expected to become negative at high precipitation levels. However, the negative 

effect of abundant precipitation under conservation tillage is expected to be alleviated in our 

study due to the presence of systematic tile drainage.  

Squared terms of the weather-tillage interactions are included to capture possible 

nonlinearities in the link between tillage, weather, and yields (Schlenker and Roberts, 2006). For 

instance, increases in moisture in April can, at first, benefit all plots. But as moisture increases 

beyond some critical threshold, they may negatively affect seedbed environment and hamper 

emergence. However the thresholds need not be the same under different tillage practices. In 

general, and all else constant, it is expected that plots with more intensive tillage can better 

handle excess moisture. Therefore coefficients of quadratic terms are expected to be negative, 

and to vary by conservation tillage practice. Linear and quadratic terms for April and May GDD 

are also included to potentially capture decreasing marginal effects of temperature on yields.4 

                                                           
3 April and May were chosen as early season weather variables. These were chosen because a majority of actual 

planting dates for the experiment occurred in April and May. Corn was planted in April or May 33 times out of the 

39 years of data. Soybeans were planted in April or May 36 times. 
4 A number of combinations of preseason and growing season variables were interacted with tillage dummies. The 

month of April is superior in terms of goodness of fit and individual coefficient significance. May is included 

because there is a significant amount of May planting that occurred in the experiment, particularly for soybeans. 
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In addition to beginning-of-season weather, the estimation also includes weather 

information for the rest of the growing season. Specifically, GDD and precipitation from June to 

September were included along with quadratic terms to capture decreasing marginal effects of 

GDD, and negative marginal effects of excess precipitation (Schlenker and Roberts, 2009). 

Therefore the coefficients on the linear terms for growing season GDD and precipitation are 

expected to be positive, while the coefficients on their quadratic terms are expected to be 

negative. Empirical evidence also suggests a negative effect of excess heat (temperatures beyond 

86 degrees Fahrenheit) on yields (Schlenker and Roberts, 2009), so we expect a negative 

coefficient on SDD. Finally, drought stress and heat stress often occur simultaneously 

(Rosenzweig, 2001), so an interaction term between growing season rainfall and SDD was also 

included to capture the damages caused to crop yield when one is exacerbated by the other (De 

Boeck, 2010).  

 

Estimation of Probability Distribution of Weather from Projected Data 

The previous section described estimation of the conditional (on weather) expectation of corn 

and soybean yields. Yield responses to weather occurrences vary by tillage practice. Our strategy 

is to take random draws from beginning-of-season (i.e. April and May) probability distributions 

of weather variables and map those occurrences to yields, to obtain a probability distribution of 

yields by tillage practice. Probability distributions governing random draws of current weather 

variables can be approximated based on recent history of weather occurrences. These are 

displayed in Figures B.1-B.4, Appendix B. Multiple parametric approximations were fitted to the 

data and the best one was identified based on Akaike and Bayesian Information Criteria. April 

                                                           
May is also a good way to capture the effects of tillage choice on the state of the seedbed and therefore the state of 

the soil during initial seed emergence. 
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precipitation is best approximated with a Weibull distribution and May precipitation is best 

approximated with a normal distribution. April and May GDD are best approximated with 

triangular distributions. Descriptive statistics of the chosen distributions are reported in the 

figures in Appendix B.    

These probability distributions cannot be extrapolated into the future. As anthropogenic 

greenhouse gases build up in the atmosphere, they are and will continue to impact probability 

distributions of weather variables. To quantify future probability distributions of the same 

weather variables, we take random draws of GDD and precipitation from climate models and fit 

parametric approximations to such observations. The World Climate Change Research Program 

(WCRP) houses the Working Group on Coupled Modelling (WGCM). This group established 

the Coupled Model Intercomparison Project (CMIP), a standard experimental protocol for 

studying the output of coupled atmosphere-ocean general circulation models (AOGCMs). CMIP 

allows for climate model validation and intercomparison. These experiments are currently in 

their fifth phase (CMIP5), and this model output is the basis for the Intergovernmental Panel on 

Climate Change (IPCC)’s Fifth Assessment Report (IPCC, 2013a). 

The archived CMIP5 multi-model ensemble dataset that was used for this study is 

available online (Bureau of Reclamation, 2013), and contains gridded climate projections over 

the contiguous United States that were developed using two downscaling techniques. The data 

used are from the 1 degree Bias-corrected GCM projections using the Bias-Correction 

Constructed Analogues (BCCA) downscaling method. The specific latitude and longitude of our 

experimental plots were entered to the system. Using these specifications we were able to obtain 

daily precipitation, minimum daily temperature and maximum daily temperature output for the 

years 2030-2069 for 36 different model/model runs. The 2030-2069 period was selected to 
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represent an approximation to “medium term” projected climate conditions; i.e. mid-century 

weather patterns. Also the length of the period is chosen to match the 39 years of observed data 

used to calculate “current” weather patterns. The list of CMIP5 climate models and number of 

runs used can be found in Table C.1 in Appendix C. 

Emission scenarios available from CMIP5 include Representative Concentration Pathway 

(RCP) 2.6, RCP4.5, RCP6.0 and RCP8.5. These represent a range of 21st century climates 

(IPCC, 2013b). In this study we consider RCP2.6 and RCP8.5 greenhouse gas scenarios. The 

RCP2.6 represents a Greenhouse Gas (GHG) emissions mitigation scenario where atmospheric 

CO2 concentrations reach 421 ppm by 2100. In this scenario, emissions peak in the middle of the 

century and decrease later on. Under this scenario, greenhouse gas concentrations and, therefore, 

temperature changes show a decrease in the second part of the 21st century (Diffenbaugh and 

Field, 2013). RCP2.6 is representative of a scenario that aims to keep global warming below a 

2°C increase relative to pre-industrial (1850-1900) temperatures (IPCC, 2013b). RCP8.5 

represents the highest projection of GHG emissions where CO2 concentrations reach 936 ppm by 

2100 and temperatures are likely to exceed a 2°C increase. 

Daily outputs projected by the climate models were consolidated into monthly figures to 

match them to variables in the estimated yield functions. Monthly values of weather variables 

from all climate models (see Appendix C for a description) and all years were pooled to create 

the probability distributions. This means that the distributions capture heterogeneity among 

models, in addition to intra-model climate variability. We think this is the most appropriate 

approach as differences in random draws across models are themselves explained by uncertainty 

in geophysical parameters and, thus, in weather patterns. Probability density functions of April 

precipitation and GDD and May precipitation and GDD under projected climate regime (under 
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alternative emissions scenarios) are displayed, alongside the historical distributions, in Figures 

B.1-B.4, Appendix B.  

April and May precipitation are best approximated with gamma distributions under a low 

emissions scenario. A gamma distribution is also a best fit for April precipitation under a low 

emissions scenario, but a log-normal distribution seems more appropriate in a high emissions 

scenario. April GDD is best approximated with a beta distribution under a low emissions 

scenario and a normal distribution in a high emissions scenario. May GDD is best approximated 

with a normal and beta distributions under low and high emissions scenarios respectively. April 

and May precipitation averages and standard deviations change only slightly from current 

climate to alternative climate change scenarios. Changes to the April and May GDD distribution 

induced by climate change are more dramatic. Mean GDD increases under climate change, and 

higher emissions trigger a larger change. Variability of April GDD also increases under climate 

change. 

 

Results 

Conditional Expectation of Crop Yields 

The R-squared statistics show that our yield response models explain a reasonable fraction of 

yield variability. The R-squared for the corn model is 0.7 (Table 2), while the R-squared for the 

soybean model is 0.6 (Table 3). Moreover, the signs of estimated coefficients are largely 

consistent with prior expectations. As is the case for famers, planting dates in the experiment 

were chosen depending on year-to-year conditions. Delayed planting reduces yields; all else 

constant, yields tend to be higher when seedbed conditions are favorable for planting early in the 

season. The coefficient on the time trend indicates that, on average, corn yields have increased 

by 1.8 bushels a year while soybean yields have done so by 0.4 bushels a year. This suggests that 
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genetic and management improvements have resulted in higher yields over the course of the 40 

years of the experiment.  

(Insert Table 2 here) 

The split-plot design of this experiment removes a number of confounding effects that 

typically emerge in observational (i.e. farm-level data) studies. By keeping agronomic conditions 

and other management practices constant, the block design allows us to isolate the effect of 

tillage practices on yields. This removes the risk of omitted variable bias, lending credence to our 

estimate of the effect of tillage on yields. Results reveal a concave response of yields to 

beginning-of-season weather variables under the baseline practice (moldboard plow). April and 

May weather and tillage interaction terms represent the deviation from this baseline. Corn 

production under less intensive tillage practices is adversely affected by abundant beginning-of-

season rainfall, and favored by high temperatures as capture by increased GDD (Table 2).5 Such 

relationships are much weaker for soybeans, which perform better under less intensive tillage for 

a wide range of weather conditions (Table 3).  

Although the role of weather on the response of yields to tillage are consistent with our 

prior expectations, our estimates also reveal considerable imprecision. Standard deviations of 

coefficients are relatively large, reducing the statistical significance of individual coefficients. 

This may be explained by inherent noise in yield responses to weather, but also by 

multicollinearity given the multiple ways in which beginning-of-season weather and tillage 

dummies enter the regression equation. While using subsets of these variables from estimation is 

an option, knowledge of agronomic relationships warrant their full inclusion. Robustness checks 

                                                           
5 This can be readily seen by taking the derivative of yield with respect to rainfall and GDD, evaluating them at the 

mean of the weather variables, and examining the differences across tillage practices. It can also be seen through 

simple plotting of the estimated yield function with respect to rainfall and GDD.  
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revealed that dropping subsets results in a similar overall effect of tillage and/or weather (partial 

derivatives evaluated at mean of right hand side variables are similar). But inclusion of 

interaction terms permits decomposition of such overall effect, which is key for analysis under 

alternative climate regimes. 

(Insert Table 3 here) 

The inclusion of both a rotation dummy alone (as expected, rotation increases yields) and 

rotation-tillage interaction terms reveals that benefits of rotation are largest when corn is grown 

under less intensive tillage practices. This is due to the fact that continuous corn generates a 

substantial amount of residue that keeps the soil cool and wet in the beginning of the season, 

creating less favorable growing conditions. Therefore, rotating corn with soybeans reduces 

residue cover and generates larger yield gains under less intensive tillage. Rotating soybeans 

with corn increases residue coverage relative to continuous soybeans and, in combination with 

conservation tillage, results in lower yield gains from the conservation tillage and rotation 

interaction term. 

 

Economics of Conservation Tillage  

To obtain probability distributions of the relative profitability of alternative tillage practices, we 

proceed in three steps. First, we take random draws from probability distributions of the weather 

variables (April GDD, May GDD, April precipitation, and May precipitation).6 Second, we use 

these random draws to estimate the difference in yields across tillage practices. Third, these 

predicted yield differentials are combined with prices and the respective operating cost budgets 

                                                           
6 Since we are modeling the difference (across tillage practices) in profits under the same set of prices and weather 

observations, all the terms of the yield functions that have the same coefficients across tillage practices for a given 

crop drop out of the relative profitability expression. This includes June-September weather and, thus, only random 

observations of beginning-of-season weather are drawn. 
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to calculate differences in profits between tillage practices. Recall that operating costs, 𝑂𝑘
𝑚 in 

equation (1), vary by tillage practice and crop introducing a difference in profitability, in addition 

to differences in yields. We conduct 5,000 iterations of this procedure and compute a probability 

distribution of the relative profitability of alternative tillage practices. Three pair-wise 

comparisons of tillage practices are conducted: no till vs. moldboard plow, no till vs. chisel, and 

chisel vs. moldboard plow.  

Combinations of 3 pair-wise comparisons and 4 crop scenarios (continuous corn, corn in 

rotation, soybean in rotation, and continuous soybean) result in 12 relative profitability 

distributions. We present results for all of these combinations except continuous soybeans due to 

low prevalence of this system in the U.S. Corn Belt in general, and Indiana in particular. The 

distributions are plotted in Figures 2-10. Each pair-wise comparison for each crop scenario was 

conducted under three climate regimes: current, mid-century low GHG emissions (RCP2.6), and 

mid-century high GHG emissions (RCP8.5). Therefore, each Figure displays three CDF curves 

comparing the effect of climate change on the profitability of conservation tillage.7 

[Insert Figure 2 here] 

Under current weather patterns a risk-neutral farmer growing corn in rotation would find 

chisel plowing more economically attractive than no till (chisel is nearly 62% likely to result in 

higher profit) and moldboard plow (chisel is 98% likely to result in higher profit), as indicated by 

Figures 2.b and 2.c. The farmer would also find no till more economically attractive than 

moldboard plow (moldboard plow is only about 40% likely to result in higher profit), as shown 

in Figure 2.a. Under different climate change scenarios a risk-neutral farmer growing corn in 

                                                           
7 It is worth noting that prediction of yields under future climate do not imply an out-of-sample prediction exercise. 

This is because most of the random draws of weather are not outside of the range of historical weather. Rather, the 

frequency with which weather observations occur within that range varies relative to historical occurrences. 



25 
 

rotation will still prefer no till to moldboard plow (Figure 2.a) and chisel till to moldboard plow 

(Figure 2.c).  

Climate change enhances the economics of no till relative to chisel till to the point of 

possibly inducing changes in behavior of a risk neutral farmer. Projected changes in climatic 

conditions significantly reduce the probability that no till will result in lower profits than chisel. 

Specifically, the probability that no till will result in higher profits than chisel till increases from 

about 38% with current climatic conditions to 78% in a climate change with low emissions 

scenario and nearly 85% in a high emissions scenario (Figure 2.b). These changes would likely 

induce a risk neutral farmer growing corn in rotation to switch from chisel till (the preferred 

practice under the current climate) to no till by mid-century. 

Projections of future climatic patterns anticipate substantial increases in beginning-of-

season GDD (Figures B.2. and B.4.). In turn, our results indicate that higher GDD would favor 

corn yields under conservation tillage (Table 2). Therefore, the improvement in the economics of 

conservation tillage revealed in Figure 2.b. is mostly driven by higher temperatures associated 

with climate change. Higher emissions are associated with higher temperatures, which further 

enhances the economics of conservation tillage. While climate change is also expected to result 

in more rainfall in April (and mostly unchanged rainfall patterns in May as revealed by Figure 

B.3), which would harm performance under conservation tillage, the projected change is not 

quantitatively large enough to offset the warming effect (Figure B.1).  

In contrast to a farmer growing corn in rotation, a risk-neutral farmer growing continuous 

corn would find moldboard plowing more economically attractive than no till (moldboard 

plowing is 100% likely to result in higher profit) and chisel till (moldboard plowing is 86% 

likely to result in higher profit), as revealed by Figures 3.a and 3.c respectively. She would also 
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find chisel till more economically attractive than no till (chisel till is 100% likely to result in 

higher profit), as indicated by Figure 3.b. While projected changes in climatic conditions 

improve the economics of less intensive tillage practices relative to the current climate, none of 

these changes are large enough to warrant a change in behavior by a risk neutral farmer. In other 

words, moldboard plow is still more than 50% likely to result in higher profits than any form of 

conservation tillage in continuous corn systems (Figures 3.a-3.c).  

[Insert Figure 3 here] 

Results also indicate that a farmer growing soybeans in rotation would prefer less 

intensive tillage practices (Figures 4.a – 4.c). In fact, no till will almost certainly result in higher 

profits than moldboard plow (Figure 4.a) and chisel till (Figure 4.b). Projected climate change is 

unlikely to change this; i.e. no till performs better than other practices under current and 

projected climate albeit a slight improvement in the economics of more intensive tillage 

practices.  

 [Insert Figure 4 here] 

Our results for corn under current climate are only partially consistent with those of 

previous studies. Klemme (1985) using data from Indiana also found that it was more profitable 

to produce continuous corn under intensive tillage practices, but, in contrast with our analysis, 

found intensive tillage to be superior when corn was grown in rotation. Yiridoe et al. (2000) 

found that conventional tillage dominates no till and chisel plow tillage in Ontario, while 

Weersink (1992a) and Archer and Reicosky (2009) found no till to be the dominant practice in a 

wide range of situations and assumptions. Our results differ from these in two key ways. First, 

although we also find that conventional tillage dominates other practices under continuous corn, 

our study finds that, under agro-climatic conditions in our experiment, less intensive practices 
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are better suited for corn and soybeans grown in rotation. Second, our analysis reveals that 

projected changes in climate are expected to favor the less intensive practices.  

 

Subsidies Supporting Conservation Tillage 

The previous section examined the economics of alternative tillage practices in the absence of 

public policies supporting conservation tillage. In other words, the profitability of one form of 

tillage relative to another, 𝑋 = 𝑃𝑘(𝑌𝑘,𝑗
𝑚 − 𝑌𝑘,𝑗

𝑛 |𝑤) + (𝑂𝑘
𝑛 − 𝑂𝑘

𝑚) + 𝑞𝑘,𝑗
𝑚 , was evaluated when 

𝑞𝑘,𝑗
𝑚 = 0. Under that assumption, our results show that a risk-neutral farmer growing soybeans 

will prefer no till and therefore not require a subsidy to adopt conservation tillage.  

Our Monte Carlo analysis revealed that a risk-neutral farmer growing corn in rotation 

would prefer chisel plow tillage and a risk-neutral farmer growing continuous corn would prefer 

moldboard plow. Therefore government intervention seems warranted in these cases if less 

intensive tillage practices are preferred from a social point of view (e.g. if water quality or 

climate regulation benefits are large enough). But the analysis also showed that climate change 

would favor less intensive practices, possibly reducing the subsidy required to induce socially 

desired behavioral changes. 

 We endogenize the subsidy in this section, and solve for the government payment that 

would make a risk neutral farmer indifferent between adopting a less intensive and a more 

intensive tillage practice. In particular, when corn is grown in rotation with soybeans, we 

calculate the subsidy that makes no till 50% likely to result in equal or higher profits than chisel 

till (the optimal choice without subsidy). In the case of continuous corn, we calculate the subsidy 

that will make chisel plow 50% likely to result in equal or higher profits than moldboard plow 

(the optimal choice without subsidy). We also calculate the subsidy that will make no till 50% 
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likely to result in equal or higher profits than moldboard plow. Each of these subsidies are 

calculated under alternative climatic regimes. 

We find that a $7/acre subsidy for no till corn grown in rotation will make this practice 

outperform chisel till 50% of the time. Under continuous corn, the subsidy that would make no 

till better than chisel plow 50% of the time is $50/acre, while the subsidy that would make chisel 

preferable to moldboard plow 50% of the time is $7/acre. Our results underscore the importance 

of considering the cropping system when developing policies to incentivize conservation tillage. 

Losses in yield with no till are significant in a continuous corn system, substantially increasing 

the subsidy required to make it breakeven with more intensive practices.  

Subsidies that make conservation tillage competitive with moldboard plow will be 

drastically reduced by changes in weather patterns associated with climate change. These 

changes are demonstrated in Table 4. When corn is planted in rotation, climate change will 

reduce the subsidy that makes no till competitive with chisel from $7/acre to $0/acre in a 

moderate emissions scenario and in a higher emissions scenario. When corn is planted 

continuously, the subsidy would decrease from $50/acre to $28/acre under moderate emissions, 

and to $22/acre under high emissions. The subsidy that would make chisel plow preferable to 

moldboard plow 50% of the time decreases from $7/acre to around $5/acre in the moderate and 

$1 in the high emissions scenarios. 

(Insert Table 4 here) 

 

Concluding Remarks 

This study uses data from long-term experimental plots on dark prairie soils to examine the 

relative (stochastic) profitability of alternative tillage practices. We find that, under current 

weather patterns and a corn-soybean rotation, a farmer would already have the incentive to adopt 
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some form of conservation tillage. Furthermore, adoption of chisel plow would be economically 

preferable to no till. No till is preferred to both chisel plow tillage and moldboard plow under 

soybeans (grown in rotation or continuously). On the other hand, moldboard plow would be 

preferred by a risk-neutral profit maximizing farmer growing continuous corn.  

Conservation tillage is more attractive for corn in rotation and soybeans in part due to the 

fact that the yield penalty to adopt conservation tillage under these crop scenarios is small, and in 

part because less intensive tillage implies cost savings. These results confirm the importance of 

considering crop rotation systems in developing conservation tillage policies. However, we note 

that results may only be applicable to areas with similar soil types and agro-climatic conditions, 

and with the appropriate data, this study could be easily replicated for other areas.  

Most importantly, our results show that changes in weather patterns projected by 2030-

2069 enhance the economics of conservation tillage relative to moldboard plow. Consequently, 

changes in weather patterns associated with climate change are expected to enhance the 

alignment between private incentives (i.e. profits) and social objectives (i.e. reduction of runoff). 

Therefore, our analysis points to an offsetting, rather than a reinforcing, relationship between 

market failures. In particular, all else constant, as consequences of one market failure intensify 

(i.e. as climate change unfolds), water pollution may be alleviated by an increase in adoption of 

conservation tillage. We note, however, that climate projections considered here do not take into 

account acute and extreme events which may occur in a single day or over a period of a few 

consecutive days, which may increase in frequency and harm crop development (Smith, 2011).  
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Figures 

Figure 1.a No till corn adoption in Indiana Figure 1.b No till soybean adoption in Indiana 
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Figures 2.a – 2.c Comparisons for rotation corn  

 

Figure 2.a No till returns versus moldboard plow  

 
Figure 2.b. No till returns versus chisel 

 
 

Figure 2.c. Chisel returns versus moldboard plow  
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Figures 3.a – 3.c Comparisons for continuous corn 

 

Figure 3.a. No till returns versus moldboard plow  

 
 

Figure 3.b. No till returns versus chisel tillage  

 
 

Figure 3.c. Chisel returns versus moldboard plow  
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Figures 4.a – 4.c Comparisons for rotation soybeans 

 

Figure 4.a. No till returns versus moldboard plow  

 

Figure 4.b. No till returns versus chisel tillage  

 
 

Figure 4.c. Chisel returns versus moldboard plow  
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Table 1. Descriptive Statistics of Regression Variables 

 Mean Median 
Standard 

deviation 
Minimum Maximum 

Yield (bushels per acre)      
Yield, corn in rotation 

under moldboard plow 
187 185 33 131 269 

Yield, corn in rotation 

under chisel 
188 193 33 138 262 

Yield, corn in rotation 

under no till 
183 185 31 128 255 

Yield, continuous corn 

under moldboard plow 
180 180 34 120 260 

Yield, continuous corn 

under chisel 
175 178 31 122 241 

Yield, continuous corn 

under no till 
157 161 34 84 235 

Yield, soybeans in 

rotation under moldboard 

plow 
54 55 7 37 68 

Yield, soybeans in 

rotation under chisel 
52 52 6 39 64 

Yield, soybeans in 

rotation under no till 
52 52 9 32 71 

 

Weather 
     

Precipitation April 

(inches) 
3.6 3.5 1.9 1.1 9.1 

GDD April 209 206 61 106 337 
Precipitation May 

(inches) 
4.4 4.4 2.0 0.9 9.8 

GDD May 419 417 90 286 606 
Precipitation June-

September 
15.0 14.2 2.0 0.9 9.8 

GDD June-September 2,465 2,451 147 2,123 2,735 
Stress degree days June-

September 
128 107 90 23 382 
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Table 2. Corn Yield Function Regression Results 

Variable description Coefficient 
Standard 

Error 
P-Value 

Year 1.8 0.2 0.00 

No till dummy -62.3 112.8 0.58 

Chisel dummy 17.6 96.8 0.86 

Rotation dummy 7.6 4.4 0.09 

(No till dummy)*(Rotation dummy) 18.1 6.7 0.01 

(Chisel dummy)*(Rotation dummy) 5.9 6.1 0.33 

Precipitation April 15.8 5.1 0.00 

(Precipitation April)*(No till dummy) 5.0 7.1 0.49 

(Precipitation April)*(Chisel dummy) 1.9 5.6 0.74 

Precipitation April2 -1.0 0.5 0.03 

(Precipitation April)2*(No till dummy) -0.7 0.7 0.34 

(Precipitation April)2*(Chisel dummy) -0.2 0.5 0.70 

GDD April -0.6 0.3 0.05 

(GDD April)*(No till dummy) 0.1 0.4 0.85 

(GDD April)*(Chisel dummy) 0.1 0.4 0.84 

GDD April2 0.002 0.001 0.02 

(GDD April)2*(No till dummy) -0.0001 0.001 0.90 

(GDD April)2*(Chisel dummy) -0.0001 0.001 0.86 

Precipitation May -4.5 4.8 0.35 

(Precipitation May)*(No till dummy) 4.9 6.3 0.44 

(Precipitation May)*(Chisel dummy) -0.5 5.3 0.92 

Precipitation May2 -0.1 0.5 0.91 

(Precipitation May)2*(No till dummy) -0.3 0.7 0.60 

(Precipitation May)2*(Chisel dummy) 0.1 0.6 0.92 

GDD May 0.1 0.3 0.68 

(GDD May)*(No till dummy) -0.01 0.4 0.98 

(GDD May)*(Chisel dummy) -0.2 0.4 0.66 

GDD May2 -0.0002 0.0004 0.56 

(GDD May)2*(No till dummy) 0.0001 0.0005 0.88 

(GDD May)2*(Chisel dummy) 0.0002 0.0004 0.65 

Precipitation June-September 9.7 4.6 0.04 

Precipitation June-September2 -0.2 0.1 0.05 

GDD June-September 1.2 0.3 0.00 

GDD June-September2 -0.0002 0.0001 0.00 

Stress DD June-September 0.1 0.1 0.59 

(Stress DD June-September)* 

(Precipitation June-September) -0.02 0.01 0.00 

Early April plant date  36.9 10.3 0.00 

Late April plant date 7.3 4.5 0.11 

Late May plant date -12.9 5.3 0.02 

Constant YES 

R^2 0.71     

# observations 234     
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Table 3. Soybean Yield Function Regression Results 

Variable description Coefficient 
Standard 

Error 
P-Value 

Year 0.4 0.1 0.00 

No till dummy -58.0 29.3 0.05 

Chisel dummy -5.4 26.0 0.84 

Rotation dummy 4.5 1.2 0.00 

(No till dummy)*(Rotation dummy) 0.6 1.8 0.75 

(Chisel dummy)*(Rotation dummy) 0.8 1.7 0.65 

Precipitation April 1.3 1.5 0.39 

(Precipitation April)*(No till dummy) 0.39 1.93 0.84 

(Precipitation April)*(Chisel dummy) -0.5 1.7 0.78 

Precipitation April2 0.2 0.1 0.26 

(Precipitation April)2*(No till dummy) -0.1 0.2 0.76 

(Precipitation April)2*(Chisel dummy) 0.05 0.17 0.78 

GDD April -0.3 0.1 0.00 

(GDD April)*(No till dummy) 0.2 0.1 0.13 

(GDD April)*(Chisel dummy) 0.01 0.10 0.90 

GDD April2 0.001 0.000 0.00 

(GDD April)2*(No till dummy) -0.0003 0.0002 0.18 

(GDD April)2*(Chisel dummy) -0.00003 0.0002 0.89 

Precipitation May 1.5 1.3 0.24 

(Precipitation May)*(No till dummy) 2.4 1.6 0.14 

(Precipitation May)*(Chisel dummy) 1.0 1.5 0.51 

Precipitation May2 -0.1 0.1 0.29 

(Precipitation May)2*(No till dummy) -0.2 0.2 0.19 

(Precipitation May)2*(Chisel dummy) -0.1 0.2 0.50 

GDD May -0.2 0.1 0.00 

(GDD May)*(No till dummy) 0.2 0.1 0.16 

(GDD May)*(Chisel dummy) 0.004 0.09 0.96 

GDD May2 0.0003 0.00009 0.00 

(GDD May)2*(No till dummy) -0.0002 0.0001 0.20 

(GDD May)2*(Chisel dummy) -0.000001 0.0001 1.00 

Precipitation June-September 3.4 1.1 0.00 

Precipitation June-September2 -0.1 0.03 0.00 

GDD June-September -0.1 0.1 0.29 

GDD June-September2 0.00002 0.00002 0.26 

Stress DD June-September 0.02 0.02 0.49 

(Stress DD June-September)* 

(Precipitation June-September) -0.003 0.002 0.17 

Late May plant date 2.0 3.8 0.60 

Early May plant date 0.6 1.2 0.61 

Early June plant date -2.9 1.4 0.03 

Late June plant date -18.4 1.4 0.00 

Constant YES 

R^2 0.56   

# observations 234   
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Table 4. Subsidy projections for conservation tillage under alternative climate regimes 

(Current climate RCP2.6 RCP8.5) 

    

 
No till over  

chisel 

No till over  

moldboard plow 

Chisel over  

moldboard plow 

Rotation corn $7 $0 $0 $0 $0 $0 $0 $0 $0 

Continuous corn $50 $28 $22 $58 $33 $22 $7 $5 $1 

Rotation soybean $0 $0 $0 $0 $0 $0 n/a* 
 

*The moldboard plow does dominate chisel under rotation soybeans however it is assumed that a risk neutral farmer 

would prefer the least intensive form of tillage (no till) so no subsidy is required. 

 

Appendix A. Budgets of Tillage Operations 

Full quantification of the relative profitability of competing tillage practices (𝑋 =

𝑃𝑘(𝑌𝑘,𝑗
𝑚 − 𝑌𝑘,𝑗

𝑛 |𝑤) + (𝑂𝑘
𝑛 − 𝑂𝑘

𝑚) + 𝑞𝑘,𝑗
𝑚 ) requires (in addition to yield functions, probability 

distributions of weather variables, and the subsidy𝑞𝑘,𝑗
𝑚 ) a quantification of crop prices 𝑃𝑘, and 

differences in operating costs (𝑂𝑘
𝑛 − 𝑂𝑘

𝑚). This appendix describes the calculation of these 

parameters. 

The 2014 Long Term Tillage Survey report discusses the management practices and 

provides details of the equipment, herbicides, and fertilizers used on each experimental plot in 

each year. We used Michigan State’s per acre custom rates for machinery and associated 

machinery operational costs.8 These costs are considered to be an estimate of the ownership and 

operation of machinery. These are broken down on a per acre basis and include tractor, fuel cost 

(at $3.60 per gallon), lubricants, repairs, maintenance, labor and overhead costs including 

depreciation. Herbicide costs were obtained from Crop Production Services (Padgett, personal 

                                                           
8 These rates include tractor cost, fuel cost, lubricants, repairs, maintenance, labor and overhead costs including 

depreciation. This could be considered as an estimate of the ownership cost and operation of this machine on a per 

acre basis. These rates were found using actual farm survey data and are approximations of what would be used on 

the average corn and soybean operation in Indiana. Rates can vary with different assumptions about exact equipment 

make and model and other financial calculations like use of equipment, depreciation and interest. 
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communication, September 8, 2015). The only other costs that varied by tillage practice were the 

costs of herbicides. A detailed breakdown of relative expenses as well as descriptions of the 

machinery used in the Purdue University experimental plots are outlined in Table A.1.  

The expense breakdown in Table A.1 shows cost savings attained with conservation 

tillage practices. Both reduced tillage practices result in savings on field work; No till results in 

higher herbicide expenditures. Table A.1 shows that chisel till results in savings relative to 

moldboard plow for both corn and soybeans (𝑂𝑐
𝑀𝑃 − 𝑂𝑐

𝐶𝑇= $12.24 and 𝑂𝑠
𝑀𝑃 − 𝑂𝑠

𝐶𝑇= $12.24). In 

addition, no till results in savings relative to moldboard plow in both corn and soybeans (𝑂𝑐
𝑀𝑃 −

𝑂𝑐
𝑁𝑇= $23.23 and 𝑂𝑠

𝑀𝑃 − 𝑂𝑠
𝑁𝑇= $27.29). Finally, no till results in savings relative to chisel till in 

both corn and soybeans (𝑂𝑐
𝐶𝑇 − 𝑂𝑐

𝑁𝑇= $10.99 and 𝑂𝑠
𝐶𝑇 − 𝑂𝑠

𝑁𝑇= $15.05). Management practices 

that differ by tillage alternative remained consistent over time, avoiding the risk of attributing 

yield differences to tillage practices instead of other confounding factors. 
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Table A.1. Breakdown of expenses that vary by tillage practices* 

Equipment used in Purdue 

tillage experiment 

Moldboard plow baseline Chisel plow baseline 

Chisel 

corn 

Chisel 

soybean 

No till 

corn 

No till 

soybean 

No till 

corn 

No till 

soybean 

Field operations expenditures           

DMI 7-shank coulter-chisel 

plow equipped with 4-inch 

twisted chisel points on 15-

inch centers and a Danish-

tine sweep leveling bar 

(11.14) (11.14) - - - - 

90-foot boom sprayer or a 30-

foot 3-point hitch mounted 

sprayer 

- - (3.70) - (3.70) - 

Moldboard plow savings 23.38 23.38 23.38 23.38   

Chisel plow savings     11.14 11.14 

Field cultivator savings - - 11.75 11.75 11.75 11.75 

Subtotal field operations 

expenditures 
12.24 12.24 31.43 35.13 19.19 22.89 

       

Increased chemical expenditures      

Roundup 25 oz/acre for corn 

and 23 oz/acre for soybeans 
- - (4.54) (4.18) (4.54) (4.18) 

2, 4-D ester 1 pt/acre - - (3.25) (3.25) (3.25) (3.25) 

Ammonium sulfate (8 lbs/100 

gallons water) 
- - (0.41) (0.41) (0.41) (0.41) 

Subtotal increased chemical 

expenditures 
- - (8.20) - (8.20) - 

Total 𝑂𝑘
𝑚 − 𝑂𝑘

𝑛 $ 12.24 $ 12.24 $ 23.23 $27.29 $ 10.99 $ 15.05 

    
 

 

* Values reported in the table represent cost differences between tillage practices. 
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Appendix B. Probability distributions of weather under current and projected climate 

Figures B.1. - B.4. below display probability density functions of beginning-of-season rainfall 

and GDD under current and projected climate regimes. Two scenarios of projected climate are 

considered: 1) low emissions (RCP2.6), and 2) high emissions (RCP8.5). 

Figure B.1. Probability density function of April precipitation- current and projected climate 

  
 

 

Figure B.2. Probability density function of April GDD- current and projected climate  
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Figure B.3. Probability density function of May precipitation- current and projected climate 

 
 

Figure B.4. Probability density function of May GDD- current and projected climate 

 
 

 

 

 

 

 

 

 



51 
 

Appendix C. Description of Climate Models 

Climate models used in this study (described in Table C.1 below) represent a number of best-

effort attempts to simulate the climate system. Multiple models are used in order to capture the 

wide range of available predictions. Under the CMIP5 framework, a “core” set of specifications 

(e.g. location, greenhouse gas emissions scenario) is provided and each modeling center or group 

contributing to CMIP5 is required to generate a complete set of “core” simulations. Random 

draws are then pulled together to generate a multimodel dataset for analysis (Taylor et al., 2012). 

The multimodel framework is intended to account for poorly understood feedbacks associated 

with the carbon cycle and with clouds, among other things. Taylor et al. (2012) provides further 

description on the CMIP5 experiment.
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Table C.1. CMIP5 Models 

Modeling Center (or Group) 

WCRP 

CMIP5 

Climate 

Model ID 

RCP2.6 

runs 

RCP8.5 

runs 

Beijing Climate Center, China Meteorological 

Administration 
BCC-CSM1.1 1 1 

Canadian Centre for Climate Modelling and Analysis 
BCC-

CSM1.1(m) 
1-5 1-5 

National Center for Atmospheric Research CCSM4 1-2 1-2 

Commonwealth Scientific and Industrial Research 

Organization, Queensland Climate Change Centre of 

Excellence 

CSIRO-

Mk3.6.0 
1-10 1-10 

NOAA Geophysical Fluid Dynamics Laboratory GFDL-CM3 1 1 

NOAA Geophysical Fluid Dynamics Laboratory 
GFDL-

ESM2G 
1 1 

NOAA Geophysical Fluid Dynamics Laboratory 
GFDL-

ESM2M 
1 1 

Institut Pierre-Simon Laplace 
IPSL-CM5A-

LR 
1-3 1-3 

Institut Pierre-Simon Laplace 
IPSL-CM5A-

MR 
1 1 

Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute (The University 

of Tokyo), and National Institute for Environmental 

Studies 

MIROC-ESM 1 1 

Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute (The University 

of Tokyo), and National Institute for Environmental 

Studies 

MIROC-ESM-

CHEM 
1 1 

Atmosphere and Ocean Research Institute (The University 

of Tokyo), National Institute for Environmental Studies, 

and Japan Agency for Marine-Earth Science and 

Technology 

MIROC5 1-3 1-3 

Max-Planck-Institut für Meteorologie (Max Planck 

Institute for Meteorology) 
MPI-ESM-LR 1-3 1-3 

Max-Planck-Institut für Meteorologie (Max Planck 

Institute for Meteorology) 
MPI-ESM-MR 1 1 

Meteorological Research Institute MRI-CGCM3 1 1 

Norwegian Climate Centre NorESM1-M 1 1 

 


